Errors-and-Erasures Decoding for Block Codes With Feedback

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/tit.2011.2169529</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers (IEEE)</td>
</tr>
<tr>
<td>Version</td>
<td>Author’s final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Feb 15 10:29:42 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/73674</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike 3.0</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/3.0/</td>
</tr>
</tbody>
</table>
Errors-and-Erasures Decoding for Block Codes with Feedback

Barış Nakiboğlu
Electrical Engineering and Computer Science
Massachusetts Institute of Technology
MA 02139 Cambridge

Lizhong Zheng
Electrical Engineering and Computer Science
Massachusetts Institute of Technology
MA 02139 Cambridge

Abstract

Inner and outer bounds are derived on the optimal performance of fixed length block codes on discrete memoryless channels with feedback and errors-and-erasures decoding. First an inner bound is derived using a two phase encoding scheme with communication and control phases together with the optimal decoding rule for the given encoding scheme, among decoding rules that can be represented in terms of pairwise comparisons between the messages. Then an outer bound is derived using a generalization of the straight-line bound to errors-and-erasures decoders and the optimal error exponent trade off of a feedback encoder with two messages. In addition upper and lower bounds are derived, for the optimal erasure exponent of error free block codes in terms of the rate. Finally we present a proof of the fact that the optimal trade off between error exponents of a two message code does not increase with feedback on DMCs.

I. INTRODUCTION

Shannon showed in [30] that the capacity of discrete memoryless channels (DMCs) does not increase even when a noiseless and delay free feedback link is available from the receiver to the transmitter. On symmetric DMCs the sphere packing exponent bounds the error exponent of fixed length block codes from above, as shown by Dobrushin in [11]. Thus relaxations like errors-and-erasures decoding or variable length coding are needed for feedback to increase the error exponent of block codes at rates larger than the critical rate on symmetric DMCs. In this work we investigate one such relaxation, namely errors-and-erasures decoding and find inner and outer bounds to the optimal error exponent erasure exponent trade off.

Finding the optimal encoding and decoding schemes, and hence finding optimal performance by characterizing the surface of achievable error exponent erasure exponent pairs is an important motivation for the investigation of errors-and-erasure decoding. Note, however, that finding the optimal performance with erasures will implicitly solve the problem of finding the optimal feedback encoder and determining the error exponent for the erasure free fixed length block codes with feedback which is a long standing open problem. Finding the optimal performance, however, is far from being the only important aspect of the problem. Determining the performance of feedback encoding schemes that are easier to implement, more robust to the degradations of the feedback link and bounding the loss in the performance compared to the more complicated encoding schemes are both important tasks practically and interesting ones intellectually. This will be our aim in this paper. We will first analyze the performance of a two phase encoding scheme inspired by the optimal encoding schemes for variable length block codes and derive inner bounds to the optimal performance. Then we will derive outer bounds to the performance of general feedback encoding schemes with erasures and quantify the loss of performance by restricting ourselves to the above mentioned two phase schemes. This analysis complements the research on two related block coding schemes: variable length block coding and errors-and-erasures decoding for block codes without feedback. We start with a very brief overview of the previous work on these problems to motivate our investigation further.

Burnashev [3, 4, 5] was the first one to consider variable-length block codes with feedback, instead of fixed length ones. He obtained the exact expression for the error exponent at all rates. Later Yamamoto and Itoh. [34], suggested a coding scheme which achieves the best error exponent for variable-length block codes with feedback by using a fixed length block code with an errors-and-erasures decoding and repeating the same codeword until a non-erasure decoding occurs. In fact any fixed length block code with erasures can be used in this repetitive fashion,

1Later Haroutunian, [17], established an upper bound on the error exponent of block codes with feedback. This upper bound is equal to sphere packing exponent for symmetric channels but it is strictly larger than the sphere packing exponent for non-symmetric channels.

2Including erasures will not increase the exponent for variable-length block codes with feedback.
like it was done in [34], to get a variable length block code with essentially the same error exponent as the original fixed length block code. Thus [3] can be reinterpreted to give an upper bound to the error exponent achievable by fixed length block codes with erasures. Furthermore this upper bound is achieved by the fixed length block codes with erasures described in [44], when erasure probability is decaying to zero subexponentially with block length. However the techniques used in this line of work are insufficient for deriving proper inner or outer bounds for the situation when erasure probability is decaying exponentially with block length. As explained in the following paragraph the case with strictly positive erasure exponent is important both for engineering applications and for a better understanding of soft decoding with feedback. Our investigation provides proper tools for such an analysis, results in inner and outer bounds to the trade off between error and erasure exponents, while recovering all previously known results for the zero erasure exponent case.

When considered together with higher layers, the codes in the physical layer are part of a variable length/delay communication scheme with feedback. However in the physical layer itself fixed length block codes are used instead of variable length ones because of their amenability to modular design and robustness against the noise in the feedback link. In such an architecture retransmissions affect the performance of higher layers. The average transmission time is only a first order measure of this effect: as long as the erasure probability is vanishing with increasing block length, average transmission time will essentially be equal to the block length of the fixed length block code. Thus with an analysis like the one in [34], the cost of retransmissions are ignored as long as the erasure probability goes to zero with increasing block length. In a communication system with multiple layers, however, retransmissions usually have costs beyond their effect on average transmission time, which are described by constraints on the probability distribution of the decoding time. Knowledge of error erasure exponent trade off is useful in coming up with designs to meet those constraints. An example of this phenomena is variable length block coding schemes with hard deadlines for decoding time, which has already been investigated by Gopala et. al. [16] for block codes without feedback. They have used a block coding scheme with erasures and they resend the message whenever an erasure occurs. But because of the hard deadline, they employ this scheme only for some fixed number of trials. If all those trials fail, i.e. lead to an erasure, they use a non-erasure block code. Using the error exponent erasure exponent trade off they were able to obtain the best over all error performance for the given architecture.

This brings us to the second line of research we complement with our investigation: errors-and-erasures decoding for block codes without feedback. Forney [14] was the first one to consider errors-and-erasures decoding without feedback. He obtained an achievable trade off between the exponents of error and erasure probabilities. Then Csiszár and Körner, [10] achieved the same performance using universal coding and decoding algorithms. Later Telatar and Gallager, [33], introduced a strict improvement on certain channels over the results presented in [14] and [10]. Recently there has been a revived interest in the errors-and-erasures decoding for universally achievable performances [22], [21], for alternative methods of analysis [20], for extensions to the channels with side information [27] and implementation with linear block codes [13]. The encoding schemes in these codes do not have access to any feedback. However if the transmitter can learn whether the decoded message was an erasure or not, it can resend the message whenever it is with linear block codes [18]. The encoding schemes in these codes do not have access to any feedback. However if the transmitter can learn whether the decoded message was an erasure or not, it can resend the message whenever it is.
of feedback had been investigated for block codes without erasures. First channel model is the well known additive white Gaussian noise channel (AWGNC) model. In AWGNCs if the power constraint \(P \) is on the expected value of the energy spent on a block \(E[S_n] \) i.e. power constraint is of the form \(E[S_n] \leq P n \), the error probability can be made to decay faster than any exponential function with block length \(n \). Schalkwijk and Kailath suggested a coding algorithm in [29] which achieves a doubly exponential decay in error probability for continuous time AWGNCs, i.e. infinite bandwidth case. Later Schalkwijk [28] modified that scheme to achieve the same performance in discrete time AWGNCs, i.e. finite bandwidth case. Concatenating Schalkwijk and Kailath scheme with pulse amplitude modulation stages, gives a multi-fold exponential decrease in the error probability [26], [35], [15]. However this behavior relies on the absence of any amplitude limit, the particular form of the power constraint and the noise free nature of the feedback link. First of all, as observed in [5] and [24] when there is an amplitude limit, error probability decays only exponentially with block length. More importantly if the power constraint restricts the energy spent in transmission of each message for all noise realizations, i.e. if the power constraint is an almost sure power constraint \(R \) of the form \(S_n \leq P n \); then sphere packing exponent is still an upper bound to the error exponent for AWGNCs as shown by Pinsker, [26]. Furthermore if the feedback link is also an AWGNC and if there is a power constraint on the feedback transmissions, then even in the case when there are only two messages, error probability decays only exponentially as it has been recently shown by Kim et.al. [19].

The second channel model is the DMC model. Although feedback can not increase the error exponent for rates over the critical rate, it can simplify the encoding scheme [35], [13]. Furthermore, for rates below the critical rate it is possible to improve the error exponent using feedback. Zigangirov [35] has established lower bounds to the error exponent for BSCs using a simple encoding scheme. Zigangirov’s lower bound is equal to the sphere packing exponent for all rates in the interval \([R_{\text{crit}}', C] \) where \(R_{\text{crit}}' < R_{\text{crit}} \) and Zigangirov’s lower bound is strictly larger than the corresponding non-feedback exponent for rates below \(R_{\text{crit}}'. \) Later Burnashev [6] introduced an improvement to Zigangirov’s bound for all positive rates less than \(R_{\text{crit}}' \). D’yachkov [13] generalized Zigangirov’s encoding scheme for general DMCs and established a lower bound to the error exponent for general binary input channels and k-ary symmetric channels. However it is still an open problem to find a constructive technique that can be used for all DMCs which outperforms the random coding bound. Like AWGNCs there has been a revived interest in the effect of a noisy feedback link and achievable performances with noisy feedback on DMCs. Burnashev and Yamamoto recently showed that error exponent of BSC channel increases even with a noisy feedback link [7], [8]. Furthermore Draper and Sahai [12] investigated the use of noisy feedback link in variable length schemes.

II. MODEL AND NOTATION:

The input and output alphabets of the forward channel are \(\mathcal{X} \) and \(\mathcal{Y} \), respectively. The channel input and output symbols at time \(t \) will be denoted by \(X_t \) and \(Y_t \) respectively. Furthermore, the sequences of input and output symbols from time \(t_1 \) to time \(t_2 \) are denoted by \(X^ {t_2|t_1}_i \) and \(Y^ {t_2|t_1}_i \). When \(t_1 = 1 \) we omit \(t_1 \) and simply write \(X^{t_2} \) and \(Y^{t_2} \) instead of \(X^ {t_2|1}_i \) and \(Y^ {t_2|1}_i \). The forward channel is a stationary memoryless channel characterized by an \(|\mathcal{X}| \)-by-\(|\mathcal{Y}| \) transition probability matrix \(W \).

\[
P[Y_t|X^t, Y^{t-1}] = P[Y_t|X_t] = W(Y_t|X_t) \quad \forall t.
\] (1)

The feedback channel is noiseless and delay free i.e. the input of the feedback channel \(Z_{t-1} \), chosen at the receiver, is observed at the transmitter before transmission of \(X_t \). In addition we assume that feedback channel is of infinite capacity thus \(Z_{t-1} \) includes all of the observation of the receiver at time \(t-1 \), i.e. \(Z_{t-1} = (Y_{t-1}, A_{t-1}) \). The random variables \(A_0, A_1, \ldots, A_n \) are there to enable randomized encoding and decoding schemes as we will see shortly. It is assumed that the choice \(A \)’s does not affect the forward channels behavior, i.e. in addition to (1) we have \(^{3}\)

\[
P[Y_t|X^t, Z^{t-1}] = W(Y_t|X_t) \quad \forall t.
\] (2)

The message \(M \) is drawn from the message set \(\mathcal{M} \) with a uniform probability distribution and is given to the transmitter at time zero. At each time \(t \in [1, n] \) the input symbol \(X_t(M, Z^{t-1}) \) is sent. The sequence of functions \(X_t(\cdot): \mathcal{M} \times Z^{t-1} \)

\(^3\)As Kim et. al. [19] calls it.

\(^4\)This constraint can be an expected or almost sure constraint.

\(^5\)For \(t = 1 \) we have \(Z_0 = A_0 \)

\(^6\)We make a slight abuse of notation and denote \(Z_0^t \) by \(Z^t \).
which assigns an input symbol for each \(m \in \mathcal{M} \) and \(z^{t-1} \in \mathbb{Z}^{t-1} \) is called the encoding function. Note that the random variables \(A_0, A_1, \ldots, A_{n-1} \) enable randomized encoding schemes. After receiving \(Y^n \) the receiver draws the final \(A_n \) and decodes to the message \(\hat{M}(Z^n) \in \{x\} \cup \mathcal{M} \) where \(x \) is the erasure symbol. The random variable \(A_n \) does not have any effect on the encoding; it is used only to enable randomized decoding schemes.

The conditional error and erasure probabilities \(P_{e|M} \) and \(P_{x|M} \) and unconditional error and erasure probabilities, \(P_e \) and \(P_x \) are defined as,

\[
P_e | M \triangleq P \left[\hat{M} \neq M | M \right] - P_{x|M}, \quad \quad P_x | M \triangleq P \left[\hat{M} = x | M \right] - P_x
\]

Since all the messages are equally likely we have,

\[
P_e = \frac{1}{|\mathcal{M}|} \sum_m P_{e|m}, \quad \quad P_x = \frac{1}{|\mathcal{M}|} \sum_m P_{x|m}.
\]

We use a somewhat abstract but rigorous approach in defining the rate and achievable exponent pairs. A reliable sequence \(Q \), is a sequence of codes indexed by their block lengths such that

\[
\lim_{n \to \infty} \left(P_e(n) + P_x(n) + \frac{1}{|\mathcal{M}|} \right) = 0.
\]

In other words reliable sequences are sequences of codes whose overall error probability, detected and undetected, vanishes and whose size of message set grows to infinity with block length \(n \).

Definition 1: The rate, erasure exponent, and error exponent of a reliable sequence \(Q \) are given by

\[
R_Q \triangleq \liminf_{n \to \infty} \frac{\ln|\mathcal{M}(n)|}{n}, \quad \quad E_{xQ} \triangleq \liminf_{n \to \infty} \frac{-\ln P_x(n)}{n}, \quad \quad E_{eQ} \triangleq \liminf_{n \to \infty} \frac{-\ln P_e(n)}{n}
\]

Haroutunian, [17] Theorem 2], has already established a strong converse for erasure free block codes with feedback which in our setting implies that \(\lim_{n \to \infty} (P_e(n) + P_x(n)) = 1 \) for all codes whose rates are strictly above the capacity, i.e. \(R > C \). Thus we consider only rates that are less than or equal to the capacity, \(R \leq C \). For all rates \(R \) below capacity and for all non-negative erasure exponents \(E_x \), we define the (true) error exponent \(E_e(R, E_x) \) of fixed length block codes with feedback to be the best error exponent of the reliable sequence \(Q \) whose rate is at least \(R \) and whose erasure exponent is at least \(E_x \).

Definition 2: \(\forall R \leq C \) and \(\forall E_x \geq 0 \) the error exponent, \(E_e(R, E_x) \) is,

\[
E_e(R, E_x) \triangleq \sup_{Q: R_Q \geq R, E_{xQ} \geq E_x} E_{eQ}.
\]

Note that

\[
E_e(R, E_x) = \mathcal{E}(R) \quad \forall E_x > \mathcal{E}(R)
\]

where \(\mathcal{E}(R) \) is the (true) error exponent of erasure-free block codes on DMCs with feedback.\(^3\) Thus benefit of the errors-and-erasures decoding is the possible increase in the error exponent as the erasure exponent goes below \(\mathcal{E}(R) \).

Determining \(\mathcal{E}(R) \) for all \(R \)’s and for all channels is still an open problem; only upper and lower bounds to \(\mathcal{E}(R) \) are known. Our investigation focuses on quantifying the gains of errors-and-erasures decoding instead of finding \(\mathcal{E}(R) \). Consequently, we restrict ourselves to the region where the erasure exponent is lower than the error exponent for the encoding scheme.

For future reference let us recall the expressions for the random coding exponent and the sphere packing exponent,

\[
E_r(R, P) = \min_V \mathbb{D}(V||W|P) + \|I(P;V) - R\|^+ \quad \quad E_r(R) = \max_P E_r(R, P)
\]

\[
E_{sp}(R, P) = \min_{V: I(P;V) \leq R} \mathbb{D}(V||W|P) \quad \quad E_{sp}(R) = \max_P E_{sp}(R, P)
\]

\(^3\)We restrict ourselves to the reliable sequences in order to ensure finite error exponent at zero erasure exponent. Note that a decoder which always declares erasures has zero erasure exponent and infinite error exponent.

\(^4\)In order to see this consider a reliable sequence with erasures \(Q \) and replace its decoding algorithm by an erasure free decoding algorithm such that \(M'(z^n) = M(z^n) \) if \(M(z^n) \neq x \), to obtain a new reliable sequence \(Q' \). Then \(P_{eQ'}(n) \leq P_{eQ}(n) \); thus \(E_{eQ'} = \min\{E_{xQ}, E_{eQ}\} \) and \(R_{Q'} = R_Q \). This together with the definition of \(\mathcal{E}(R) \) leads to equation (4).
where $\mathbb{D}(V||W|P)$ stands for conditional Kullback Leibler divergence of V and W under P, and $I(P,V)$ stands for mutual information for input distribution P and channel V.

We denote the y marginal of a distribution like $P(x)V(y|x)$ by $(PV)_Y$. The support of a probability distribution P is denoted by $\text{supp}P$.

III. AN ACHIEVABLE ERROR EXPONENT - ERASURE EXPONENT TRADE OFF

In this section we establish a lower bound to the achievable error exponent as a function of erasure exponent and rate. We use a two phase encoding scheme similar to the one described by Yamamoto and Ito in [34] together with a decoding rule similar to the one described by Telatar in [32]. In the first phase, the transmitter uses a fixed-composition code of length αn and rate $\frac{R}{n}$. At the end of the first phase, the receiver makes a maximum mutual information decoding to obtain a tentative decision \hat{M}. The receiver knows \hat{M} because of the feedback link. In the remaining $(n-n_1)$ time units, i.e. the second phase, the transmitter confirms the tentative decision by sending the accept codeword, if $\hat{M} = M$, and rejects it by sending the reject codeword otherwise. At the end of the second phase the receiver either declares an erasure or declares the tentative decision as the decoded message. Receiver declares the tentative decision as the decoded message only when the tentative decision “dominates” all other messages. The word “dominate” will be made precise later in Section III-B. Our scheme is inspired by [34] and [32]. However, unlike [34] our encoding rule makes use of outputs of both of the phases instead of output of just second phase while deciding between declaring an erasure or declaring the tentative decision as the decoded message. Receiver declares the tentative decision as the decoded message only when the tentative decision “dominates” all other messages. The word “dominate” will be made precise later in Section III-B. Our scheme is inspired by [34] and [32]. However, unlike [34] our encoding rule makes use of outputs of both of the phases instead of output of just second phase while deciding between declaring an erasure or declaring the tentative decision as the final one, and unlike [32] our encoding scheme is a feedback encoding scheme with two phases.

In the rest of this section, we analyze the performance of this coding architecture and derive an achievable error exponent expression in terms of a given rate R, erasure exponent E_{R}, time sharing constant α, communication phase type P, control phase type (joint empirical type of the accept codeword and reject codeword) Π and domination rule \succ. Then we optimize over \succ, Π, P and α, to obtain an achievable error exponent expression as a function of rate R and erasure exponent E_{R}.

A. Fixed-Composition Codes and The Packing Lemma

We start with a very brief overview of certain properties of types. Those readers who are not familiar with method types can use [9] for a concise introduction or [10] for a thorough study. The empirical distribution of an $x^n \in \mathcal{X}^n$ is called the type of x^n and the empirical distribution of transitions from a $x^n \in \mathcal{X}^n$ to a $y^n \in \mathcal{Y}^n$ is called the conditional type:

$$
P_{x^n}(\tilde{x}) \triangleq \frac{1}{n} \sum_{t=1}^{n} \mathbb{1}_{\{x_t = \tilde{x}\}} \quad \tilde{x} \in \mathcal{X}.$$ \hspace{1cm} (7)

$$
V_{y^n|x^n}(\tilde{y}|\tilde{x}) \triangleq \frac{1}{n} \sum_{t=1}^{n} \frac{\mathbb{1}_{\{x_t = \tilde{x}\}} \mathbb{1}_{\{y_t = \tilde{y}\}}}{\mathbb{1}_{\{y_t \neq \tilde{y}\}} \mathbb{1}_{\{x_t = \tilde{x}\}}} \quad \forall \tilde{y} \in \mathcal{Y}, \; \forall \tilde{x} \text{ s.t. } P_{x^n}(\tilde{x}) > 0. \hspace{1cm} (8)
$$

For any probability transition matrix $W : \text{supp}P_{x^n} \rightarrow \mathcal{Y}$ we have

$$
\prod_{t=1}^{n} W(y_t|x_t) = e^{-n(\mathbb{D}(V_{y^n|x^n}||W|P_{x^n}) + H(V_{y^n|x^n}|P_{x^n}))} \hspace{1cm} (9)
$$

The set of all y^n’s with the same conditional type V with respect to x^n is called the V-shell of x^n and denoted by $T_V(x^n)$:

$$
T_V(x^n) = \{ y^n : V_{y^n|x^n} = V \}. \hspace{1cm} (10)
$$

Note that for any transition probability matrix from \mathcal{X} to \mathcal{Y} total probability of $T_V(x^n)$ has to be less than one. Thus by assuming that transition probabilities are V and using equation (9) we can conclude that,

$$
|T_V(x^n)| \leq e^{H(V_{y^n|x^n}|P_{x^n})} \hspace{1cm} (11)
$$

\footnote{Note that P_{x^n} corresponds to a distribution on \mathcal{X} for all $x^n \in \mathcal{X}^n$, where as $V_{y^n|x^n}$ determines a channel from the support of P_{x^n} to \mathcal{Y}.}

\footnote{Note that for any $W : \mathcal{X} \rightarrow \mathcal{Y}$ there is unique consistent $W' : \text{supp}P_{x^n} \rightarrow \mathcal{Y}$.}
Codes whose codewords all have the same empirical distribution, $P_{x^n(m)} = P \forall m \in \mathcal{M}$ are called fixed-composition codes. In Section 3.1.2 we will describe the error and erasure events in terms of the intersections of $V-$shells of different codewords. For doing that let us define $F(n) \left(V, \hat{V}, m \right)$ as the intersection of V-shell of $x^n(m)$ and the \hat{V}-shells of other codewords:

$$F(n) \left(V, \hat{V}, m \right) \triangleq T_V \left(x^n(m) \right) \cap \bigcup_{\tilde{m} \neq m} T_{\hat{V}} \left(x^n(\tilde{m}) \right).$$ \tag{12}

The following packing lemma, proved by Csiszár and Körner [10] Lemma 2.5.1, claims the existence of a code with a guaranteed upper bound on the size of $F(n) \left(V, \hat{V}, m \right)$.

Lemma 1: For every block length $n \geq 1$, rate $R > 0$ and type P satisfying $H(P) > R$, there exist at least $\left\lfloor e^{n(R-\delta_n)} \right\rfloor$ distinct type P sequences in \mathcal{X}^n such that for every pair of stochastic matrices $V : \text{supp} P \rightarrow \mathcal{Y}$, $\hat{V} : \text{supp} P \rightarrow \mathcal{Y}$ and $\forall m \in \mathcal{M}$

$$|F(n) \left(V, \hat{V}, m \right)| \leq |T_V \left(x^n(m) \right)| e^{-n[I(P, \hat{V}) - R]^+}$$

where $\delta_n = \frac{\ln 4 + (4|X| + 6|X||Y|) \ln(n+1)}{n}$.

Above lemma is stated in a slightly different way by the authors of [10], for a fixed δ and large enough n. However, this form follows immediately from their proof.

If we use Lemma 1 together with equations (9) and (11) we can bound the conditional probability of observing a $y^n \in F(n) \left(V, \hat{V}, m \right)$ when $M = m$ as follows.

Corollary 1: In a code satisfying Lemma 1 when message $m \in \mathcal{M}$ is sent, the probability of receiving a $y^n \in T_V \left(x^n(m) \right)$ which is also in $T_{\hat{V}} \left(x^n(\tilde{m}) \right)$, for some $\tilde{m} \in \mathcal{M}$ such that $\tilde{m} \neq m$ is bounded as follows,

$$P \left[F(n) \left(V, \hat{V}, M \right) \mid M \right] \leq e^{-n\eta(R,P,V,\hat{V})}$$ \tag{13}

where

$$\eta \left(R, P, V, \hat{V} \right) \triangleq D \left(V || W \right) + D \left(P, \hat{V} \right) - R \tag{14}$$

B. Coding Algorithm

In the first phase, the communication phase, we use a length $n_1 = \left\lfloor \alpha n \right\rfloor$ type P fixed-composition code with $\left\lfloor e^{n_1(\frac{\delta}{\alpha} - \delta_n)} \right\rfloor$ codewords which satisfies the property described in Lemma 1. At the end of the first phase the receiver makes a tentative decision by choosing the codeword that has the maximum empirical mutual information with the output sequence Y^n. If there is a tie, i.e. if there are more than one codewords which have the maximum empirical mutual information, the receiver chooses the codeword which has the lowest index.

$$\hat{M} = \left\{ m : \left\{ \begin{array}{ll} P, V_{x^n} | x^n(m) \rangle > P, V_{\tilde{x}^n} | x^n(\tilde{m}) \rangle \quad \forall \tilde{m} < m \\ P, V_{x^n} | x^n(m) \rangle \geq P, V_{\tilde{x}^n} | x^n(\tilde{m}) \rangle \quad \forall \tilde{m} > m \end{array} \right. \right\} \tag{15}$$

In the remaining $(n-n_1)$ time units, the transmitter sends the accept codeword $x^n_{n_1+1}(a)$ if $\hat{M} = M$ and sends the reject codeword $y^n_{n_1+1}(r)$ otherwise.

Note that our encoding scheme uses the feedback link actively for the encoding neither within the first phase nor within the second phase. It does not even change the codewords it uses for accepting or rejecting the tentative decision depending on the observation in the first phase. Feedback is only used to reveal the tentative decision to the transmitter.

Accept and reject codewords have joint type $\Pi(\tilde{x}, \tilde{z})$, i.e. the ratio of the number of time instances in which accept codeword has an $\tilde{x} \in \mathcal{X}$ and reject codeword has a $\tilde{z} \in \mathcal{X}$ to the length of the codewords, $(n-n_1)$, is $\Pi(\tilde{x}, \tilde{z})$. The joint conditional type of the output sequence in the second phase, $U_{y^n_{n_1+1}}$, is the empirical conditional distribution of $y^n_{n_1+1}$. We call set of all output sequences $y^n_{n_1+1}$ whose joint conditional type is U, the U-shell and denote it by T_U.

Like we did in the Corollary 1 we can upper bound the probability of U-shells. Note that if $Y^n_{n_1+1} \in T_U$, then

$$P \left[Y^n_{n_1+1} \mid X^n_{n_1+1} = x^n_{n_1+1}(a) \right] = e^{-(n-n_1)(D(U || W_\Pi) + H(U || W_\Pi))}$$

$$P \left[Y^n_{n_1+1} \mid X^n_{n_1+1} = x^n_{n_1+1}(r) \right] = e^{-(n-n_1)(D(U || W_\Pi) + H(U || W_\Pi))}$$
where \(x_{n+1}^n(a) \) is the accept codeword, \(x_{n+1}^n(r) \) is the reject codeword, \(W_a(y|x, \tilde{x}) = W(y|x) \) and \(W_r(y|x, \tilde{x}) = W(y|x) \). Noting that \(|T_U| \leq e^{(n-n_1)H(U||\Pi)} \), we get:

\[
\begin{align*}
P [T_U | X_{n+1}^n] &= x_{n+1}^n(a) \leq e^{-(n-n_1)D(U||W_a||\Pi)} \quad (16a) \\
P [T_U | X_{n+1}^n] &= x_{n+1}^n(r) \leq e^{-(n-n_1)D(U||W_r||\Pi)} \quad (16b)
\end{align*}
\]

C. Decoding Rule

For an encoder like the one in Section III-B, a decoder that depends only on the conditional type of \(Y^n \) for different codewords in the communication phase, i.e. \(Y^n_{x^n} \)'s for \(m \in \mathcal{M} \), the conditional type of the channel output in the control phase, i.e. \(Y^n_{x^n_{\neq m}} \), and the indices of the codewords can achieve the minimum error probability for a given erasure probability. However finding that decoder becomes analytically intractable. Instead, we restrict ourselves to the decoders that can be written in terms of pair wise comparisons between messages given \(Y^n \). Furthermore we assume that these pairwise comparisons depend only on the conditional type of \(Y^n \), for the messages compared, the conditional output type in the control phase and the indices of the messages. Thus if the triplet corresponding to the tentative decision \((Y_{x^n_{\neq m}}, Y_{x^n_{\neq m}}, \hat{y}_{x^n_{\neq m}})\) dominates all other triplets of the form \((Y_{x^n_{\neq m}}, Y_{x^n_{\neq m}}, m)\) for \(m \neq \hat{y}_{x^n_{\neq m}} \), the tentative decision becomes final; else an erasure is declared.

\[
\hat{y}_{x^n_{\neq m}} = \begin{cases}
\hat{y} & \text{if } \forall m \neq \hat{y} \quad (Y_{x^n_{\neq m}}, Y_{x^n_{\neq m}}, \hat{y}) > (Y_{x^n_{\neq m}}, Y_{x^n_{\neq m}}, m) \\
\hat{x} & \text{if } \exists m \neq \hat{y} \quad (Y_{x^n_{\neq m}}, Y_{x^n_{\neq m}}, \hat{y}) < (Y_{x^n_{\neq m}}, Y_{x^n_{\neq m}}, m)
\end{cases}
\quad (17)
\]

The binary relation \(\succ \) is such that if \((V_{x^n}, Y_{x^n}, m)\) dominates \((\hat{V}_{x^n}, Y_{x^n}, \hat{m})\) then \((V_{x^n}, Y_{x^n}, m)\) does not dominate \((V_{x^n}, Y_{x^n}, m)\):

\[
(V_{x^n}, Y_{x^n}, m) \succ (\hat{V}_{x^n}, Y_{x^n}, \hat{m}) \Rightarrow (V_{x^n}, Y_{x^n}, \hat{m}) \not\succ (V_{x^n}, Y_{x^n}, m)
\]

This property is a necessary and sufficient condition for a binary relation to be a dominance rule. Decoder given by (17), however, either accepts or rejects the tentative decision \(\hat{m} \) given in (15). Consequently its dominance rule also satisfies following two properties:

(a) If the empirical mutual information of the messages in the communication phase are not equal, only the message with larger mutual information can dominate the other one.

(b) If the empirical mutual information of the messages in the communication phase are equal, only the message with lower index can dominate the other one.

For any such binary relation there is a corresponding decoder of the form given in equation (17). In our scheme we either use the trivial dominance rule leading to the trivial decoder \(\hat{m} = \hat{y} \) or the domination rule given in equation (18), both of which satisfies these conditions.

\[
(V_{x^n}, Y_{x^n}, m) \succ (\hat{V}_{x^n}, Y_{x^n}, \hat{m}) \Leftrightarrow \begin{cases}
1(P, V) > 1(P, \hat{V}) & \text{and } \alpha \eta \left(R_{x^n}, P, V, \hat{V} \right) + (1 - \alpha)D(U||W_a||\Pi) \leq E_x & \text{if } m \geq \hat{m} \\
1(P, V) \geq 1(P, \hat{V}) & \text{and } \alpha \eta \left(R_{x^n}, P, V, \hat{V} \right) + (1 - \alpha)D(U||W_a||\Pi) \leq E_x & \text{if } m < \hat{m}
\end{cases}
\quad (18)
\]

where \(\eta \left(R_{x^n}, P, V, \hat{V} \right) \) is given by the equation (14).

Among the family of decoders we are considering, i.e. among the decoders that only depend on the pairwise comparisons between conditional types and indices of the messages compared, the decoder given in (17) and (18) is optimal in terms of error exponent erasure exponent trade off. Furthermore, in order to employ this decoding rule, the receiver needs to determine only the two messages with the highest empirical mutual information in the first phase. Then the receiver needs to check whether the triplet corresponding to the tentative decision dominates the triplet corresponding to the message with the second highest empirical mutual information. If it does then, for the rule given in (15), it is guaranteed to dominate the rest of the triplets too.

\[\text{Note that conditional probability, } P[Y^n | M = m], \text{ is only a function of corresponding } Y^n_{x^n | m} \text{ and } Y^n_{x^n_{\neq m}} \text{. Thus all decoding rules, that accepts or rejects the tentative decision, } \hat{m}, \text{ based on a threshold test on likelihood ratios, } H^n_{x^n_{\neq m}} \text{, for } m \neq \hat{m} \text{ are in this family of decoding rules.} \]
D. Error Analysis

Using an encoder like the one described in Section III-B and a decoder like the one in (17) we achieve the performance given below. If $E_x \leq \alpha E_r(\frac{R}{\alpha}, P)$ then the domination rule given in equation (18) is used in the decoder; else a trivial domination rule that leads to an erasure-free decoding, $\hat{M} = \hat{M}$, is used in the decoder.

Theorem 1: For any block length $n \geq 1$, rate R, erasure exponent E_x, time sharing constant α, communication phase type P and control phase type Π, there exists a length n block code with feedback such that

$$\ln |M| \geq n(R - \delta_n) \quad P_x \leq e^{-n(E_x - \delta_n)} \quad P_e \leq e^{-n(E_e(R,E_x,\alpha,P,\Pi) - \delta_n)}$$

where $E_e(R, E_x, \alpha, P, \Pi)$ is given by,

$$E_e = \begin{cases} \alpha E_r(R, \alpha, P) & \text{if } E_x > \alpha E_r(R, \alpha, P) \\ \alpha \eta(R, P, \tilde{V}, \tilde{V}) + (1 - \alpha)D(U||W_r|\Pi) & \text{if } E_x \leq \alpha E_r(R, \alpha, P) \end{cases}$$

(19a)

$$\mathcal{V} = \{(V_1, V_2, U) : l(P, V_1) \geq l(P, V_2) \text{ and } (PV_1)_y = (PV_2)_y\}$$

(19b)

$$\delta'_n = \frac{\ln(\mathcal{Y})}{n} \log(n+1)$$

(19c)

The optimization problem given in (19) is a convex optimization problem: it is minimization of a convex function over a convex set. Thus the value of the exponent, $E_e(R, E_x, \alpha, P, \Pi)$ can numerically be calculated relatively easily. Furthermore $E_e(R, E_x, \alpha, P, \Pi)$ can be written in terms of solutions of lower dimensional optimization problems (see equation (18)). However problem of finding the optimal (α, P, Π) triple for a given (R, E_x) pair is not that easy in general, as we will discuss in more detail in Section III-E.

Note that for all control phase types Π and control phase output types U, $D(U||W_a|\Pi) \geq 0$, $D(U||W_r|\Pi) \geq 0$. Using this fact together with the definitions of $E_r(R, P)$, $\eta \left(R, P, \tilde{V}, \tilde{V}\right)$ and $E_e(R, E_x, \alpha, P, \Pi)$ given in (5), (14) and (19) we get:

$$E_e(R, E_x, \alpha, P, \Pi) \geq \alpha E_r(R, \alpha, P) \quad \forall(R, E_x, \alpha, P, \Pi) \text{ s.t. } E_x \leq \alpha E_r(R, \alpha, P)$$

(20)

Since we are interested in quantifying the gains of errors-and-erasures decoding over the decoding schemes without erasures we are ultimately interested only in the region where $E_x \leq \alpha E_r(R, \alpha, P)$ holds. However equation (19) gives us the whole achievable region for the family of codes we are considering.

Proof: A decoder of the form given in (17) decodes correctly when $\hat{M} = M$ and $(Y^n, M) \succ (Y^n, m)$ for all $m \neq M$. Thus an error or an erasure occur only when the correct message does not dominate all other messages, i.e. when $\exists m \neq M$ such that $(Y^n, M) \not\succ (Y^n, m)$. Consequently, we can write the sum of conditional error and erasure probabilities for a message $m \in M$ as,

$$P_{e|m} + P_{x|m} = P\{y^n : \exists \tilde{m} \neq m \text{ s.t. } (y^n, m) \not\succ (y^n, \tilde{m})\} | M = m$$

(21)

This can happen in two ways, either there is an error in the first phase, i.e. $\hat{M} \neq m$ or first phase tentative decision is correct, i.e. $\hat{M} = m$, but the second phase observation y^n_{T+1} leads to an erasure i.e. $\hat{M} = x$. For a decoder using a domination rule satisfying constraints described in Section III-C

$$P_{e|m} + P_{x|m} \leq \sum_{V} \sum_{V} \sum_{y^n \in F^{(a)}} P[y^n | m]$$

$$+ \sum_{V} \sum_{V} \sum_{y^n \in F^{(a)}} P[y^n | m] \sum_{U : (V,U,m) \not\succ (V,\hat{M},m+1) y^n_{T+1} \in T_U} P[y^n_{T+1} | z^n_{T+1}(a)].$$

\[12\text{We use the short hand } (Y^n, M) \succ (Y^n, m) \text{ for } (V_{n+1}|M, U_{n+1}, M) \succ (V_{n+1}|m, U_{n+1}, m) \text{ in the rest of this section.} \]
where \(F^{(n)}(V, \hat{V}, m) \) is the intersection of \(V \)-shell of message \(m \in M \) with the \(\hat{V} \)-shells of other messages, defined in equation (12). As a result of Corollary 1 we have
\[
\sum_{y^n_{m+1} \in T_U} P[y^n_{m+1} | x^n_{m+1}(a)] = P[T_U | x^n_{m+1}(a)]
\leq e^{-(n-n_1)D(U||W_a||)}.
\]
Furthermore because of equation (16a)
\[
\sum_{y^n_{m+1} \in T_U} P[y^n_{m+1} | x^n_{m+1}(a)] = P[T_U | x^n_{m+1}(a)]
\leq e^{-(n-n_1)D(U||W_a||)}.
\]
In addition the number of different non-empty \(V \)-shells in the communication phase is less than \((n_1 + 1)^{|X||Y|}\) and the number of non-empty \(U \)-shells in the control phase is less than \((n - n_1 + 1)^{|X||Y|}\). We denote the set of \((V, \hat{V}, U)\) triples that corresponds to erasures with a correct tentative decision by \(\mathcal{V}_x \):
\[
\mathcal{V}_x \triangleq \{(V, \hat{V}, U) : I(P, V) \leq I\left(P, \hat{V}\right) \text{ and } (PV)_Y = (PVV)_Y \text{ and } (V, U, m) \neq (\hat{V}, U, m + 1)\}.
\]
In the above definition \(m \) is a dummy variable and \(\mathcal{V}_x \) is the same set for all \(m \in M \). Thus using (22) we get
\[
P_{e|m} + P_{x|m} \leq (n_1 + 1)^2 |X||Y| \max_{V, \hat{V} : I(P, V) \leq I(P, \hat{V})} e^{-(n-n_1)D(U||W_a||)} + (n_1 + 1)^2 |X||Y| |X||Y| \max_{(V, \hat{V}) \in \mathcal{V}_x} e^{-(n-n_1)D(U||W_a||)}.
\]
Using the definition of \(E_{\hat{V}}(\frac{R}{\eta}, P) \) given in (5) we get
\[
P_{e|m} + P_{x|m} \leq e^{n\delta_x} \max \left\{ e^{n\alpha E_{\hat{V}}(R/\alpha, P)}, e^{-n \min_{(V, \hat{V}) \in \mathcal{V}_x} \eta(R/\alpha, P, V, \hat{V}) + (1-\alpha)D(U||W_a||)} \right\}.
\]
On the other hand an error occurs only when an incorrect message dominates all other messages, i.e. when \(\exists \hat{m} \neq m \) such that \((Y^n, \hat{m}) \succ (Y^n, \hat{m}) \) for all \(\hat{m} \neq \hat{m} \):
\[
P_e|m = P\left[\left\{ y^n : \exists \hat{m} \neq m \text{ s.t. } (y^n, \hat{m}) \succ (y^n, \hat{m}) \forall \hat{m} \neq \hat{m} \right\} | M = m \right].
\]
Note that when a \(\hat{m} \in M \) dominates all other \(\hat{m} \neq \hat{m} \) it also dominates \(m \), i.e.
\[
\{ y^n : \exists \hat{m} \neq m \text{ s.t. } (y^n, \hat{m}) \succ (y^n, \hat{m}) \forall \hat{m} \neq \hat{m} \} \subseteq \{ y^n : \exists \hat{m} \neq m \text{ s.t. } (y^n, \hat{m}) \succ (y^n, \hat{m}) \}.
\]
Thus,
\[
P_e|m \leq \sum_{V} \sum_{\hat{V}} \sum_{y^n \in F^{(n)}(V, \hat{V}, m)} \sum_{U : (\hat{V}, U, m-1) \succ (V, U, m)} P[y^n | M = m] \sum_{y^n_{m+1} \in T_U} P[y^n_{m+1} | x^n_{m+1}(r)].
\]
The tentative decision is not equal to \(m \) only if there is a message with a strictly higher empirical mutual information or if there is a messages which has equal mutual information but smaller index. This is the reason why we sum over \((\hat{V}, U, m - 1) \succ (V, U, m) \). Using the inequality (16b) in the inner most two sums and then applying inequality (13) we get,
\[
P_e|m \leq (n + 1)^{|X||Y| + 2|X|} \max_{(V, \hat{V}, U) : I(P, V) \geq I(P, \hat{V})} e^{-n(\alpha \eta(R/\alpha, P, V, \hat{V}) + (1-\alpha)D(U||W_a||))}
\]
\[
\leq e^{\delta_x} e^{-n \min_{(V, \hat{V}) \in \mathcal{V}_x} \eta(R/\alpha, P, V, \hat{V}) + (1-\alpha)D(U||W_a||)}
\]
\[
= e^{\delta_x} e^{-n \min_{(V, \hat{V}) \in \mathcal{V}_x} \eta(R/\alpha, P, V, \hat{V}) + (1-\alpha)D(U||W_a||)}.
\]
\(^{13}\text{Note that for the case when } m = |M|, \text{ we need to replace } (V, U, m) \neq (\hat{V}, U, m + 1) \text{ with } (V, U, m - 1) \neq (\hat{V}, U, m).\)
where \mathcal{V}_e is the complement of \mathcal{V}_x in \mathcal{V} given by

$$
\mathcal{V}_e \triangleq \left\{ (V, \hat{V}, U) : 1(P, V) \geq 1 \left(P, \hat{V} \right) \text{ and } (PV)_Y = (P\hat{V})_Y \text{ and } (V, U, m) \succ (\hat{V}, U, m + 1) \right\}. \quad (26)
$$

Note that m in the definition of \mathcal{V}_e is also a dummy variable. The domination rule \succ divides the set \mathcal{V} into two subsets: the erasure subset \mathcal{V}_x and the error subset \mathcal{V}_e. Choosing domination rule is equivalent to choosing the \mathcal{V}_e. Depending on the value of $\alpha E_r(\frac{R}{\alpha}, P)$ and E_x we chose different \mathcal{V}_e’s as follows:

(i) $E_x > \alpha E_r(\frac{R}{\alpha}, P)$: $\mathcal{V}_e = \emptyset$. Then $\mathcal{V}_x = \emptyset$ and Theorem 1 follows from equation (23).

(ii) $E_x \leq \alpha E_r(\frac{R}{\alpha}, P)$: \(\mathcal{V}_e = \left\{ (V, \hat{V}, U) : (PV)_Y = (P\hat{V})_Y \text{ and } \alpha \eta \left(\frac{R}{\alpha}, P, V, \hat{V} \right) + (1 - \alpha) \mathbb{D}(U || W_a ||) \leq E_x \right\} \). Then all the (V, \hat{V}, U) triples satisfying $\eta \left(\frac{R}{\alpha}, P, V, \hat{V} \right) + (1 - \alpha) \mathbb{D}(U || W_a ||) \leq E_x$ are in the the error subset. Thus as a result of equation (23) erasure probability is bounded as $P_x \leq e^{-n(E_x - \epsilon)}$ and Theorem 1 follows from equation (25).

E. Lower Bound to $E_e(R, E_x)$:

In this section we use Theorem 1 to derive a lower bound to the optimal error exponent $E_e(R, E_x)$. We do that by optimizing the achievable performance $E_e(R, E_x, \alpha, P, \Pi)$ over α, P and Π.

1) High Erasure Exponent Region (i.e. $E_x > E_r(R)$): As a result of (19), $\forall R \geq 0$ and $\forall E_x > E_r(R)$

$$
E_e(R, E_x, \alpha, P, \Pi) = \alpha E_r(\frac{R}{\alpha}, P) \leq E_r(R) \quad \forall \alpha \in [0, 1], \quad \forall P, \quad \forall \Pi \quad (27a)
$$

$$
E_e(R, E_x, \hat{\alpha}, \hat{P}, \Pi) = E_r(R) \quad \hat{\alpha} = 1, \quad \hat{P} = \arg \max_P E_r(R, P), \quad \forall \Pi \quad (27b)
$$

Thus for all (R, E_x) pairs such that $E_x > E_r(R)$: optimal time sharing constant is 1, optimal input distribution is the optimal input distribution for random coding exponent at rate R, we use maximum mutual information decoding and never declare erasures. Furthermore since $\alpha = 1$ we have only a single phase in our scheme.

$$
E_e(R, E_x) = E_e(R, E_x, 1, P_r(R), \Pi) = E_r(R) \quad \forall R \geq 0 \quad \forall E_x > E_r(R) \quad (28)
$$

where $P_r(R)$ satisfies $E_r(R, P_r(R)) = E_r(R)$ and Π can be any control phase type. Evidently benefits of errors-and-erasures decoding is not observed in this region.

2) Low Erasure Exponent Region (i.e. $E_x \leq E_r(R)$): We observe and quantify the benefits of errors-and-erasures decoding for (R, E_x) pairs such that $E_x \leq E_r(R)$. Since $E_r(R)$ is a non-negative non-increasing and convex function of R, we have

$$
\alpha \in [\alpha^*(R, E_x), 1] \iff E_x \leq \alpha E_r(\frac{R}{\alpha}) \quad \forall R \geq 0 \quad \forall 0 < E_x \leq E_r(R)
$$

where $\alpha^*(R, E_x)$ is the unique solution of the equation $\alpha E_r(\frac{R}{\alpha}) = E_x$.

For the case $E_x = 0$, however, $\alpha E_r(\frac{R}{\alpha}) = 0$ has multiple solutions and Theorem 1 holds but resulting error exponent, $E_e(R, 0, \alpha, P, \Pi)$, does not correspond to the error exponent of a reliable sequence. Convention introduced below in equation (29) addresses both issues at once, by choosing the minimum of those solutions as $\alpha^*(R, 0)$. In addition by this convention $\alpha^*(R, E_x)$ is also continuous at $E_x = 0$: $\lim_{E_x \to 0} \alpha^*(R, E_x) = \alpha^*(R, 0)$.

$$
\alpha^*(R, E_x) \triangleq \begin{cases}
\frac{R}{g^{-1}(E_x/R)} & E_x \in (0, E_r(R)] \\
\frac{R}{C} & E_x = 0
\end{cases} \quad (29)
$$

where $g^{-1}(\cdot)$ is the inverse of the function $g(r) = \frac{E_r(r)}{r}$.

As a result equations (19) and (29), $\forall R \geq 0$ and $\forall 0 < E_x \leq E_r(R)$ we have

$$
E_e(R, E_x, \alpha, P, \Pi) = \alpha E_r(\frac{R}{\alpha}, P) \leq E_r(R) \quad \forall \alpha \in [0, \alpha^*(R, E_x)], \quad \forall P, \quad \forall \Pi \quad (30a)
$$

$$
E_e(R, E_x, \hat{\alpha}, \hat{P}, \Pi) = E_r(R) \quad \hat{\alpha} = 1, \quad \hat{P} = \arg \max_P E_r(R, P), \quad \forall \Pi \quad (30b)
$$

Thus for all (R, E_x) pairs such that $E_x \leq E_r(R)$ optimal time sharing constant is in the interval $[\alpha^*(R, E_x), 1]$.

For an (R, E_x, α) triple such that $R \geq 0$, $E_x \leq E_r(R)$ and $\alpha \in [\alpha^*(R, E_x), 1]$ let $\mathcal{P}(R, E_x, \alpha)$ be

$$
\mathcal{P}(R, E_x, \alpha) \triangleq \left\{ P : \alpha E_r(\frac{R}{\alpha}, P) \geq E_x , I(P, W) \geq \frac{R}{\alpha} \right\}. \quad (31)
$$
The constraint on mutual information is there to ensure that $E_e(R, 0, \alpha, P, \Pi)$'s are corresponding to error exponent of reliable sequences. The set $\mathcal{P}(R, E_x, \alpha)$ is convex because $E_r(R, P)$ and $1(P, W)$ are concave in P.

Note that $\forall R \geq 0$ and $\forall E_x \in (0, E_r(R)]$,

\[
E_e(R, E_x, \alpha, P, \Pi) = \alpha E_r\left(\frac{R}{\alpha}, P\right) \quad \forall \alpha \in [\alpha^*(R, E_x), 1], \quad \forall P \in \mathcal{P}(R, E_x, \alpha), \quad \forall \Pi \quad (32a)
\]

\[
E_e(R, E_x, \alpha, \tilde{P}, \Pi) \geq \alpha E_r\left(\frac{R}{\alpha}, P\right) \quad \forall \alpha \in [\alpha^*(R, E_x), 1], \quad \tilde{P} = \arg\max_P E_r\left(\frac{R}{\alpha}, P\right), \quad \forall \Pi. \quad (32b)
\]

As a result of (32), we can restrict the optimization over P to $\mathcal{P}(R, E_x, \alpha)$ when $R \geq 0$ and $E_x \in (0, E_r(R)]$. For $E_x = 0$ case if we require the expression $E_e(R, 0, \alpha, P, \Pi)$ to correspond to the error exponent of a reliable sequence, we get the restriction given in equation (32). Thus using Theorem 1, we conclude that $E_e(R, E_x)$ given below is an achievable error exponent at rate R and erasure exponent E_x.

\[
E_e(R, E_x) = \max_{\alpha \in [\alpha^*(R, E_x), 1]} \max_{P \in \mathcal{P}(R, E_x, \alpha)} \max_{\Pi} E_e(R, E_x, \alpha, P, \Pi) \quad \forall R \geq 0 \quad \forall E_x \leq E_r(R) \quad (33)
\]

where $\alpha^*(R, E_x)$, $\mathcal{P}(R, E_x, \alpha)$ and $E_e(R, E_x, \alpha, P, \Pi)$ are given in equations (29), (31) and (19).

Note that unlike $E_e(R, E_x, \alpha, P, \Pi)$ itself, $E_e(R, E_x)$ as defined in (33) corresponds to error exponent of reliable code sequences even at $E_x = 0$.

If the maximizing P for the inner maximization in equation (33) is same for all $\alpha \in [\alpha^*(R, E_x), 1]$, the optimal value of α is $\alpha^*(R, E_x)$. In order to see that, we first observe that any fixed (R, E_x, P, Π) such that $E_r(R, P) \geq E_x$, function $E_e(R, E_x, \alpha, P, \Pi)$ is convex for all $\alpha \in [\alpha^*(R, E_x, P), 1]$ where $\alpha^*(R, E_x, P)$ is the unique solution of the equation $\alpha E_r\left(\frac{R}{\alpha}, P\right) = E_x$ as it is shown in Lemma [10] in Appendix [B]. Since the maximization preserves the convexity, $\max_{\Pi} E_e(R, E_x, \alpha, P, \Pi)$ is also convex in α for all $\alpha \in [\alpha^*(R, E_x, P), 1]$. Thus for any (R, E_x, P) triple, $\max_{\Pi} E_e(R, E_x, \alpha, P, \Pi)$ takes its maximum value either at the minimum possible value of α, i.e., $\alpha^*(R, E_x, P) = \alpha^*(R, E_x)$, or at the maximum possible value of α, i.e., 1. It is shown in Appendix [B] that $\max_{\Pi} E_e(R, E_x, \alpha, P, \Pi)$ takes its maximum value at $\alpha = \alpha^*(R, E_x)$.

Furthermore if the maximizing P is not only the same for all $\alpha \in [\alpha^*(R, E_x), 1]$ for a given (R, E_x) pair but also for all (R, E_x) pairs such that $E_x \leq E_r(R)$ then we can find the optimal $E_e(R, E_x)$ by simply maximizing over Π's.

In symmetric channels, for example, uniform distribution is the optimal distribution for all (R, E_x) pairs. Thus

\[
E_e(R, E_x) = \left\{ \begin{array}{ll}
E_e(R, E_x, 1, P^*, \Pi) & \text{if } E_x > E_r(R, P^*) \\
\max_{\Pi} E_e(R, E_x, \alpha^*(R, E_x), P^*, \Pi) & \text{if } E_x \leq E_r(R, P^*)
\end{array} \right\} \quad (34)
\]

where P^* is the uniform distribution.

F. Alternative Expression for Exponent:

The minimization given in (19) for $E_e(R, E_x, \alpha, P, \Pi)$ is over transition probability matrices and control phase output types. In order to get a better grasp of the resulting expression, we simplify the analytical expression in this section. We do that by expressing the minimization in (19) in terms of solutions of lower dimensional optimization problems.

Let $\zeta(R, P, Q)$ be the minimum Kullback-Leibler divergence under P with respect to W among the transition probability matrices whose mutual information under P is less than R and whose output distribution under P is Q. It is shown in Appendix [B] that for a given P, $\zeta(R, P, Q)$ is convex in (R, Q) pair. Evidently for a given (P, Q) pair $\zeta(R, P, Q)$ is a non-increasing in R. Thus for a given (P, Q) pair $\zeta(R, P, Q)$ is strictly decreasing on a closed interval and is an extended real valued function of the form:

\[
\zeta(R, P, Q) = \begin{cases}
\min_{V : \langle P, V \rangle \leq R} D(V \| W | P) & \text{if } R < R^*_r(P, Q) \\
0 & \text{if } R \in [R^*_r(P, Q), R^*_h(P, Q)] \\
\min_{V : \langle P, V \rangle = Q} D(V \| W | P) & \text{if } R > R^*_h(P, Q)
\end{cases} \quad (35a)
\]

\[
R^*_r(P, Q) = \min_{V : \langle P, V \rangle \geq P} I(P, V) \quad (35b)
\]

\[
R^*_h(P, Q) = \min_{R : \min_{V : \langle P, V \rangle \leq R} D(V \| W | P) = \min_{V : \langle P, V \rangle = Q} D(V \| W | P)} R \quad (35c)
\]

\footnote{Evidently we need to make a minor modification for $E_x = 0$ case as before to ensure that we consider only the $E_e(R, E_x, \alpha, P, \Pi)$'s that correspond to the reliable sequences: $\alpha^*(R, 0, P) = \frac{R}{\log_2 |\mathcal{M}|}$.}
where $PV \gg PW$ iff for all (x, y) pairs such that $P(x)W(y|x)$ is zero, $P(x)V(y|x)$ is also zero.

Let $\Gamma (T, \Pi)$ be the minimum Kullback-Leibler divergence with respect to W_r under Π, among the U’s whose Kullback-Leibler divergence with respect to W_a under Π is less than or equal to T.

$$\Gamma (T, \Pi) \triangleq \min_{U : D(U \| W_a) \leq T} D (U \| W_r)$$

(36)

For a given Π, $\Gamma (T, \Pi)$ is non-increasing and convex in T, thus $\Gamma (T, \Pi)$ is strictly decreasing in T on a closed interval. An equivalent expressions for $\Gamma (T, \Pi)$ and boundaries of this closed interval is derived in Appendix A

$$\Gamma (T, \Pi) = \begin{cases} \infty & \text{if } T < D(U_0 \| W_a) \\ D(U_0 \| W_r) & \text{if } T = D(U_0 \| W_a) \text{ for some } s \in [0, 1] \\ D(U_1 \| W_r) & \text{if } T > D(U_1 \| W_a) \end{cases}$$

(37)

where

$$U_s(y|x_1, x_2) = \begin{cases} \frac{\sum_{y-W(y|x_1)>0} W(y|x_1)}{\sum_{y-W(y|x_2)>0} W(y|x_2)} & \text{if } s = 0 \\ \frac{\sum_{y-W(y|x_1)} W(y|x_2)}{\sum_{y-W(y|x_2)>0} W(y|x_2)} & \text{if } s \in (0, 1) \\ \frac{\sum_{y-W(y|x_1)>0} W(y|x_2)}{\sum_{y-W(y|x_2)} W(y|x_2)} & \text{if } s = 1 \end{cases}$$

For a (R, E, α, P, Π) such that $E \leq \alpha E_r(\frac{R}{\alpha}, P)$, using the definition of $E_e(R, E, \alpha, P, \Pi)$ in (19), together with the equations (14), (35) and (37) we get

$$E_e(R, E, \alpha, P, \Pi) = \min_{Q, T, R_1, R_2, R_1 \geq R_2 \geq 0, T \geq 0} \alpha \zeta(R_2, R, P, Q) + |R_1 - R|^+ + (1 - \alpha) \Gamma \left(\frac{T}{1 - \alpha}, \Pi \right)$$

(38)

For any (R, E, α, P, Π) above minimum is also achieved at a (Q, R_1, R_2, T) such that $R_1 \geq R_2 \geq R$. In order to see this take any minimizing (Q^*, R_1^*, R_2^*, T^*), then there are three possibilities:

(a) $R_1^* \geq R_2^* \geq R$ claim holds trivially.

(b) $R_1^* \geq R > R_2^*$, since $\zeta(\frac{R_2}{\alpha}, P, Q)$ is non-increasing function (Q^*, R_1^*, R, T^*), is also minimizing, thus claim holds.

(c) $R > R_1^* > R_2^*$, since $\zeta(\frac{R_2}{\alpha}, P, Q)$ is non-increasing function (Q^*, R, R, T^*), is also minimizing, thus claim holds. Thus we obtain the following expression for $E_e(R, E, \alpha, P, \Pi)$

$$E_e(R, E, \alpha, P, \Pi) = \begin{cases} \alpha E_r(\frac{R}{\alpha}, P) & \text{if } E \leq \alpha E_r(\frac{R}{\alpha}, P) \\ \alpha \zeta(R_2, R, P, Q) + |R_1 - R| + (1 - \alpha) \Gamma \left(\frac{T}{1 - \alpha}, \Pi \right) & \text{if } E > \alpha E_r(\frac{R}{\alpha}, P) \end{cases}$$

(39)

Equation (38) is simplified further for symmetric channels. For symmetric channels,

$$E_{sp}(R) = \zeta(R, P^*, Q^*) = \min_Q \zeta(R, P^*, Q)$$

(40)

where P^* is the uniform input distribution and Q^* is the corresponding output distribution under W.

Using alternative expression for $E_e(R, E, \alpha, P, \Pi)$ given in (38) together with equations (34) and (39) for symmetric channels we get,

$$E_e(R, E, \alpha) = \begin{cases} \max_{\Pi} \min_{R', R', T} \alpha E_{sp}(\frac{R}{\alpha}) + R' - R + (1 - \alpha) \Gamma \left(\frac{T}{1 - \alpha}, \Pi \right) & \text{if } E > E_r(R) \\ \alpha E_{sp}(\frac{R}{\alpha}) + R' - R + (1 - \alpha) \Gamma \left(\frac{T}{1 - \alpha}, \Pi \right) & \text{if } E \leq E_r(R) \end{cases}$$

(41)

where $\alpha E_r(R, E, \alpha)$ is given in equation (29).

Although (39) does not hold in general using definition of $\zeta(R, P, Q)$ and $E_{sp}(R, P)$ we can assert that

$$\zeta(R, P, Q) \geq \min_Q \zeta(R, P, Q) = E_{sp}(R, P)$$

(41)
Note that (41) can be used to bound the minimized expression in (38) from below. In addition recall that if the set that a minimization is done over is enlarged resulting minimum can not increase. We can use (38) also to enlarge the set that minimization is done over in (41). Thus we get an exponent \(\tilde{E}_e(R, E_x, \alpha, P, \Pi) \) which is smaller than or equal to \(E_e(R, E_x, \alpha, P, \Pi) \) in all channels and for all \(E_e(R, E_x, \alpha, P, \Pi) \)’s:

\[
\tilde{E}_e(R, E_x, \alpha, P, \Pi) = \begin{cases}
\alpha E_r(\frac{R}{\alpha}, P) + R'' - R + (1 - \alpha) \Gamma \left(\frac{T}{1-\alpha}, \Pi \right) & \text{if } E_x > \alpha E_r(\frac{R}{\alpha}, P) \\
\alpha E_{sp}(\frac{R}{\alpha}, P) + R'' - R + T \leq E_x & \text{if } E_x \leq \alpha E_r(\frac{R}{\alpha}, P)
\end{cases}
\]

(42)

After an investigation very similar to the one we have already done for \(E_e(R, E_x, \alpha, P, \Pi) \) in Section III-E, we obtain the below expression for the optimal error exponent for reliable sequences emerging from (42):

\[
\tilde{E}_e(R, E_x) = \max_{\alpha \in [\alpha^*(R, E_x), 1]} \max_{P \in \mathcal{P}(R, E_x, \alpha)} \max_{\Pi} \tilde{E}_e(R, E_x, \alpha, P, \Pi) \quad \forall R \geq 0 \quad \forall E_x \geq E_r(R)
\]

(43)

where \(\alpha^*(R, E_x), \mathcal{P}(R, E_x, \alpha) \) and \(\tilde{E}_e(R, E_x, \alpha, P, \Pi) \) are given in equations (29), (31) and (42), respectively.

G. Special Cases

1) *Zero Erasure Exponent Case, \(E_e(R, 0) \):* Using a simple repetition-at-erasures scheme, fixed length errors-and-erasures codes, can be converted into variable length block codes, with the same error exponent. Thus the error exponents of variable length block codes given by Burnashev in [3] is an upper bound to the error exponent of fixed length block codes with erasures:

\[
E_e(R, E_x) \leq (1 - \frac{R}{c}) D \quad \forall R \geq 0, E_x \geq 0
\]

where \(D = \max_{x,t} \sum_y W(y|x) \log \frac{W(y|x)}{W(x)} \).

We show below that, \(\tilde{E}_e(R, 0) \geq (1 - \frac{R}{c}) D \). This implies that our coding scheme is optimal for \(E_x = 0 \) for all rates i.e., \(\tilde{E}_e(R, 0) = E_e(R, 0) = (1 - \frac{R}{c}) D \).

Recall that for all \(R \) less than capacity \(\alpha^*(R, 0) = \frac{R}{c} \). Furthermore for any \(\alpha \geq \frac{R}{c} \)

\[\mathcal{P}(R, 0, \alpha) = \{ P : 1(P, W) \geq \frac{R}{\alpha} \} \]

Thus for any \((R, 0, \alpha, P)\) such that \(P \in \mathcal{P}(R, 0, \alpha) \), \(R'' \geq R' \geq R, T \geq 0 \) and \(\alpha E_{sp}(\frac{R}{\alpha}, P) + R' - R + T \leq 0 \), imply that \(R' = R, R'' = \alpha 1(P, W), T = 0 \). Consequently

\[
\tilde{E}_e(R, 0, \alpha, P, \Pi) = \alpha \left[E_{sp}(\frac{R}{\alpha}, P) + 1(P, W) - \frac{R}{\alpha} \right] + (1 - \alpha) D (W_r || W_a \Pi)
\]

(44)

When we maximize over \(\Pi \) and \(P \in \mathcal{P}(R, 0, \alpha) \) we get:

\[
\tilde{E}_e(R, 0, \alpha) = \max_{P \in \mathcal{P}(R, 0, \alpha)} \alpha E_{sp}(\frac{R}{\alpha}, P) + \alpha 1(P, W) - R + (1 - \alpha) D \quad \forall \alpha \in [\frac{R}{c}, 1].
\]

(45)

Simply inserting the minimum possible value of \(\alpha \) i.e., \(\alpha^*(R, 0) = \frac{R}{c} \):

\[
\tilde{E}_e(R, 0, \frac{R}{c}) = \max_{P \in \mathcal{P}(R, 0, \frac{R}{c})} \frac{R}{c} E_{sp}(\frac{R}{c}, P) + \frac{R}{c} 1(P, W) - R + (1 - \frac{R}{c}) D
\]

\[= (1 - \frac{R}{c}) D. \]

Thus \(\tilde{E}_e(R, 0) \geq (1 - \frac{R}{c}) D \).

Indeed one need not to rely on the converse on variable length block codes in order to establish the fact that \(\tilde{E}_e(R, 0) = (1 - \frac{R}{c}) D \). The lower bound to probability of error presented in the next section, not only recovers this particular optimality result but also upper bounds the optimal error exponent, \(E_e(R, E_x) \), as a function of rate \(R \) and erasure exponents \(E_x \).

2) *Channels with non-zero Zero Error Capacity:* For channels with a non-zero zero-error capacity, as a result of equation (19) \(E_e(R, E_x) = \infty \) for any \(E_x < E_r(R) \). This implies that we can get error-free block codes with this two phase coding scheme for any rate \(R < C \) and any erasure exponent \(E_x \leq E_r(R) \). As we discuss in Section [V] in more detail, this is the best erasure exponent for rates over the critical rate, at least for symmetric channels.
IV. AN OUTER BOUND FOR ERROR EXPONENT ERASURE EXPONENT TRADE OFF

In this section we derive an upper bound on $E_e(R, E, x)$ using previously known results on erasure free block codes with feedback and a generalization of the straight line bound of Shannon, Gallager and Berlekamp [31]. We first present a lower bound on the minimum error probability of block codes with feedback and erasures, in terms of that of shorter codes in Section [IV-A]. Then in Section [IV-B] we make a brief overview of the outer bounds on the error exponents of erasure free block codes with feedback. Finally in Section [IV-C] we use the relation we have derived in Section [IV-A] to tie the previously known results we have summarized in Section [IV-B] to bound $E_e(R, E, x)$.

A. A Trait of Minimum Error Probability of block codes with Erasures

Shannon, Gallager and Berlekamp in [31] considered fixed length block codes, with list decoding and established a family of lower bounds on the minimum error probability in terms of the product of minimum error probabilities of certain shorter codes. They have shown, [31] Theorem 1, that for fixed length block codes with list decoding and without feedback

$$\hat{P}_e(M, n, L) \geq \hat{P}_e(M, n_1, L_1) \hat{P}_e(L_1 + 1, n - n_1, L)$$

(46)

where $\hat{P}_e(M, n, L)$ denotes the minimum error probability of erasure free block codes of length n with M equally probable messages and with decoding list size L. As they have already pointed out in [31] this theorem continues to hold in the case when a feedback link is available from receiver to the transmitter; although \hat{P}_e’s are different when feedback is available, the relation given in equation (46) still holds. They were interested in erasure free codes. We, on the other hand, are interested in block codes which might have non-zero erasure probability. Accordingly we need to incorporate erasure probability as one of the parameters of the optimal error probability. This is what this section is dedicated to.

In a size L list decoder with erasures, decoded set \hat{M} is either a subset of M whose size is at most L, like the erasure-free case, or a set which only includes the erasure symbol, i.e. either $\hat{M} \subset M$ such that $|\hat{M}| \leq L$ or $\hat{M} = \{x\}$. An erasure occurs whenever $\hat{M} = \{x\}$ and an error occurs whenever $\hat{M} \neq \{x\}$ and $M \notin \hat{M}$. We will denote the minimum error probability of length n block codes, with M equally probable messages, decoding list size L and erasure probability P_x by $\hat{P}_e(M, n, L, P_x)$.

Theorem [2] below bounds the error probability of block codes with erasures and list decoding using the error probabilities of shorter codes with erasures and list decoding, like [31] Theorem 1 does in the erasure free case. Like its counter part in erasure free case Theorem [2] is later used to establish outer bounds to error exponents.

Theorem 2: For any n, M, L, P_x, $n_1 \leq n$, L_1, and $0 \leq s \leq 1$ the minimum error probability of fixed length block codes with feedback satisfy

$$(1 - s)\hat{P}_e(M, n, L, P_x) \geq \hat{P}_e(M, n_1, L_1, s)\hat{P}_e(L_1 + 1, n - n_1, L, \frac{(1-s)P_x}{\hat{P}_e(M, n_1, L_1, s)})$$

(47)

Note that given a (M, n, L) triple if the error probability erasure probability pairs (P_{e_1}, P_{x_1}) and (P_{e_2}, P_{x_2}) are achievable, then for any $\gamma \in [0, 1]$ using the initial symbol A_0 of the feedback link we can construct a code that uses the code achieving (P_{e_1}, P_{x_1}) with probability γ, the code achieving (P_{e_2}, P_{x_2}) with probability $(1 - \gamma)$. This new code achieves error probability erasure probability pair $(\gamma P_{e_a} + (1 - \gamma)P_{e_b}, \gamma P_{x_a} + (1 - \gamma)P_{x_b})$. As a result for any (M, n, L) triple the set of achievable error probability erasure probability pairs is convex. We use this fact twice in order to prove Theorem [2].

Let us first consider the following lemma which bounds the achievable error probability erasure probability pairs, for block codes with nonuniform a priori probability distribution, in terms of block codes with a uniform a priori probability distribution but fewer messages.

Lemma 2: For any length n block code with message set M, a priori probability distribution $\varphi(\cdot)$ on M, erasure probability P_x, decoding list size L, and integer K

$$P_e \geq \Omega(\varphi, K) \hat{P}_e \left(K + 1, n, L, \frac{P_x}{\Pi(\varphi, K)} \right)$$

where

$$\Omega(\varphi, K) = \min_{S \subset M, |S| \leq K} \varphi(S^c), \quad S^c = M/S.$$

(48)

15Note that if $\hat{M} \subset M$ then $x \notin \hat{M}$ because $x \notin M$.

14
Recall that $P_e(K+1,n,L,P_x)$ is the minimum error probability of length n codes with $(K+1)$ equally probable messages and decoding list size L, with feedback if the original code does have feedback and without feedback if the original code does not.

Note that $\Omega(\varphi,K)$ is the error probability of a decoder which decodes to the set of K most likely messages under φ. In other words $\Omega(\varphi,K)$ is the minimum error probability for a size K list decoder when the posterior probability distribution is φ.

Proof: If $\Omega(\varphi,K) = 0$, the lemma holds trivially. Thus we assume $\Omega(\varphi,K) > 0$ henceforth. For any size $(K+1)$ subset M' of M, one can use the encoding scheme and the decoding rule of the original code for M, to construct the following block code for M':

- **Encoder:** $\forall m \in M'$ use the encoding scheme for message m in the original code, i.e.
 $$X_t^i(m,z^{t-1}) = X_t(i,m,z^{t-1}), \quad \forall m \in M', \quad t \in [1,n], \quad z^{t-1} \in Z^{t-1}$$

- **Decoder:** For all $z^n \in Z^n$ if the original decoding rule declares erasure, declare erasure, else the decode to the intersection of the original decoded list and M'.
 $$\hat{M}' = \begin{cases} x & \text{if } \hat{M} = x \\ M \cap M' & \text{else} \end{cases}$$

This is a length n code with $(K+1)$ messages and decoding list size L. Furthermore for all m in M' the conditional error probability $P_{e|m}$ and the conditional erasure probability $P_{x|m}'$ are equal to the conditional error probability $P_{e|m}$ and the conditional erasure probability $P_{x|m}$ in the original code, respectively.

Note that

$$\frac{1}{K+1} \sum_{m \in M'} (P_{e|m}, P_{x|m}) \in \Psi(K+1,n,L) \quad \forall M' \subset M \text{ such that } |M'| = K+1$$

Equation (49) and the definition of $\Psi(K+1,n,L)$, implies that $\exists \psi_1 \in \Psi(K+1,n,L)$ such that

$$(P_e,P_x) = \sum_{m \in M} \varphi(m)(P_{e|m}, P_{x|m})$$

$$= \sum_{m \in M} [\varphi(m) - \varphi(\xi_1)\mathbf{1}_{\{m \in M_{\xi_1}\}}](P_{e|m}, P_{x|m}) + \varphi(\xi_1) \sum_{m \in M_{\xi_1}} (P_{e|m}, P_{x|m})$$

$$= (P_e,P_x) = \sum_{m \in M} \varphi^{(1)}(m)(P_{e|m}, P_{x|m}) + \varphi(\psi_1)$$

$$= \varphi(\psi_1) + \sum_{m \in M} \varphi^{(1)}(m)$$

where $\varphi(\psi_1) = (K+1)\varphi(\xi_1)$ and $\varphi^{(1)}(m) = \varphi(m) - \varphi(\xi_1)\mathbf{1}_{\{m \in M_{\xi_1}\}}$. Furthermore the number of non-zero $\varphi^{(1)}(m)$’s is at least one less than that of non-zero $\varphi(m)$’s. The remaining probabilities, $\varphi^{(1)}(m)$, have a minimum, $\varphi^{(1)}(\xi_2)$ among its non-zero elements. One can repeat the same argument once more using that element and reduce the number of non-zero elements at least one more. After at most $|M| - K$ such iterations one reaches to a $\varphi^{(l)}$ which is non-zero for K or fewer messages:

$$(P_e,P_x) = \sum_{j=1}^{l} \varphi^{(l)}(m)(P_{e|m}, P_{x|m})$$

where $\varphi^{(l)}(m) \leq \varphi(m)$ for all $m \in M$ and $\sum_{m \in M} \mathbf{1}_{\{\varphi^{(l)}(m) > 0\}} \leq K$.

In equation (52), the first sum is equal to a convex combination of ψ_j’s multiplied by $\sum_{j=1}^{l} \varphi^{(j)}(\psi_j)$; the second sum is equal to a pair with non-negative entries. As a result of definition of $\Omega(\varphi,K)$ given in equation (48),

$$\Omega(\varphi,K) \leq \sum_{j=1}^{l} \varphi^{(j)}(\psi_j).$$
Then as a result of convexity of $\Psi(K + 1, n, L)$ we can conclude that there exists a $\psi \in \Psi(K + 1, n, L)$ such that $(P_e, P_\psi) = a\Omega(\varphi, K) \psi + (b_1, b_2)$ for some $a \geq 1, b_1 \geq 0$ and $b_2 \geq 0$. Thus

$$\exists \psi \in \Psi(K + 1, n, L) \text{ such that } (P_e, P_\psi) = \psi + (b_3, b_4) \text{ for some } b_3 \geq 0, b_4 \geq 0.$$

Then the lemma follows from equation (54), the fact that $P_e(M, n, L, P_\psi)$ is decreasing in P_ψ and the fact that $P_e(M, n, L, P_\psi)$ is uniquely determined by $\Psi(M, n, L)$ for $s_M \in [0, 1]$ as follows

$$P_e(M, n, L, P_\psi) = \min_{\psi : (\psi_\star, \psi_\star) \in \Psi(M, n, L)} \psi \forall (M, n, L, \psi_\star).$$

For proving Theorem [2] we express the error and erasure probabilities, as a convex combination of error and erasure probabilities of $(n - n_1)$ long block codes with a priori probability distribution $\varphi_{z^{n_1}}(m) = P[m | z^{n_1}]$ over the messages and apply Lemma [2] together with convexity arguments similar to the ones above.

Proof [Theorem 2]:

For all m in M, let $\Upsilon(m)$ be the decoding region of m, $\Upsilon(x)$ be the decoding region of the erasure symbol x and $\Upsilon(m)$ the error region of m:

$$\Upsilon(m) \triangleq \{ z^n : m \in M \} \quad \Upsilon(x) \triangleq \{ z^n : x \in M \} \quad \Upsilon(m) \triangleq \Upsilon(m) \cap \Upsilon(x)^c \quad \text{where } \Upsilon^c = \mathbb{Z}^n / \Upsilon.$$

Then for all $m \in M$,

$$P_e(m, P_\psi | m) = \left(P \left[\tilde{\Upsilon}(m) \right] | m \right), P[\Upsilon(x) | m] .$$

Note that [16]

$$P_e | m = \sum_{z^n : z^n \in \Upsilon(x)} P[z^n | m] = \sum_{z^n} P[z^n | m] \sum_{z_{n_1+1} : (z^{n_1}, z_{n_1+1}) \in \Upsilon(x)} P[z_{n_1+1} | m, z^{n_1}].$$

Then the erasure probability is

$$P_X = \sum_{m \in M} P[z^n | m] \sum_{z_{n_1+1} : (z^{n_1}, z_{n_1+1}) \in \Upsilon(x)} P[z_{n_1+1} | m, z^{n_1}]
\sum_{z^n} P[z^n] P_X(z^n).$$

Note that for every z^{n_1}, $P_X(z^{n_1})$ is the erasure probability of a code of length $(n - n_1)$ with a priori probability distribution $\varphi_{z^{n_1}}(m) = P[m | z^{n_1}]$. Furthermore one can write the error probability, P_e as

$$P_e = \sum_{z^n} P[z^n] \left(\sum_{m \in M} P[m | z^{n_1}] \sum_{z_{n_1+1} : (z^{n_1}, z_{n_1+1}) \in \Upsilon(m)} P[z_{n_1+1} | m, z^{n_1}] \right)
= \sum_{z^n} P[z^n] P_e(z^n)$$

where $P_e(z^{n_1})$ is the error probability of the very same length $(n - n_1)$ code. As a result of Lemma [2] the pair $(P_e(z^{n_1}), P_X(z^{n_1}))$ satisfies

$$P_e(z^{n_1}) \geq \Omega(\varphi_{z^{n_1}}, L_1) P_e(L_1 + 1, (n - n_1), L, P_e(z^{n_1}) (L_1, L_1)) .$$

[16]There is a slight abuse of notation here, if A’s include real valued random variables with densities, we should integrate, rather than sum, over them. Since it is clear from the context what needs to be done we omit that subtlety in below calculations.

16
Then for any \(s \in [0, 1] \),
\[
(1 - s) P_e \geq \sum_{z^n_1} P[Z^{n_1}] (1 - s) \Omega (\varphi_{z^n_1} L_1) P_e \left(L_1 + 1, (n - n_1), L, \frac{P_e(z^n_1)}{\Theta(\varphi_{z^n_1}, L_1)} \right)
\]
\[
\geq \left(\sum_{z^n_1} P[Z^{n_1}] (1 - s) \Omega (\varphi_{z^n_1}, L_1) \right) P_e \left(L_1 + 1, (n - n_1), L, \frac{\sum_{z^n_1} P[z^{n_1}] (1 - s) P_e(z^n_1)}{\Theta(\varphi_{z^n_1}, L_1)} \right)
\]
\[
= \left(\sum_{z^n_1} P[Z^{n_1}] (1 - s) \Omega (\varphi_{z^n_1}, L_1) \right) P_e \left(L_1 + 1, (n - n_1), L, \frac{1 - s) P_e}{\Theta(\varphi_{z^n_1}, L_1)} \right) \tag{59}
\]
where the second inequality follows from the convexity of \(\mathcal{P}_e(M, n, L, P_\infty) \) in \(P_\infty \). Note that \(\mathcal{P}_e(M, n, L, P_\infty) \) is convex in \(L_1 \) because of the equation (55) and the convexity of the region \(\Psi(M, n, L) \).

Now consider a code which uses the first \(n_1 \) time units of the original encoding scheme as its encoding scheme. Decoder of this new code draws a real number from \([0, 1]\) uniformly at random, independently of \(Z^{n_1} \) of the original code (and the message evidently). If this number is less than \(s \) it declares erasure else it makes a maximum likelihood decoding with list of size \(L_1 \). Then the sum on the left hand side of the below expression (60) is its error probability. But that probability is lower bounded by \(\mathcal{P}_e(M, n_1, L_1, s) \) which is minimum error probability over all length \(n_1 \) block codes with \(M \) messages and decoding list size \(L_1 \), i.e.
\[
\sum_{z^n_1} P[Z^{n_1}] (1 - s) \Omega (\varphi_{z^n_1}, L_1) \geq \mathcal{P}_e(M, n_1, L_1, s). \tag{60}
\]
Then the theorem follows from the fact that \(\mathcal{P}_e(M, n_1, L_1, P_\infty) \) is decreasing function of \(P_\infty \) and the equations (59) and (60).

QED

Like the result of Shannon, Gallager and Berlekamp in [31 Theorem 1], Theorem 2 is correct both with and without feedback. Although \(\mathcal{P}_e \)'s are different in each case, the relationship between them given in equation (47) holds in both cases.

B. Classical Results on Error Exponent of Erasure-free Block Codes with Feedback:

In this section we give a very brief overview of the previously known results on the error probability of erasure free block codes with feedback. These result are used in Section IV-C together with Theorem 2 to bound \(E_e(R, E_\infty) \) from above. Note that Theorem 2 only relates the error probability of longer codes to that of the shorter ones. It does not in and of itself bound the error probability. It is in a sense a tool to glue together various bounds on the error probability.

First bound we consider is on the error exponent of erasure free block codes with feedback. Haroutunian proved in [17] that, for any \((M_n, n, L_n)\) sequence of triples, such that \(\lim_{n \to \infty} \frac{\ln M_n - \ln L_n}{n} = R \),
\[
\lim_{n \to \infty} - \frac{\ln \mathcal{P}_e(M_n, n, L_n, 0)}{n} \leq E_H(R). \tag{61}
\]
where
\[
E_H(R) = \min_{V : \mathcal{C}(V) \leq R} \max_P D \left(V \| W | P \right) \quad \text{and} \quad \mathcal{C}(V) = \max_P I \left(P, V \right). \tag{62}
\]

Second bound we consider is on the trade off between the error exponents of two messages in a two message erasure free block code with feedback. Berlekamp mentions this result in passing in [11] and attributes it to Gallager and Shannon.

Lemma 3: For any feedback encoding scheme with two messages and erasure free decision rule and for all \(T \geq T_0 \):
\[
either \quad P_{e1} \geq \frac{1}{4} e^{-n T + \sqrt{n} \ln P_{min}} \quad \text{or} \quad P_{e2} > \frac{1}{4} e^{-n T + \sqrt{n} \ln P_{min}} \tag{63}
\]
where \(P_{min} = \min_{x, y} W(y|x) > 0 \) \(W(y|x) \).
\[
T_0 \triangleq \max_{x, \bar{x}} - \ln \sum_{y : W(y|x) > 0} W(y|x) \tag{64}
\]
\[
\Gamma(T) \triangleq \max_{\Pi} \Gamma(T, \Pi). \tag{65}
\]
Result is old and somewhat intuitive to those who are familiar with the calculations in the non-feedback case. Thus probably it has been proven a number of times. But we are not aware of a published proof, hence we have included one in Appendix A.
Although Lemma 3 establishes only the converse part \((T, \Gamma(T))\) is indeed the optimal trade off for the error exponents of two messages in an erase free block code, both with and without feedback. Achievability of this trade off has already been established in [31 Theorem 5] for the case without feedback; evidently this implies the achievability with feedback. Furthermore \(T_0\) does have an operational meaning, it is the maximum error exponent first message can have, while the second message has zero error probability. This fact is also proved in Appendix 3.

For some channels Lemma 3 gives us a bound on the error exponent of erasure free-codes at zero rate, which is tighter than Haroutunian’s bound at zero rate. In order to see this let us first define \(T^*\) to be

\[
T^* = \max_T \min \{T, \Gamma(T)\},
\]

Note that \(T^*\) is finite iff \(\sum_y W(y|x)W(y|x) > 0\) for all \(x, x\) pairs. Recall that this is also the necessary and sufficient condition of zero-error capacity, \(C_0\), to be zero. \(E_H(R)\) on the other hand is infinite for all \(R \leq R_\infty\) like \(E_{sp}(R)\) where \(R_\infty\) is given by,

\[
R_\infty = -\min_{P(x)} \max_{y \geq 0} \ln \sum_{x: W(y|x) > 0} P(x)
\]

Even in the cases where \(E_H(0)\) is finite, \(E_H(0) \geq T^*\). We can use this fact, Lemma 3, and Theorem 2, or [31 Theorem 1] for that matter, to strengthen Haroutunian bound at low rates, as follows.

Lemma 4: For all channels with zero zero-error capacity, \(C_0 = 0\) and any sequence of \(M_n\), such that \(\lim_{n \to \infty} \frac{\ln M_n}{n} = R\),

\[
\lim_{n \to \infty} \frac{-\ln P_e(M_n, n, 1, 0)}{n} \leq \tilde{E}_H(R)
\]

where

\[
\tilde{E}_H(R) = \begin{cases}
E_H(R) & \text{if } R \geq R_{ht} \\
T^* + \frac{E_H(R_{ht}) - T^*}{R_{ht}} R & \text{if } R \in [0, R_{ht})
\end{cases}
\]

and \(R_{ht}\) is the unique solution of the equation \(T^* = E_H(R) - RE'_H(R)\) if it exists, \(R_{ht} = 0\) otherwise.

Before going into the proof let us note that \(\tilde{E}_H(R)\) is obtained simply by drawing the tangent line to the curve \((R, E_H(R))\) from the point \((0, T^*)\). The curve \((R, E_H(R))\) is same as the tangent line, for the rates between 0 and \(R_{ht}\), and it is same as the curve \((R, E_H(R))\) from then on where \(R_{ht}\) is the rate of the point at which the tangent from \((0, T^*)\) meets the curve \((R, E_H(R))\).

Proof: For \(R \geq R_{ht}\) this Lemma immediately follows from Haroutunian’s result in [17] for \(L_1 = 1\). If \(R < R_{ht}\) then we apply Theorem 2

\[
(1 - s)P_e(M, n, L_1, P_x) \geq P_e(M, n, L_1, s)P_e(L_1 + 1, n - \bar{n}, \bar{L}, \frac{(1-s)P_x}{P_e(M, n, L_1, s)})
\]

with\(^17\) \(s = 0, P_x = 0, L_1 = 1\) and \(\bar{n} = \lfloor \frac{R}{R_{ht}} \rfloor\). Furthermore, by Lemma 3 and the definition of \(T^*\) given in (66) we have,

\[
P_e(2, n - \bar{n}, L, 0) \geq e^{-\left(\frac{\ln P_e(M, n, 1, 0)}{R_{ht}}\right)}
\]

Using equations (69) and (70) we get,

\[
\frac{-\ln P_e(M, n, 1, 0)}{n} \leq -\ln P_e(M, n, 1, 0) R_{ht} + \left[1 - \frac{R}{R_{ht}} + \frac{1}{n}\right] T^* + \left(\sqrt{\frac{2}{n}}\right) \left(\sqrt{\frac{M}{R_{ht}}} - \frac{R_{ht}}{R_{ht}}\right) \ln \frac{P_e}{s}
\]

where \(\frac{\ln M}{n} = R_{ht}\). Lemma follows by simply applying Haroutunian’s result to the first terms on the right hand side.

\(^{17}\)Or [31 Theorem 1] with \(L_1 = 1\) and \(n_1 = \lfloor \frac{R}{R_{ht}} \rfloor\).
C. Generalized Straight Line Bound for Error-Erasure Exponents

Theorem 2 bounds the minimum error probability length \(n \) block codes from below in terms of the minimum error probability of length \(n_1 \) and length \((n - n_1)\) block codes. The rate and erasure probability of the longer code constraints the rates and erasure probabilities of the shorter ones, but does not specify them completely. We use this fact together with the improved Haroutunian’s bound on the error exponents of erasure free block codes with feedback, i.e. Lemma 4 and the error exponent trade off of the erasure free feedback block codes with two messages, i.e. Lemma 5 to obtain a family of upper bounds on the error exponents of feedback block codes with erasure.

Theorem 3: For any DMC with \(C_0 = 0 \) rate \(R \in [0, C] \) and \(E_x \in [0, E_H(R)] \) and for any \(r \in [r_h(R, E_x), C] \)

\[
\mathcal{E}_e (R, E_x) \leq \frac{R}{r} \tilde{E}_H(r) + (1 - \frac{R}{r}) \Gamma \left(\frac{E_x - \frac{R}{r} E_H(r)}{1 - \frac{R}{r}} \right)
\]

where \(r_h(R, E_x) \), is the unique solution of \(R \tilde{E}_H(r) - rE_x = 0 \).

Theorem 3 simply states that any line connecting two points of the curves \((R, E_x, \mathcal{E}_e) = (R, \tilde{E}_H(R), \tilde{E}_H(R)) \) and \((R, E_x, \mathcal{E}_e) = (0, E_x, \Gamma (E_x)) \) lies above the surface \(\Gamma (R, E_x, \mathcal{E}_e) = (R, E_x, \mathcal{E}_e(R, E_x)) \). The condition \(C_0 = 0 \) is not merely a technical condition due to the proof technique; as we will see in Section 5 for channels with \(C_0 > 0 \), there are zero-error codes with erasure exponent as high as \(E_xp(R) \) for any rate \(R \leq C \).

Proof: We will consider the cases \(r \in (r_h(R, E_x), C] \) and \(r = r_h(R, E_x) \) separately.

- \(r \in (r_h(R, E_x), C] \): Apply Theorem 2 with \(s = 0 \), \(L = 1 \), \(L_1 = 1 \), take the logarithm of both sides of equation (47) and divide by \(n

\[
\frac{- \ln P_s(M,n,1,P_x)}{n} \leq \frac{- \ln P_s(M,n,1,1)}{n_1} + (1 - \frac{n_1}{n}) \frac{- \ln P_s(2,n-n_1,1,P_x)}{n-n_1}.
\]

For any \((M,n,P_x)\) sequence such that \(\lim \inf_{n \to \infty} \frac{- \ln M}{n} = R \), \(\lim \inf_{n \to \infty} \frac{- \ln P_s}{n} = E_x \), if we choose \(n_1 = \lfloor \frac{R}{r} n \rfloor \) since \(r > r_h(R, E_x) \) we have,

\[
\lim \inf_{n \to \infty} \frac{- \ln n_1}{n} \leq \frac{- \ln P_s}{n} > 0.
\]

Furthermore, as a result of Lemma 4 and the convexity of \(\tilde{E}_H(R) \) we have

\[
\lim \inf_{n \to \infty} \frac{- \ln n_1}{n} \leq T^*.
\]

Assume for the moment that for any \(T \in (0, T^*) \) and for any sequence of \(P_x^{(n)} \) such that \(\lim \inf_{n \to \infty} \frac{- \ln P_x^{(n)}}{n} = T \) we have

\[
\lim \inf_{n \to \infty} \frac{- \ln P_s(2,n-1,P_x^{(n)})}{n} \leq \Gamma (T).
\]

Using equation (71) and taking the limit as \(n \) goes to infinity we get

\[
\mathcal{E}_e (R, E_x) \leq \frac{R}{r} \mathcal{E}_e (r) + (1 - \frac{R}{r}) \Gamma \left(\frac{E_x - \frac{R}{r} E_H(r)}{1 - \frac{R}{r}} \right).
\]

Then Theorem 3 follows from Lemma 4 and the fact that \(\Gamma (T) \) is nondecreasing function of \(T \).

In order to establish equation (72); note that if \(T_0 > 0 \) and \(T \leq T_0 \) then \(\Gamma (T) = \infty \). Thus equation (72) holds trivially. For \(T > T_0 \) case we prove equation (72) by contradiction. Assume that (72) is wrong. Then there exists a block code with erasures that satisfies

\[
\mathbb{P}[\tilde{Y}(\tilde{m})] \leq e^{-n(\Gamma (T) + o(1))}
\]

\[
\mathbb{P}[\tilde{Y}(\tilde{m}) | \tilde{m}] \leq e^{-n(\Gamma (T) + o(1))}
\]

\[
\mathbb{P}[\tilde{Y}(\tilde{m})] \leq e^{-n(\Gamma (T) + o(1))}
\]

\[
\mathbb{P}[\tilde{Y}(\tilde{m}) | \tilde{m}] \leq e^{-n(\Gamma (T) + o(1))}
\]

Enlarge the decoding region of \(\tilde{m} \) by taking its union with the erasure region:

\[
\tilde{Y}'(\tilde{m}) = \tilde{Y}(\tilde{m}) \cup \tilde{Y}(x)
\]

\[
\tilde{Y}'(\tilde{m}) = \tilde{Y}(\tilde{m})
\]

\[
\tilde{Y}'(x) = \emptyset.
\]

The resulting code is an erasure free code with

\[
\mathbb{P}[\tilde{Y}'(\tilde{m}) | \tilde{m}] \leq e^{-n(\Gamma (T) + o(1))}
\]

\[
\mathbb{P}[\tilde{Y}'(\tilde{m}) | \tilde{m}] \leq e^{-n(\min(\Gamma (T), T) + o(1))}
\]

Since \(T_0 < T \leq T^* \), \(\Gamma (T) \geq T \), this contradicts with Lemma 3 thus equation (72) holds.
\[r = r_h(R, E_x): \] Apply Theorem 2 with \(s = 0, L = 1, L_1 = 1 \) and \(n_1 = \max\{\ell : P_e(M, \ell, 1, 0) > P_x \ln \frac{1}{r_x}\} \),

\[
P_e(M, n, 1, P_x) \geq P_e(M, n_1, 1)P_e(2, n - n_1, 1, \frac{P_x}{P_e(\xi, n_1, 1, 0)})
\]

\[
\geq P_x \ln \frac{1}{r_x}P_e(2, n - n_1, 1, \frac{1}{\ln r_x})
\]

(73)

Note that for \(n_1 = \max\{\ell : P_e(M, \ell, 1, 0) > P_x \ln \frac{1}{r_x}\} \),

\[
\liminf_{n \to \infty} \frac{n_1}{n} E\left(\frac{R_n}{n_1}\right) = E_x
\]

Then as a result of Lemma 4 we have,

\[
\liminf_{n \to \infty} \frac{n_1}{n} E_H\left(\frac{R_n}{n_1}\right) \geq E_x
\]

Then

\[
\liminf_{n \to \infty} \frac{n_1}{n} \geq \frac{R}{r_x(R, E_x)}
\]

(74)

Assume for the moment that for any \(\epsilon_n \) such that \(\liminf_{n \to \infty} \epsilon_n = 0 \)

\[
\liminf_{n \to \infty} \frac{-\ln P_e(2, n, 1, \epsilon_n)}{n} \leq \Gamma(0)
\]

(75)

Then taking the logarithm of both sides of the equation (73), dividing both sides by \(n \), taking the limit as \(n \) tends to infinity and substituting equations (74) and (75) we get,

\[
E_e(R, E_x) \leq E_x + (1 - \frac{E_x}{E_H(r_h(R, E_x))})\Gamma(0)
\]

(76)

Note that, Theorem 3 for \(r = r_h(R, E_x) \) case is equivalent to (76). Identity given in (75) follows from an analysis similar to the one used for establishing (72), in which but instead of Lemma 3 we use a simple typicality argument like [10, Corollary 1.2].

We have set \(L_1 = 1 \) in the proof. If instead of \(L_1 = 1 \) we had chosen \(L_1 \) to be a subexponential function of \(n \) which grew to infinity with \(n \), the logic and the mechanics of the proof would still work but we would have replaced \(\Gamma(T) \) with \(E_e(0, E_x) \), while keeping the term including \(E_H(R) \) the same. Since the best known upper bound for \(E_e(0, E_x) \) is \(\Gamma(E_x) \) for \(E_x \leq T^* \) final result is same for case with feedback [2]. On the other hand for the case without feedback, which is not the main focus of this paper, this does make a difference. By choosing \(L_1 \) to be a function of block length that goes to infinity subexponentially with block length one can use Telatar’s converse result [32, Theorem 4.4] on the error exponent at zero rate and zero erasure exponent without feedback.

In Figure 1 the upper and lower bounds we have derived for error exponent are plotted as a function of erasure exponent for a binary symmetric channel with cross over probability \(\epsilon = 0.25 \) at rate \(R = 8.62 \times 10^{-2} \) nats per channel use. Solid lines are lower bounds to the error exponent for block codes with feedback, which have been established in Section III and without feedback, which was established previously, [14], [10], [32]. Dashed lines are the upper bounds obtained using Theorem 3.

Note that all four curves meet at a point on bottom right, this is the point that corresponds to the error exponent of block codes at rate \(R = 8.62 \times 10^{-2} \) nats per channel use and its values are the same with and without feedback since we are on a symmetric channel and our rate is over the critical rate. Any point to the lower right of this point is achievable both with and without feedback.

The proximity of the inner and the outer bound demonstrated in Figure 1 is not particular to the channel we have chosen. A discussion of the closeness of the inner and outer bounds are given in Section VI.

\[18\] In binary symmetric channels these result can be strengthened using the value of \(E(0) \), [30]. However those changes will improve the upper bound on error exponent only at low rates and high erasure exponents.
Fig. 1. Error Exponent vs Erasure Exponent

V. ERASURE EXPONENT OF ERROR-FREE CODES: $E_x(R)$

For all DMCs which have one or more zero probability transitions, for all rates below capacity, $R \leq C$ and for small enough E_x’s, $E_x(R, E_x) = \infty$. For such (R, E_x) pairs, coding scheme we have described in Section III gives us an error free code. The connection between the erasure exponent of error free block codes, and error exponent of block codes with erasures is not confined to this particular encoding scheme. In order to explain those connections in more detail let us first define the error-free codes more formally.

Definition 3: A sequence Q_0 of block codes with feedback is an error-free reliable sequence iff

$$P_e(n) = 0 \quad \forall n,$$

and

$$\limsup_{n \to \infty} (P_x(n) + \frac{1}{|M^n|}) = 0.$$ \hspace{1cm} (78)

The highest rate achievable for error-free reliable codes is the zero-error capacity with feedback and erasures, $C_{x,0}$.

If all the transition probabilities are positive i.e. min$_{x,y} W(y|x) = \delta > 0$, then $P_{x,m} | m \geq (\frac{\delta}{1-\delta})^n$ for all $m, \tilde{m} \in M$ and $z^n \in Z^n$. Thus we have

$$P[m | z^n] \geq (\frac{\delta}{1-\delta})^n P[\tilde{m} | z^n] \quad \forall m, \tilde{m} \in M, \forall z^n \in Z^n$$ \hspace{1cm} (77)

Consequently we have $P_e \geq (\frac{\delta}{1-\delta})^n$ and $C_{x,0}$ is zero. On the other hand as an immediate consequence of the encoding scheme suggested by Yamamoto and Itoh in [34], if there is one or more zero probability transitions, $C_{x,0}$ is equal to channel capacity C.

Definition 4: For all DMCs with at least one (x, y) pair such that $W(y|x) = 0$, $\forall R \leq C$ erasure exponent of error free block codes with feedback is defined as

$$E_x(R) \triangleq \sup_{Q_0 : R(Q_0) \geq R} E_x(Q_0).$$ \hspace{1cm} (78)

For any erasure exponent, E_x less than $E_x(R)$, there is an error-free reliable sequence, i.e. there is a reliable sequence with infinite error exponent:

$$E_x \leq E_x(R) \Rightarrow E_e(R, E_x) = \infty.$$ \hspace{1cm} (79)
More interestingly if $E_x > \mathcal{E}_x(R)$ then $\mathcal{E}_e(R, E_x) < \infty$. In order to see this let δ be the minimum non-zero transition probability. Then for any $\epsilon, \delta > 0$ and $m, n \in \mathcal{M}$ such that $\mathcal{P}[m, z^n] \mathcal{P}[\hat{m}, z^n] > 0$ we have $\mathcal{P}[z^n | m] \geq \delta \mathcal{P}[z^n | \hat{m}]$. Thus if $\mathcal{P}[\hat{M} \notin \{M, x\} | Z^n] \neq 0$ then $\mathcal{P}[\hat{M} \notin \{M, x\} | Z^n] \geq \frac{\delta}{1 + \delta}$. Using this we get,

$$
\mathcal{E}
\left[
\left\{P[\hat{M} \notin \{M, x\} | Z^n] \neq 0
\right\}
\right]
\leq
\frac{1 + \delta}{\delta}
\mathcal{E}
\left[
\left\{P[\hat{M} \notin \{M, x\} | Z^n] \neq 0
\right\}
\right]

= (1 + \delta^{-n}) \mathcal{E}[\hat{M} \notin \{M, x\} | Z^n]
$$

Equation (80) reveals that the total probability of z^n's at which receiver chooses to decode to a message rather than declaring an erasure despite the fact that it is not certain about the message is upper bounded by $(1 + \delta^{-n})$ times the undetected error probability. Thus if we replace the decoder with a new decoder which declares an erasure unless it is sure about the transmitted message, e.g. unless there is a message with posterior probability one, resulting erasure probability P_x' will be bounded in terms of original error and erasure probabilities as follows,

$$
P_x' \leq P_x + (1 + \delta^{-n}) P_e.
$$

Thus by changing the decoding rule, any length n code with error probability P_e and erasure probability P_x can be transformed into error free code with erasure probability P_x', where P_x' satisfies equation (81). Using this transformation we can change any code with errors-and-erasures decoding into an error free block code with erasures. Evidently we can use the very same transformation to convert reliable sequences into error-free reliable sequences. Considering erasure and erasure exponents of the original reliable sequences and erasure exponents of resulting error free reliable sequences we get,

$$
\mathcal{E}_x(R) \geq \min\{E_x, \mathcal{E}_e(R, E_x) + \ln \delta\} \quad \forall R, E_x.
$$

Consequently,

$$
E_x > \mathcal{E}_x(R) \Rightarrow \mathcal{E}_e(R, E_x) \leq \mathcal{E}_x(R) - \ln \delta < \infty.
$$

As a result of equations (79) and (83) we can conclude that $\mathcal{E}_e(R, E_x) = \infty$ if and only if $E_x \leq \mathcal{E}_x(R)$. In a sense like the error exponent of erasure free block codes, $\mathcal{E}(R)$, erasure exponent of the error free block codes, $\mathcal{E}_x(R)$, gives a partial description of $\mathcal{E}(R, E_x)$. $\mathcal{E}(R)$ gives the value of error exponents below which erasure exponent can be pushed to infinity and $\mathcal{E}_x(R)$ gives the value of erasure exponent below which error exponent can be pushed to infinity.

Below the erasure exponent of zero-error codes, $\mathcal{E}_x(R)$, is investigated separately for two families of channels: Channels which have a positive zero error capacity, i.e., $C_0 > 0$ and Channels which have zero zero-error capacity, i.e., $C_0 = 0$.

A. Case 1: $C_0 > 0$

Theorem 4: For a DMC if $C_0 > 0$ then,

$$
E_H(R) \geq \mathcal{E}_x(R) \geq E_{sp}(R).
$$

Proof: If zero-error capacity is strictly greater then zero, i.e. $C_0 > 0$, then one can achieve the sphere packing exponent, with zero error probability using a two phase scheme. In the first phase a transmitter uses a length $n_1 = \lceil e^{n_1 R} \rceil$ block code without feedback with a list decoder of size $L = \lceil \frac{n_1}{\delta} E_{sp}(R, P_e^R) \rceil$ where P_e^R is the input distribution satisfying $E_{sp}(R) = E_{sp}(R, P_e^R)$. Note that with this list size the sphere packing exponent [13] is achievable at rate R. Thus correct message is in the list with at least probability $(1 - e^{-n_2 E_{sp}(R)})$, see [10, Page 196]. In the second phase transmitter uses a zero error code, of length $n_2 = \lceil \frac{\ln (L + 1)}{C_0} \rceil$ with $L + 1$ messages, to tell the receiver whether the correct message is in that list or not, and the correct message itself if it is in the list. Clearly such a feedback code with two phases is error free, and it has erasures only when there exists an error in the first phase. Thus the erasure probability of the over all code is upper bounded by $e^{-n_2 E_{sp}(R)}$. Note that n_2 is fixed for a given R. Consequently as

19Indeed this upper bound on error probability is tight exponentially for block codes without feedback.

20For some DMCs with $C_0 > 0$ and for some L one may need more than $\lceil \frac{\ln (L + 1)}{C_0} \rceil$ time units to convey one of the $(L + 1)$ messages without any errors, because C_0 itself is defined as a limit. But even in those cases we are guaranteed to have a fixed amount of time for that transmissions, which does not change with n_1. Thus above argument holds as is even in those cases.
the length of the first phase, \(n_1 \), grows to infinity the rate and erasure exponent of \(n_1 + n_2 \) long block code converges to the rate and error exponent of \(n_1 \) long code of the first phase, i.e. to \(R \) and \(E_{sp}(R) \). Thus
\[
E_x(R) \geq E_{sp}(R).
\]
Any error free block code with erasures can be forced to decode, at erasures. The resulting fixed length code has an error probability no larger than the erasure probability of the original code. However we know that, \([17]\), error probability of the erasure free block codes with feedback decreases with an exponent no larger than \(E_H(R) \). Thus,
\[
E_x(R) \leq E_H(R).
\]
This upper bound on the erasure exponent also follows from the converse result we present in the next section, Theorem 6.

For symmetric channels \(E_H(R) = E_{sp}(R) \) and Theorem 4 determines the erasure exponent of error-free codes on symmetric channels with non-zero zero-error-capacity completely.

B. Case 2: \(C_0 = 0 \)

This case is more involved than the previous one. We first establish an upper bound on \(E_x(R) \) in terms of the improved version of Haroutunian’s bound, i.e. Lemma 4 and the erasure exponent of error-free codes at zero rate, \(E_x(0) \). Then we show that \(E_x(0) \) is equal to the erasure exponent error-free block codes with two messages, \(E_{x,2} \), and bound \(E_x \) from below.

For any \(M, n \), and \(L, P_e(M, n, L, P_x) = 0 \) for large enough \(P_x \). We denote the minimum of such \(P_x \)'s by \(P_{0,x}(M, n, L) \). Thus we can write \(E_{x,2} \) as
\[
E_{x,2} = \lim \inf_{n \to \infty} P_{0,x}(2, n, 1).
\]

Theorem 5: For any \(n, M, L, n_1 \leq n \) and \(L_1 \), minimum erasure probability of fixed length error-free block codes with feedback \(P_{0,x}(M, n, L) \), satisfies
\[
P_{0,x}(M, n, L) \geq P_e(M, n_1, L_1, 0)P_{0,x}(L_1 + 1, n - n_1, L).
\]

Like Theorem 2, Theorem 5 is correct both with and without feedback. Although \(P_{0,x} \)'s and \(P_e \) will be different in each case, the relationship between them given in equation (84) holds in both cases.

Proof: If \(P_e(M, n_1, L_1, 0) = 0 \) theorem holds trivially. Thus we assume henceforth that \(P_e(M, n_1, L_1, 0) > 0 \). Using Theorem 2 with \(P_x = P_{0,x}(M, n, L) \) we get
\[
P_e(M, n, L, P_{0,x}(M, n, L)) \geq P_e(M, n_1, L_1, 0)P_e(L_1 + 1, n - n_1, L, P_{0,x}(M, n, L)) = 0.
\]

Since \(P_e(M, n, L, P_{0,x}(M, n, L)) = 0 \) and \(P_e(M, n_1, L_1, 0) > 0 \) we have,
\[
P_e(L_1 + 1, n - n_1, L, P_{0,x}(M, n, L)) = 0.
\]

Thus
\[
\frac{P_{0,x}(M, n, L)}{P_e(M, n_1, L_1, 0)} \geq P_{0,x}(L_1 + 1, n - n_1, L).
\]

As we have done in the errors-and-erasures case we can convert this into a bound on exponents. If we use the improved version of Haroutunian’s bound, i.e. Lemma 4 as an upper bound on the error exponent of erasure free block codes we get the following.

Theorem 6: For any rate \(R \geq 0 \) for any \(\alpha \in \left[\frac{R}{L}, 1 \right] \)
\[
E_x(R) \leq \alpha E_H \left(\frac{R}{L} \right) + (1 - \alpha)E_{x}(0)
\]

Now let us focus on the value of erasure exponent at zero rate:

Lemma 5: For the channels which has zero zero-error capacity, i.e. \(C_0 = 0 \), erasure exponent of error free block codes at zero rate \(E_x(0) \) is equal to the erasure exponent of error free block codes with two messages \(E_{x,2} \).

Note that unlike the two message case, \(E_{x,2} \), in the zero rate case \(E_{x}(0) \) the number of messages are increasing with block length to infinity, thus we can not claim \(E_{x,2} = E_{x}(0) \) just as a result of their definitions.
Proof: If we write Theorem 5 for \(L = 1, n_1 = 0 \) and \(L_1 = 1 \)
\[
\mathcal{P}_{0,x}(M, n, 1) \geq \mathcal{P}_{n}(M, 0, 1)\mathcal{P}_{0,x}(2, n, 1) = \frac{M-1}{M} \mathcal{P}_{0,x}(2, n, 1) \quad \forall M, n
\]
Thus as an immediate result of the definitions of \(\mathcal{E}_x(0) \) and \(\mathcal{E}_{x,2} \), we have \(\mathcal{E}_x(0) \leq \mathcal{E}_{x,2} \).

In order to prove the equality one needs to prove \(\mathcal{E}_x(0) \geq \mathcal{E}_{x,2} \). For doing that let us assume that it is possible to send one bit with erasure probability \(\varepsilon \) with a block code of length \(\ell(\varepsilon) \):
\[
\varepsilon \geq \mathcal{P}_{0,x}(2, \ell(\varepsilon), 1)
\]
One can use this code to send \(r \) bits, by repeating each bit whenever there exists an erasure. If the block length is \(n = k\ell(\varepsilon) \) then a message erasure occurs only when the number of bit erasures in \(k \) trials is more then \(k - r \). Let \(#e \) denote the number of erasures out of \(k \) trials then
\[
\mathbf{P}[#e = l] = \frac{k^l}{(k-l)!l!}(1 - \varepsilon)^{k-l}\varepsilon^l
\]
and
\[
P_x = \sum_{l=k-r+1}^{k} (1 - \varepsilon)^{k-l}\varepsilon^l
\]
Thus
\[
P_x = \sum_{l=k-r+1}^{k} \frac{k^l}{(k-l)!l!}(1 - \varepsilon)^{k-l}\varepsilon^l
\]
\[
= \sum_{l=k-r+1}^{k} \frac{k^l}{(k-l)!l!} \left(1 - \frac{l}{k}\right)^{k-l} e^{-\frac{l l \ln l - (k-l) \ln l (k-1)}}
\]
\[
= \sum_{l=k-r+1}^{k} \frac{k^l}{(k-l)!l!} \left(1 - \frac{l}{k}\right)^{k-l} e^{-kD\left(\frac{l}{k}||\varepsilon\right)}
\]
Then for any \(\varepsilon \leq 1 - \frac{r}{k} \), we have
\[
P_x \leq e^{-kD\left(1 - \frac{r}{k} ||\varepsilon\right)}
\]
Evidently \(P_x \geq \mathcal{P}_{0,x}(2^r, n, 1) \) for \(n = k\ell(\varepsilon) \). Thus,
\[
\frac{-\ln \mathcal{P}_{0,x}(2^r, n, 1)}{n} \geq \frac{D\left(1 - \frac{r}{k} ||\varepsilon\right)}{\ell(\varepsilon)}
\]
Then \(-\frac{\ln \varepsilon}{\ell(\varepsilon)} \) is an achievable erasure exponent for any sequence of \((r, k)\)'s such that \(\lim_{k \to \infty} \frac{r}{k} = 0 \), i.e. \(\mathcal{E}_x(0) \geq \mathcal{E}_{x,2} \).

Thus any exponent achievable for two message case is achievable for zero rate case: \(\mathcal{E}_x(0) \geq \mathcal{E}_{x,2} \).}
Then
\[P[Y_t = \tilde{y} | M = 1, y^t = y] \leq q \quad \forall t, \quad \forall y^t \in \mathcal{Y}^t \] \tag{88}

Furthermore if \(Y^n = \tilde{y} \) then the receiver can not decode without errors, i.e. it has to declare an erasure. Then,
\[P_{0,x}(2, n, 1) \geq (a) \left(P\left[Y^n = \tilde{y} \ldots \tilde{y} | M = 1\right] + P\left[Y^n = \tilde{y} \ldots \tilde{y} | M = 2\right]\right) \]
\[\geq (b) \sqrt{P\left[Y^n = \tilde{y} \ldots \tilde{y} | M = 1\right] P\left[Y^n = \tilde{y} \ldots \tilde{y} | M = 2\right]} \]
\[= q^2 \] \tag{89}

where (a) holds because arithmetic mean is larger than the geometric mean and (b) follows from the equation (88).

For the \(W \) given in (87) the bound given in (89) is very tight. If the encoder assigns the first message to the input letter that always leads to \(\tilde{y} \) and the second message to the other input letter in first \(\left\lfloor \frac{n}{2} \right\rfloor \) time instances, and does the flipped assignment in the last \(\left\lceil \frac{n}{2} \right\rceil \) time instances, then an erasure happens with a probability less than \(q \left(\frac{1}{2}\right) \), i.e. \(P_{0,x}(2, n, 1) \leq q \left(\frac{1}{2}\right) \). On the other hand for the \(W \) given in (87), bound given in equation (86) ensures only \(P_{0,x}(2, n, 1) \geq q^n \), rather than \(P_{0,x}(2, n, 1) \geq q \left(\frac{1}{2}\right) \). Thus for the channel given (87) the bound given in equation (89) is tighter than the one in equation (86).

The idea used in deriving the bound given in equation (89) for this particular \(W \) can be applied to a general DMC to prove the following lower bound,
\[P_{0,x}(2, n, 1) \geq \left(\min_{x, \tilde{x}} \sum_y \sqrt{W(y|x)W(y|\tilde{x})} \right)^n . \] \tag{90}

The bound given in equation (90) is decaying exponentially in \(n \), even when all entries of the \(W \) are positive, however for those channels the bound given in (86) implies \(P_{0,x}(2, n, 1) \geq 1 \). Thus the bound given in (90) can not be superior to the bound given in equation (86) in general. The following bound implies bounds given in both equation (86) and equation (90). Furthermore for certain channels it is strictly better than both.

Lemma 6: Erasure probability of all error free block codes with two messages is lower bounded as
\[P_{0,x}(2, n, 1) \geq \left(\sup_{s \in (0, 5)} \beta(s) \right)^n \] \tag{91}

where \(\beta(s) = \min_{x, \tilde{x}} \sum_y W(y|x)^{1-s} W(y|\tilde{x})^s \). Note that bounds given in equation (86) and (90) are implied by \(\lim_{s \to 0^+} \beta(s) \) and \(\lim_{s \to 0.5^-} \beta(s) \) respectively.

Although \(\sum_y W(y|x)^{s} W(y|\tilde{x})^{1-s} \) is convex in \(s \) on \((0, 0.5) \) for all \((x, \tilde{x}) \) pairs, \(\beta(s) \) is not convex in \(s \) because of the minimization in its definition. Thus the supremum over \(s \) does not necessarily occur on the boundaries. Indeed there are channels for which bound given in Lemma 6 is strictly better than the bounds given in (86) and (90). Following is the transition probability matrix of one such channel.

\[
W = \begin{bmatrix}
0.1600 & 0.0200 & 0.2200 & 0.3000 & 0.3000 \\
0.0900 & 0.4000 & 0.2700 & 0.0002 & 0.2398 \\
0.1800 & 0.2000 & 0.3000 & 0.3200 & 0 \\
\end{bmatrix}
\]

\[
\begin{aligned}
&\lim_{s \to 0^+} \beta(s) = 0.7000 \\
&\lim_{s \to 0.5^-} \beta(s) = 0.7027 \\
&\beta(0.18) = 0.7299.
\end{aligned}
\]

Proof: Let \(\mu_t \) and \(\tilde{\mu}_t(z^{t-1}) \) be,
\[
\mu_t = \{z^t : P[M = 1 | z^t] P[M = 2 | z^t] > 0\}
\]
\[
\tilde{\mu}_t(z^{t-1}) = \{y_t : P[y_t | M = 1, z^{t-1}] P[y_t | M = 2, z^{t-1}] > 0\}
\]

Then for any error free code and for any \(s \in (0, 0.5) \) we have
\[
P_x = E\left[\mathbf{1}_{\{\mu_s\}}\right] = E\left[\mathbf{1}_{\{\mu_s\}} (P[M = 1 | Z^n] + P[M = 2 | Z^n])\right] = E\left[\mathbf{1}_{\{\mu_s\}} (\left(1-s\right)P[M = 1 | Z^n] + sP[M = 2 | Z^n])\right] + E\left[\mathbf{1}_{\{\mu_s\}} (sP[M = 1 | Z^n] + (1-s)P[M = 2 | Z^n])\right] \geq E\left[\mathbf{1}_{\{\mu_s\}} P[M = 1 | Z^n]^{1-s} P[M = 2 | Z^n]^s\right] + E\left[\mathbf{1}_{\{\mu_s\}} P[M = 1 | Z^n]^s P[M = 2 | Z^n]^{1-s}\right] \tag{92}
\]
where the last inequality follows from the fact that arithmetic mean is lower bounded by the geometric mean. Furthermore,

\[
E\left[\mathbb{1}_{\{\mu_0\}} P[M = 1|Z^n]^{1-s} P[M = 2|Z^n]^s \right] \\
= E\left[E\left[\mathbb{1}_{\{\mu_0(Z^{n-1})\}} \left(\frac{P[M=1|Z^n]}{P[M=1|Z^{n-1}]} \right)^{1-s} \left(\frac{P[M=2|Z^n]}{P[M=2|Z^{n-1}]} \right)^s \right] Z^{n-1} \right] \mathbb{1}_{\{\mu_0,\ldots,\mu_{n-1}\}} P[M = 1|Z^{n-1}]^{1-s} P[M = 2|Z^{n-1}]^s \right]. \tag{93}
\]

Note that,

\[
\frac{P[M=1|Z^n]}{P[M=1|Z^{n-1}]} = \frac{P[M=1|Z^{n-1},Y_n]}{P[M=1|Z^{n-1}]},
\]

Similarly,

\[
\frac{P[M=2|Z^n]}{P[M=2|Z^{n-1}]} = \frac{PY_n[M=2,Z^{n-1}]}{P[Y_n|Z^{n-1}]}.
\]

Thus using equations (94) and (95) we have

\[
E\left[\mathbb{1}_{\{\mu_0(Z^{n-1})\}} \left(\frac{P[M=1|Z^n]}{P[M=1|Z^{n-1}]} \right)^{1-s} \left(\frac{P[M=2|Z^n]}{P[M=2|Z^{n-1}]} \right)^s \right] Z^{n-1} = E\left[\frac{PY_n[M=1,Z^{n-1}]}{PY_n[M=2,Z^{n-1}]} \right] \sum_{y_n} P[y_n|M = 1, Z^{n-1}]^{1-s} P[y_n|M = 2, Z^{n-1}]^s \\
\geq \beta(s) \tag{96}
\]

where the last inequality follows from the definition of \(\beta(s) \) given in equation (91).

Using equations (93) and (96) we get

\[
E\left[\mathbb{1}_{\{\mu_0\}} P[M = 1|Z^n]^{1-s} P[M = 2|Z^n]^s \right] \geq E\left[P[M = 1|Z^n]^{1-s} P[M = 2|Z^n]^s \right] \beta(s) \geq \frac{1}{2} \beta(s)^n \tag{97}
\]

If we follow a similar line of reasoning for the second term in (92) we get

\[
E\left[\mathbb{1}_{\{\mu_0\}} P[M = 1|Z^n]^{1-s} P[M = 2|Z^n]^s \right] \geq \frac{1}{2} \beta(1-s)^n = \frac{1}{2} \beta(s)^n. \tag{98}
\]

Lemma follows from equations (92), (97), and (98) by taking the supremum over \(s \in (0,\ 0.5) \).

\[\square \]

VI. DISCUSSION

The value of error exponent is not known for erasure free fixed length block codes with feedback on a general DMC. We do not even know if it is still upper bounded by sphere packing exponent for non-symmetric DMCs. Yet the value of error exponent for fixed length block codes with feedback and errors-and-erasures decoding can be deduced, for the zero-erasure exponent case, from the results on the variable length block codes \cite{3}, \cite{34}. Our main aim in this paper was establishing upper and lower bounds that extend the bounds at the zero erasure exponent case gracefully and non-trivially to the positive erasure exponents values. Our results are best understood in this framework and should be interpreted accordingly.

By finding the optimal error exponent erasure exponent trade off, one solves the open problem of finding the optimal error exponent of erasure free fixed length block codes with feedback. This is an important and difficult problem on its own right. We did not attempted to solve that problem, yet the inner and outer bounds we have derived for the case with erasure quantify how much we loose from the optimal performance by using the encoding schemes inspired by the optimal encoding schemes for variable length block codes.

We derived inner bounds using two phase encoding schemes, which are known to be optimal at zero-erasure exponent case. We have improved the performance of these two phase schemes at positive erasure exponent values by choosing relative durations of the phases considering the desired values of rate and erasure exponent, and by using a decoder that takes into account the outputs of both phases while deciding between decoding to a message and declaring
an erasure. However within each phase the assignment of messages to input letters is fixed. In a general feedback encoder, on the other hand, assignment of the messages to input symbols at each time can depend on the previous channel outputs and such encoding schemes have proven to improve the error exponent at low rates, [35], [13], [9], [25], [23] for some DMCs. Using such an encoding in the communication phase will improve the performance at low rates. In addition instead of committing to a fixed duration for the communication phase one might consider using a stopping time to switch from communication phase to the control phase. However in order to apply those ideas effectively for a general DMC, it seems one first needs to solve the problem for the erasure free block codes for a general DMC.

We derived the outer bounds without making any assumption about the feedback encoding scheme. Thus they are valid for any fixed length block code with feedback and erasures. The principal idea of the straight line bound is making use of the bounds derived for different rate, erasure exponent pairs by taking their convex combinations. This approach can be interpreted as a generalization of the outer bounds used for variable length block codes, [3], [2]. As it was the case for the inner bounds, it seems in order to improve the outer bounds one needs establish outer bounds on two related problems, i.e. on the error exponents of erasure free block codes with feedback and on the error exponent erasure exponent trade off at zero rate.

The inner and outer bounds we have derived do not coincide for arbitrary values of erasure exponent. But they do coincide for all channels at all rates at zero erasure exponent.

- If the channel does not have a zero probability transition, both the inner bound and the outer bound are equal to \((1 - \frac{R}{C}) D \).
- If the channel does have a zero probability transition, the inner bound is equal to infinity and there are fixed length block codes with zero error probability for all large enough block lengths.

Furthermore on the plane where erasure exponent is equal to the error exponent, the outer bound we have derived is loose only as much as the best outer bound we know for the error exponent of the erasure free block codes with feedback is loose. Thus the proximity we have observed between inner and outer bounds in Figure 1 is not peculiar to the particular channel we have chosen for Figure 1. For all channels inner and outer bounds we have derived coincide on the upper left corner like they do in Figure 1. If the channel is symmetric and if we are considering a rate over critical rate they will also coincide in lower right corner. Furthermore if the sphere packing exponent is shown to be an upper bound for the error exponent of erasure free fixed length block codes this behavior will extend to non-symmetric channels.

ACKNOWLEDGMENT

Authors are grateful to Emre Telatar for his encouragement on the problem and for numerous discussions on error-free codes. In particular the observations presented about z-channels are his and Lemma 5 was proved in 2006 summer at Ecole Polytechnique Federale de Lausanne (EPFL). Authors are thankful to Tsachy Weissman and Amos Lapidoth for bringing the Shannon-Gallager result mentioned in Elwyn Berlekamp’s thesis to their attention, to Anant Sahai for various discussions on communication problems with feedback and to Robert G. Gallager for various discussions on the encoding scheme presented in Section III and the two message error exponent trade off. Authors would like to acknowledge the thorough review provided by the anonymous Reviewer B, which has helped them to improve the presentation of the paper in general. In addition the \((1 - s)\) factor on the left hand side of Theorem 2 was pointed out to the authors by Reviewer B.

APPENDIX

A. The Error Exponent Trade Off for Feedback Encoding Schemes with Two Message and Erasure Free Decoders:

In this section we will first establish an alternative expression for the \(\Gamma (T, \Pi) \) function defined in equation (36) in Lemma 7. After that we will prove that in a two message code with feedback on a DMC, if the error exponent of one of the messages is greater than some \(T \geq T_0 \) then the error exponent of the other message cannot be greater than \(\Gamma (T) \), where \(T_0 \) and \(\Gamma (T) \) are defined in (64) and (65) respectively. Furthermore we will prove that if the error probability of the one of the message is zero than the error probability of the other message cannot be lower than \(e^{-nT_0} \); we will also prove that it can be as low as \(e^{-nT_0} \), see Lemma 8. These results will imply that the error performance of a two message code, does not improve with feedback. This result is attributed to Shannon and Gallager by Berlekamp in [1].

27
Lemma 7: $\Gamma(T, \Pi)$ defined in equation (36) is equal to

$$\Gamma(T, \Pi) = \left\{ \begin{array}{ll}
\infty & \text{if } T < D(U_{s}||W_{s}||\Pi) \\
D(U_{s}||W_{s}||\Pi) & \text{if } T = D(U_{s}||W_{s}||\Pi) \text{ for some } s \in [0, 1] \\
D(U_{1}||W_{1}||\Pi) & \text{if } T > D(U_{1}||W_{1}||\Pi)
\end{array} \right. $$

where

$$U_{s}(y|x, \bar{x}) = \left\{ \begin{array}{ll}
\frac{1_{W(y|x)>0}}{\sum_{y:W(y|x)>0}W(y|x)}W(y|x) & \text{if } s = 0 \\
\frac{\sum_{y:W(y|x)>0}W(y|x)-1}{\sum_{y:W(y|x)>0}W(y|x)} & \text{if } s \in (0, 1) \\
\frac{\sum_{y:W(y|x)>0}W(y|x)-1}{\sum_{y:W(y|x)>0}W(y|x)} & \text{if } s = 1
\end{array} \right. $$

Proof:

$$\Gamma(T, \Pi) = \min_{U:D(U||W_{s}||\Pi) \leq T} D(U||W_{s}||\Pi)$$

$$= \min_{U} \sup_{\lambda>0} D(U||W_{s}||\Pi) + \lambda(D(U||W_{s}||\Pi) - T)$$

$$= \sup_{\lambda>0} \min_{U} D(U||W_{s}||\Pi) + \lambda(D(U||W_{s}||\Pi) - T)$$

$$= \sup_{\lambda>0} \min_{U} -\lambda T + (1 + \lambda) \sum_{x,\bar{x},y} \Pi(x, \bar{x})U(y|x, \bar{x}) \ln \frac{D(U(y|x, \bar{x})}{W(y|x)^{1+\lambda}W(y|\bar{x})^{1+\lambda}}$$

$$= \sup_{\lambda>0} -\lambda T - (1 + \lambda) \sum_{x,\bar{x}} \Pi(x, \bar{x}) \ln \sum_{y} W(y|x)^{1+\lambda}W(y|\bar{x})^{1+\lambda}$$

(99)

where (a) follows from convexity of $D(U||W_{s}||\Pi) + \lambda(D(U||W_{s}||\Pi) - T)$ in U and linearity (concavity) of it in λ; (b) holds because minimizing U is U_{s} for $s = \frac{1}{1+\lambda}$. The function on the right hand side of (99) is maximized at a positive and finite λ iff there is a λ such that $D(U_{1+\lambda}||W_{s}||\Pi) = T$. Thus by substituting $\lambda = \frac{1-s}{s} we get

$$\Gamma(T, \Pi) = \left\{ \begin{array}{ll}
\infty & \text{if } T < \lim_{s \to 0^+} D(U_{s}||W_{s}||\Pi) \\
\lim_{s \to 0^+} D(U_{s}||W_{s}||\Pi) & \text{if } T = \lim_{s \to 0^+} D(U_{s}||W_{s}||\Pi) \text{ for some } s \in (0, 1) \\
D(U_{s}||W_{s}||\Pi) & \text{if } T = \lim_{s \to 1^-} D(U_{s}||W_{s}||\Pi) \\
\lim_{s \to 1^-} D(U_{s}||W_{s}||\Pi) & \text{if } T > \lim_{s \to 1^-} D(U_{s}||W_{s}||\Pi)
\end{array} \right. $$

(100)

Lemma follows from the definition U_{s} at $s = 0, 1$ and equation (100).

Now we are ready to present the definition of Lemma 3.

Proof [Lemma 3]:

Our proof is very much like the one for the converse part of [31 Theorem 5], except few modifications that allow us to handle the fact that encoding schemes are considering are feedback encoding schemes. Like [31 Theorem 5] we construct a probability measure $P_{T}[]$ on \mathbb{Z}^{n} as a function of T and the encoding scheme. Then we bound the error probability of each message from below using the probability of the decoding region of the other message under $P_{T}[]$. We consider probability measures on \mathbb{Z}^{n} rather than \mathbb{Y}^{n} to include the possible randomization in the encoding and decoding schemes.

For any $T \geq T_{0}$ and Π, let $S_{T, \Pi}$ be

$$S_{T, \Pi} = \left\{ \begin{array}{ll}
0 & \text{if } T < D(U_{0}||W_{0}||\Pi) \\
s & \text{if } \exists s \in [0, 1] \text{ s.t. } D(U_{s}||W_{s}||\Pi) = T \\
1 & \text{if } T > D(U_{1}||W_{1}||\Pi)
\end{array} \right. $$

(101)

Recall that

$$T_{0} = \max_{x, \bar{x}} - \ln \sum_{y:W(y|x)>0}W(y|x) \quad \text{and} \quad D(U_{0}||W_{0}||\Pi) = - \sum_{x,\bar{x}} \Pi(x, \bar{x}) \ln \sum_{y:W(y|x)>0}W(y|x).$$

Then for all Π we have

$$T_{0} \geq D(U_{0}||W_{0}||\Pi).$$

(102)
Thus as a result of definition of $S_{T, II}$ and equation (102) we have
\[D \left(U_{S_{T, II}} \left\| W_n \right\| \right) \leq T \quad \forall T \geq T_0. \]
(103)
Using Lemma 7 definition of $S_{T, II}$ and equation (102) we can also conclude that
\[D \left(U_{S_{T, II}} \left\| W_r \right\| \right) = \Gamma (T, \Pi) \leq \Gamma (T) \quad \forall T \geq T_0. \]
(104)
Note that given $Z_t^{-1} = z_t^{-1}$ channel input letters assigned to each message at time t, $X_t(m_1, z_t^{-1})$ and $X_t(m_2, z_t^{-1})$, are fixed for any feedback encoding schemes, $X_t(\cdot) : \{m_1, m_2\} \times Z_t^{-1}$. Thus the corresponding Π is given by:
\[\Pi(x, \tilde{x}) = \left\{ \begin{array}{ll} 0 & \text{if} \quad (x, \tilde{x}) \neq (X_t(m_1, z_t^{-1}), X_t(m_2, z_t^{-1})) \\ 1 & \text{if} \quad (x, \tilde{x}) = (X_t(m_1, z_t^{-1}), X_t(m_2, z_t^{-1})) \end{array} \right. \]
(105)
Then for any $T \geq T_0$ let $P_T [y_t | z_t^{-1}]$ be
\[P_T [y_t | z_t^{-1}] = U_{S_{T, II}} [y_t | X_t(m_1, z_t^{-1}), X_t(m_2, z_t^{-1})]. \]
(106)
Furthermore let us assume that the conditional distribution of A_t given (M, Z_t^{-1}, Y_t) under $P_T [\cdot]$ be identical to the conditional distribution of A_t given (M, Z_t^{-1}, Y_t) under $P [\cdot]$, i.e. the original conditional distribution. Note that as a result of equation (103) and equation (104) we have
\[\left[\ln \frac{P_T [Y_t | \Pi]}{P[Y_t | M = m_1, Z_t^{-1}]} \right] Z_t^{-1} \leq T \quad \text{and} \quad \left[\ln \frac{P_T [Y_t | \Pi]}{P[Y_t | M = m_2, Z_t^{-1}]} \right] Z_t^{-1} \leq \Gamma (T) \quad \text{w.p.} 1 \]
Now we make a standard measure change argument,
\[P \left[Y_t | M = m_1, Z_t^{-1} \right] = e^{-\ln \frac{P_T [Y_t | \Pi]}{p_T [Y_t | \Pi]}} P_T [Y_t | \Pi] = \]
\[= e^{-E_T \left[\ln \frac{P_T [Y_t | \Pi]}{p_T [Y_t | \Pi]} \right]} e^{\chi_{t, m_1} (Y_t | \Pi)} P_T [Y_t | \Pi] \geq e^{-E_T \left[\ln \frac{p_T [Y_t | \Pi]}{P_T [Y_t | \Pi]} \right]} e^{\chi_{t, m_1} (Y_t | \Pi)} P_T [Y_t | \Pi] \]
(107)
where
\[\chi_{t, m_1} (Y_t | \Pi) = E_T \left[\ln \frac{p_T [Y_t | \Pi]}{P_T [Y_t | \Pi]} \right] \]
(108)
For $m = m_1, m_2$ let $\chi (m)$ be
\[\chi (m) = \left\{ z^n : \sum_{t=1}^{n} \chi_{t, m} (Y_t | Z_t^{-1}) \leq 4 \sqrt{n \ln \frac{1}{P_{\min}}} \right\} \]
(109)
For any event B measurable in the sigma field generated by Z^n as a result of equation equations (107) we have
\[P [B] \geq E \left[\mathbb{1} (B) \mathbb{1} (\chi (m_1)) \right] \geq e^{-nT} e^{-4 \sqrt{n \ln \frac{1}{P_{\min}}} \Gamma (T, \Pi) \mathbb{1} (\chi (m_1))} \geq e^{-nT} e^{-4 \sqrt{n \ln \frac{1}{P_{\min}}} \Gamma (T, \Pi) \mathbb{1} (\{B \text{ and } \chi (m_1)\})} \]
(110)
Following a similar line of reasoning we get,
\[P [Y_t | M = m_2, Z_t^{-1}] \geq e^{-\Gamma (T)} e^{\chi_{t, m_2} (Y_t | Z_t^{-1})} P_T [Y_t | Z_t^{-1}] \]
(111)
where
\[\chi_{t, m_2} (Y_t | Z_t^{-1}) = E_T \left[\ln \frac{P_T [Y_t | \Pi]}{P_T [Y_t | \Pi]} \right] Z_t^{-1} \]
(112)
and for any event B measurable in the sigma field generated by Z^n we have
\[P [B] \geq e^{-nT} e^{-4 \sqrt{n \ln \frac{1}{P_{\min}}} P_T [\{B \text{ and } \chi (m_2)\}]. \]
(113)
Note that for \(m = \{m_1, m_2\} \) and \(t \in \{1, 2, \ldots, n\} \),

\[
E_T \left[\chi_{t,m}(Y_t|Z^{t-1}) | Z^{t-1} \right] = 0 \quad \forall z^{t-1} \in Z^{t-1} \tag{114a}
\]

\[
E_T \left[(\chi_{t,m}(Y_t|Z^{t-1}))^2 | Z^{t-1} \right] \leq 4(\ln P_{\min})^2 \quad \forall z^t \in Z^t \tag{114b}
\]

\[
E_T \left[\chi_{t,m}(Y_t|Z^{t-1}) \chi_{t-k,m}(Y_{t-k}|Z^{t-k-1}) | Z^{t-1} \right] = 0 \quad \forall z^{t-1} \in Z^{t-1} \forall k\{1, 2, \ldots, t-1\} \tag{114c}
\]

Thus as a result of equation (114), for \(m \in \{m_1, m_2\} \)

\[
E_T \left[\sum_{t=1}^n \chi_{t,m}(Y_t|Z^{t-1}) \right] = 0 \tag{115a}
\]

\[
E_T \left[\left(\sum_{t=1}^n \chi_{t,m}(Y_t|Z^{t-1}) \right)^2 \right] \leq 4n(\ln P_{\min})^2. \tag{115b}
\]

Using equation (115) and Chebychev’s inequality we conclude that,

\[
P_T [\chi(m)] \geq 3/4 \quad m = m_1, m_2
\]

Hence,

\[
P_T [\chi(m_1) \cap \chi(m_2)] \geq 1/2
\]

Thus either the total probability of intersection of \(\chi(m_1) \cap \chi(m_2) \) with the decoding region of the second message is equal to or larger than 1/4 or the total probability of intersection of \(\chi(m_1) \cap \chi(m_2) \) with the decoding region of the first message is strictly larger than 1/4. Then the lemma follows from equations (110) and (113).

QED

As we have noted previously, \(T_0 \) does have an operational meaning if it is the maximum error exponent first message can have, when the error probability of the second message is zero.

Lemma 8: For any feedback encoding scheme with two messages, if \(P_{E|m_2} = 0 \) then \(P_{E|m_1} \geq e^{-nT_0} \). Furthermore there does exist an encoding scheme such that \(P_{E|m_2} = 0 \) then \(P_{E|m_1} = e^{-nT_0} \).

Proof: Let us use a construction similar to the one used in the proof of Lemma 3

\[
P_T [Y_t|Z^{t-1}] = U_0(Y_t|X_1(m_1, Z^{t-1}), X_2(m_2, Z^{t-1})).
\]

Recall that

\[
U_0(y_t|x, \bar{x}) = \frac{\mathbb{1}_{\{W(y|x) > 0\}}}{\sum_{y} W(y|x)} W(y|x)
\]

Thus

\[
P_T [Y_t|Z^{t-1}] \leq e^{T_0} \mathbb{P}[|Y_t|M = m_1, Z^{t-1}]
\]

\[
P_T [Y_t|Z^{t-1}] \leq 1_{\{\mathbb{P}_{Y_t|M=m_2,Z^{t-1}} > 0\}}
\]

As we did in the proof of Lemma 3, we will assume that conditional distribution of \(A_t \) given \((M, Z^{t-1}, Y_t)\) under \(P_T [\cdot] \) is identical to the conditional distribution of \(A_t \) given \((M, Z^{t-1}, Y_t)\) under \(P[\cdot] \), i.e. the original conditional distribution.

Then for any event \(B \) measurable in the sigma field generated by \(Z^n \) we have

\[
\mathbb{P}[B|M = m_1] \geq e^{-nT_0} P_T [B]
\]

\[
\mathbb{P}[B|M = m_2] \geq e^n \ln P_{\min} P_T [B]
\]

where \(P_{\min} \) is the minimum non-zero element of \(W \).

Since \(P_{E|m_2} = 0 \), equation (117) implies that \(P_T [\hat{M} = m_2] = 0 \) and \(P_T [\hat{M} = m_1] = 1 \). Using this fact together with equation (116) we conclude that

\[
P_{E|m_1} \geq e^{-nT_0}.
\]

Let us assume that maximizing x-pair in (64) is \((x^*, x^*_2)\) i.e. \(T_0 = -\ln \sum_{y} W(y|x^*_2) > 0 W(y|x^*_2). \) If the the encoding scheme sends \(x^*_1 \) for the first message and \(x^*_2 \) for the second message, and the decoder decodes to second message unless \(Y_t = y^* \) for some \(t \in \{1, 2, \ldots, n\} \) and for some \(y^* \) such that \(W(y^*|x^*_2) = 0 \). Then \(P_{E|m_2} = 0 \) and \(P_{E|m_1} = e^{-nT_0}. \)
B. Convexity of $E_\alpha(R, E_x, \alpha, P, \Pi)$ in α:

Lemma 9: For any probability distribution P on input alphabet X, $\zeta(P, Q, R)$ is convex in (Q, R) pair.

Proof: Note that

$$\gamma\zeta(R_a, P, Q_a) + (1 - \gamma)\zeta(R_b, P, Q_b) = \min_{V_a, V_b: \|V_a\| \leq R_a, \|V_b\| \leq R_b} \gamma D(V_a\|W) + (1 - \gamma) D(V_b\|W)$$

Using the convexity of $D(V\|W)$ in V and Jensen’s inequality we get,

$$\gamma\zeta(R_a, P, Q_a) + (1 - \gamma)\zeta(R_b, P, Q_b) \geq \min_{V_a, V_b: \|V_a\| \leq R_a, \|V_b\| \leq R_b} D(V_a\|W) = \gamma R_a + (1 - \gamma) R_b$$

where $R_\gamma = \gamma R_a + (1 - \gamma) R_b$.

Lemma 10: For all (R, E_x, P, Π) quadruples such that $E_r(R, P) \geq E_x$, $E_r(R, E_x, \alpha, P, \Pi)$ is a convex function of α on the interval $[\alpha^*(R, E_x, P), 1]$ where $\alpha^*(R, E_x, P)$ is the unique solution of $\alpha E_r(R, \alpha, P) = E_x$.

Proof: For any P such that $E_r(R, P)$ is non-negative, convex and decreasing function of R in the interval $[0, 1]$. Thus $\alpha E_r(R, \alpha, P)$ is strictly increasing continuous function of $\alpha \in [\frac{R}{\|P\|W}, 1]$. Furthermore for $\alpha = \frac{R}{\|P\|W}$, $\alpha E_r(R, \alpha, P) = 0$ and for $\alpha = 1$, $\alpha E_r(R, \alpha, P) = E_x$. Thus $\alpha E_r(R, \alpha, P) = E_x$ has a unique solution.

Note that for any $\gamma \in [0, 1]$

$$\gamma E_r(R, E_x, \alpha_a, P, \Pi) + (1 - \gamma) E_r(R, E_x, \alpha_b, P, \Pi)$$

$$= \min_{Q_a, R_{1a}, R_{2a}, T_a, Q_b, R_{1b}, R_{2b}, T_b: \gamma \alpha_a \zeta(R_{1a}, P, Q_a) + R_{1a} - R + (1 - \alpha_a) \gamma \left(T_a \frac{T_a}{1 - \alpha_a}, \Pi \right) + (1 - \gamma) \alpha_b \zeta(R_{1b}, P, Q_b) + R_{1b} - R + (1 - \alpha_b) \gamma \left(T_b \frac{T_b}{1 - \alpha_b}, \Pi \right)}$$

$$= \min_{Q_a, R_{1a}, R_{2a}, T_a: \gamma \alpha_a \zeta(R_{1a}, P, Q_a) + R_{1a} - R + (1 - \alpha_a) \gamma \left(T_a \frac{T_a}{1 - \alpha_a}, \Pi \right)}$$

$$= E_r(R, E_x, \alpha_a, P, \Pi).$$

where α_a, T_a, Q_a, R_{1a} and R_{2a} are given by,

$$\alpha_a = \gamma \alpha_a + (1 - \gamma) \alpha_b \quad T_a = \gamma T_a + (1 - \gamma) T_b \quad Q_a = \frac{\gamma \alpha_a}{\alpha_a} Q_a + \frac{(1 - \gamma) \alpha_b}{\alpha_a} Q_b$$

The inequality follows from convexity arguments analogous to the ones used in the proof of Lemma 9.

21The equation $\alpha E_r(R, \alpha, P) = 0$ has multiple solutions; we choose the minimum of those to be the α^* i.e., $\alpha^*(R, 0, P) = \frac{R}{\|P\|W}$.

31
Thus we have:

Using a similar line of reasoning we get,

for some

First consider

Note that for all

\[A. G. D'yachkov. Upper bounds on the error probability for discrete memoryless channels with feedback. \]

\[S. Draper and A. Sahai. Variable-length coding with noisy feedback. \]

\[R. L. Dobrushin. An asymptotic bound for the probability error of information transmission through a channel without memory using the feedback. \]

