Gutzwiller projected wave functions in the fermionic theory of S=1 spin chains

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Gutzwiller projected wave functions in the fermionic theory of \( S = 1 \) spin chains

Zheng-Xin Liu,1 Yi Zhou,2 Hong-Hao Tu,3 Xiao-Gang Wen,1,4 and Tai-Kai Ng5,*

1Institute for Advanced Study, Tsinghua University, Beijing 100084, P. R. China
2Department of Physics, Zhejiang University, Hangzhou 310027, P. R. China
3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
4Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
5Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong

(Rceived 29 March 2012; revised manuscript received 7 May 2012; published 29 May 2012)

We study in this paper a series of Gutzwiller projected wave functions for \( S = 1 \) spin chains obtained from a fermionic mean-field theory for general \( S > 1/2 \) spin systems [Liu, Zhou, and Ng, Phys. Rev. B 81, 224417 (2010)] applied to the bilinear-biquadratic \((J,K)\) model. The free-fermion mean-field states before the projection are 1D paring states. By comparing the energies and correlation functions of the projected pairing states with those obtained from known results, we show that the optimized Gutzwiller projected wave functions are very good trial ground-state wave functions for the antiferromagnetic bilinear-biquadratic model in the regime \( K < J \). We find that different topological phases of the free-fermion paring states correspond to different spin phases: the weak pairing (topologically nontrivial) state gives rise to the Haldane phase, whereas the strong pairing (topologically trivial) state gives rise to the dimer phase. In particular, the mapping between the Haldane phase and Gutzwiller wave function is exact at the Affleck-Kennedy-Lieb-Tasaki (AKLT) point \( K/J = 1/3 \) [\( \theta = \tan^{-1}(1/3) \)]. The transition point between the two phases determined by the optimized Gutzwiller projected wave function is in good agreement with the known result. The effect of \( Z_2 \) gauge fluctuations above the mean-field theory is analyzed.

DOI: 10.1103/PhysRevB.85.195144 PACS number(s): 75.10.Pq, 75.10.Kt, 75.40.Mg, 71.10.Hf

I. INTRODUCTION

Slave-boson mean-field theory is now accepted as a powerful tool in identifying exotic states in strongly correlated electron systems.\(^1\)-\(^3\) At half-filling, the slave boson approach reduces to a fermionic representation for the \( S = 1/2 \) spins where mean-field theories can be built and a corresponding trial ground-state wave function can be constructed through the Gutzwiller projection technique.\(^4\) The approach has generated a large variety of wave functions used to describe different resonant valence bond (RVB) states of frustrated Heisenberg systems including quantum spin-liquid states.\(^5\)-\(^6\)

In a recent paper,\(^7\) several of us have generalized the fermionic representation to \( S > 1/2 \) spin systems and have shown that a simple mean-field theory produces results that are in agreement with Haldane conjecture for the one-dimensional Heisenberg model. A natural question is how about the Gutzwiller projected wave function obtained from these mean-field states? Are they close to the corresponding real ground-state wave function? How about more complicated spin models? Here, we shall provide a partial answer to these questions by studying the Gutzwiller projected wave function obtained from the mean-field states of the \( S = 1 \) bilinear-biquadratic Heisenberg model\(^8\)-\(^10\)

\[
H = \sum_{\langle i, j \rangle} [J \mathbf{S}_i \cdot \mathbf{S}_j + K (\mathbf{S}_i \cdot \mathbf{S}_j)^2],
\]

where \( \mathbf{S}_i \) are spin operators and \( j = i + 1 \) in one dimension. In some literature, the above Hamiltonian is parameterized as \( H = \sqrt{J^2 + K^2} \sum_{\langle i, j \rangle} \cos \theta \mathbf{S}_i \cdot \mathbf{S}_j + \sin \theta (\mathbf{S}_i \cdot \mathbf{S}_j)^2 \) with \( \tan \theta = K/J \), where \( \theta \) is restricted to \(-3\pi/2 < \theta \leq \pi/2\). We shall use both notations in this paper.

The \( S = 1 \) bilinear-biquadratic Heisenberg model has attracted much interest. At \( K/J = 0 \) the Haldane conjecture predicts that the ground state of integer-spin antiferromagnetic Heisenberg model (AFHM) is disordered with gapped excitations.\(^11\) Later, it was shown by Affleck, Kennedy, Lieb, and Tasaki (AKLT) that the point \( K/J = 1/3 \) [\( \theta = \tan^{-1}(1/3) \)] is exactly solvable\(^12\) and the resulting state is a translation invariant valence-bond-solid state.\(^13\) The \( S = 1 \) AKLT state together with all states in the so-called Haldane phase are topologically nontrivial in the sense that they cannot be deformed into the trivial \( S = 0 \) trivial product state without a phase transition. People have been trying to use hidden symmetry breaking,\(^14\) or equivalently, a nonlocal string order,\(^15\) to characterize the nontrivial order in the Haldane phase. But those characterizations are not satisfactory since the Haldane phase is separated from the \( S = 0 \) trivial product state even when we break all the spin rotation symmetry, in which case there is no hidden symmetry breaking and/or nonlocal string order.\(^16\) It turns out that the nontrivial order in the Haldane phase, called symmetry-protected topological order, is described by symmetric local unitary transformation and the projective representation of the symmetry group.\(^17\)-\(^19\)

The phase diagram of one dimensional \( S = 1 \) bilinear-biquadratic model is given in Fig. 1. The region \( K < J \) is gapped and contains two phases, the the Haldane phase \((-\pi/4 < \theta < \pi/4)\) and the dimer phase \((-3\pi/4 < \theta < -\pi/4)\). The question we shall address in this paper is whether the above phase diagram can be (partially) reproduced by using simple Gutzwiller projected wave function obtained from the fermionic mean-field theory. We shall show in the following that the optimized projected mean-field wave functions are very close to the true ground states for the 1D antiferromagnetic bilinear-biquadratic model.
in the regime $K/J \leq 1$ ($-3\pi/4 < \theta \leq \pi/4$). In particular, the optimized projected mean-field state is the exact ground state at the AKLT point $K = 1/3 [\theta = \tan^{-1}(1/3)]$. The mean-field state is a pairing state of free fermions, which can be a trivial or a nontrivial topological phase, which are classified as weak and strong pairing states by their different winding numbers. The nature of the topological phase of the mean-field state is found to be important in distinguishing between Haldane and dimer phases. We find that after Gutzwiller projection the weak pairing states become the Haldane phase whereas the strong pairing states become the dimer phase. A long-ranged spin-Peierls order emerges in the strong pairing states after Gutzwiller projection although the spin-Peierls correlation is short ranged at mean-field level.

Above results can be understood from the fermionic mean-field theory in $Z_2$ gauge fluctuations are taken into account. We find that the $Z_2$ instantons behave differently in the weak pairing region and strong pairing region. Thus the Haldane phase and the dimer phase can also be distinguished by their different effective $Z_2$ gauge theories.

The paper is organized as follows: in Sec. II, we review the fermionic representation for $S = 1$ spins and introduce the mean-field theory for the bilinear-biquadratic model. The Gutzwiller projected mean-field wave function are introduced in Sec. III as trial ground-state wave function for the bilinear-biquadratic model. Using variational Monte-Carlo (VMC) technique, we find that the projected mean-field wave function after optimization are very close to the true ground states of the 1D antiferromagnetic bilinear-biquadratic model in the regime $K/J \leq 1$ ($-3\pi/4 < \theta \leq \pi/4$). We show, in particular, that the optimized projected mean-field state is the exact ground state at the AKLT point $K = 1/3 [\theta = \tan^{-1}(1/3)]$. Based on mean-field theory, we construct in Sec. IV the effective low-energy theories for the bilinear-biquadratic model. The paper is concluded in Sec. V with some general comments.

II. FERMIONIC REPRESENTATION AND MEAN-FIELD THEORY FOR SPIN $S = 1$ BILINEAR-BIQUADRATIC MODEL

The fermionic representation for $S = 1$ spins is a generalization of the fermionic representation for $S = 1/2$ spins. In this representation, three fermionic spinon operators $c_1, c_0, c_{-1}$ are introduced to represent the $S^z = 1, 0, -1$ states at each site, and the spin operator is given as $S^z = \sum_{m,n} c_m^\dagger \lambda_{mn} c_n$, where $\lambda_{mn}$ is the $3 \times 3$ matrix representation for $S^z$ angular momentum operator with $\lambda = x, y, z$ and $m, n = 1, 0, -1$. As in usual slave particle method, a particle number constraint $\hat{N}_i = \sum_{m,n} c_m^\dagger c_n = 1$ ($m = -1,0,1$) has to be imposed on each lattice site $i$ to ensure a one-to-one mapping between the spin and fermion states.

With the single occupation constraint imposed the bilinear-biquadratic Heisenberg model (1) can be written as an interacting fermion model:}

$$\hat{H} = -\sum_{\langle i,j \rangle} \left[ \hat{J}_{ij} \hat{\lambda}_{ij} + \left( J - K \right) \hat{\Delta}_{ij} \right],$$

where $\hat{J}_{ij} = \sum_{m,n} c_m^\dagger \lambda_{mn} c_n$ is the fermion hopping operator and $\hat{\Delta}_{ij} = c_{ij} c_{-ij} - c_0 c_{ij} + c_{-ij} c_{ij}$ is the spin singlet pairing operator. A mean-field theory for this interacting fermion model can be obtained by introducing the mean-field parameters $\chi_{ij} = \langle \hat{\chi}_{ij} \rangle$, $\Delta_{ij} = \langle \hat{\Delta}_{ij} \rangle$, and the time averaged Lagrangian multiplier $\lambda_i$ to decouple the model into a fermion bilinear model:

$$H_{\text{mf}} = -J \sum_{\langle i,j \rangle,m} \left[ \chi_{ij} c_{mj}^\dagger c_{mi} + \text{H.c.} \right]$$

$$+ \left( J - K \right) \sum_{\langle i,j \rangle} \left[ \Delta_{ij} \left( c_{-ij}^\dagger c_{ij}^\dagger - c_0 c_{ij}^\dagger c_{-ij}^\dagger \right) + \text{H.c.} \right]$$

$$+ \sum_{i,m} \lambda_i c_{mi}^\dagger c_{mi} + \text{const.}$$

It is interesting also to introduce the cartesian coordinate operators, $c_x = \frac{1}{\sqrt{2}}(c_{-1} - c_1)$, $c_y = \frac{1}{\sqrt{2}}(c_{-1} + c_1)$, $c_z = c_0$ (these operators annihilate the states, $|x\rangle = \frac{1}{\sqrt{2}}(|-1\rangle - |1\rangle), |y\rangle = \frac{1}{\sqrt{2}}(|-1\rangle + |1\rangle), |z\rangle = |0\rangle$, respectively). In this representation, the operators $\hat{\chi}_{ij}$ and $\hat{\Delta}_{ij}$ becomes

$$\hat{\chi}_{ij} = c_x^\dagger c_{ij} + c_y^\dagger c_{ij} + c_z^\dagger c_{ij},$$

$$\hat{\Delta}_{ij} = -c_x c_{ij} + c_y c_{ij} + c_z c_{ij},$$

and the mean-field Hamiltonian reduces to three copies of Kitaev’s Majorana chain model. This representation will be used in our later discussion.

The mean-field Hamiltonian $H_{\text{mf}}$ can be diagonalized by the standard Bogoliubov-de Gennes (B-dG) transformation. We shall consider periodic/antiperiodic boundary condition here. (The case of open-boundary condition is discussed in Appendix.) In this case, the system is translationally invariant and $\hat{\chi}_{ij} = \chi$, $\hat{\Delta}_{ij} = \Delta$, $\lambda_i = \lambda$ become site-independent. The mean-field Hamiltonian is diagonal in...
momentum space:

\[ H_{mf} = \sum_k \left[ \sum_m \chi_k \beta_m^\dagger c_{mk}^\dagger c_{mk} - \left[ \Delta_k \left( \chi_k \beta_m^\dagger \chi_{k-1}^\dagger - \frac{1}{2} c_{0k}^\dagger c_{0k}^\dagger \right) + \text{h.c.} \right] \right] + \text{const} \]

\[ = \sum_{m,k} E_k \beta_m^\dagger \beta_m + E_0, \quad (5) \]

where \( \chi_k = \lambda - 2J\chi \cos k \) and \( \Delta_k = -2i(J - K)\Delta \sin k \). \( \beta_m^\dagger \)'s are related to \( c_m^\dagger,c_m^\dagger \)'s by the Bogoliubov transformation:

\[ \beta_{1k} = u_k c_{1k} - v_k c_{-1-k}^\dagger, \]

\[ \beta_{-1-k} = v_k c_{1k} + u_k c_{-1-k}^\dagger, \]

\[ \beta_{0k} = u_k c_{0k} + v_k c_{0-k}^\dagger, \quad (6) \]

where \( u_k = \cos \frac{\phi_k}{2}, v_k = i \sin \frac{\phi_k}{2}, \tan \theta_k = \frac{i\Delta_k}{E_k} \), and \( E_k = \sqrt{\chi_k^2 + \Delta_k^2} \). The mean-field dispersion is gapped when \( \Delta \neq 0 \) except at the phase transition point \( \lambda - 2J\chi = 0 \).

The ground state of \( H_{mf} \) is the vacuum state of the Bogoliubov particles \( \beta_m^\dagger \)'s. The parameters \( \lambda \) and \( \chi \) are determined self-consistently in mean-field theory, with \( \lambda \) is determined by the averaged particle number constraint, i.e.,

\[ \chi = \langle \chi_{ii+1} \rangle, \quad \Delta = \langle \Delta_{ii+1} \rangle, \quad \langle N_i \rangle = 1, \quad (7) \]

where \( \langle \cdots \rangle \) denotes ground-state averages. We shall see later that the self-consistently determined mean-field parameters are not optimal in constructing Gutzwiller projected wave function. It is more fruitful to treat \( \chi, \Delta, \lambda \) as variational parameters in the trial Hamiltonian (3) that generates a trial mean-field ground-state wave function \( \psi_{\text{trial}} \). The Gutzwiller projected mean-field state \( P_G |\psi_{\text{trial}}\rangle \) will be used as a trial wave function for the spin model (1). The optimal mean-field parameters are determined by minimizing the energy of the projected wave function \( \langle \psi_{\text{trial}} | P_G^\dagger H P_G |\psi_{\text{trial}}\rangle / \langle \psi_{\text{trial}} | P_G^\dagger P_G |\psi_{\text{trial}}\rangle \).

It was shown in Refs. 7 and 22 that the (trial) mean-field ground state described by Eq. (5) has nontrivial winding number if the mean-field parameters satisfy the condition

\[ \Delta \neq 0, \quad -2|J\chi| < \lambda < 2|J\chi|. \quad (8) \]

An important consequence of nontrivial winding number is that topologically protected Majorana zero modes will exist at the boundaries of an open chain in mean-field theory. The mean-field states satisfying Eq. (8) are called weak pairing states. The winding number vanishes if \( \Delta \neq 0 \) and \( |\lambda| > 2|J\chi| \) and these states are called strong pairing states. We shall show later that the weak pairing states become the Haldane phase, while the strong pairing states become the dimer phase after Gutzwiller projection. In later discussion, we will mainly focus on the antiferromagnetic interaction case \( J > 0 \). To simplify notation, we shall set \( J = 1 \) in the following. The value of \( J \) will be defined again only in exceptional cases.

III. GUTZWILLER PROJECTED WAVE FUNCTION

The Gutzwiller projection for \( S = 1 \) systems is in principle the same as Gutzwiller projection for \( S = 1/2 \) systems. In the mean-field ground-state wave function, the particle number constraint is satisfied only on average and the purpose of the Gutzwiller projection is to remove all state components with occupancy \( N_i \neq 1 \) for some sites \( i \), and thus projecting the wave function into the subspace with exactly one fermion per site.

There are however a few important technical difference between spin-1/2 and spin-1 systems. First of all, \( S = 1/2 \) systems are particle-hole symmetric and the particle number constraint is invariant under particle-hole transformation. As a result, we can always set \( \lambda = 0 \) in the trial wave function. This is not the case for \( S = 1 \) models where the particle number constraint is not invariant under particle-hole transformation. Consequently, \( \lambda \neq 0 \), in general, and should be treated as a parameter determined variationally. Notice that \( \lambda \) determines the topology of the mean-field state and the corresponding Gutzwiller projected states as we shall see in the following.

The second important difference between spin-1/2 and spin-1 systems is that a singlet ground state for \( S = 1 \) systems is composed of configurations with different \( S^z \) distribution \((n_{s1}, n_{s0}, n_{s-1}) = (n_{s1}, L - 2n_{s1}, n_{s1})\), where \( n_{s} \) is the number of spins with \( S^z = m \) in a spin configuration and \( L \) is the number of sites in the spin chain. It is clear that \( n_{s1} \) can take any value between 0 and \( |L/2| \) where \( L/2 = L/2 \) if \( L \) is even and \( L/2 = (L - 1)/2 \) if \( L \) is odd. On the contrary \( n_{s1}/2 = n_{-s1}/2 = L/2 \) is fixed for spin-1/2 systems. As a result, \( S \) is always even for spin-1/2 singlet states, but can be even or odd for spin-1 singlet states. For even \( L, n_{s0} \) is even and the Gutzwiller projected wave function is a straightforward projection of the mean-field ground state, which is a paired BCS state. For odd \( L, n_{s0} \) is odd. This means there is one \( S^z = 0 \) fermion mode \( \langle c_{0} \rangle \) remaining unpaired in the ground state. The projection is similar to the even \( L \) case except that we have to keep in mind the occupied free fermion mode. The situation for open spin chains is further complicated by the existence of Majorana end modes, which is discussed in Appendix.

The above condition results in a natural choice of boundary condition in constructing the Gutzwiller projected wave function. To see this, we first note that the values of allowed fermion momentum \( k \) in periodic and antiperiodic boundary conditions are different. They are given by \( k = \frac{\pi 2M}{L} \left( \frac{2M + 1}{2} \right) \) under periodic (antiperiodic) boundary conditions, where \( M \) takes values \( M = [-\frac{L-1}{2}, -\frac{L-3}{2}, \ldots, \frac{L-1}{2}] \). The energy spectrum \( E_k \) is doubly degenerate except at the points \( k = 0 \), which exists only under periodic boundary condition (for both even or odd \( L \)), and \( k = \pi \), which exists under periodic boundary condition for even \( L \) and under antiperiodic boundary condition for odd \( L \). Notice that at these two points, \( \Delta_k = -2i\Delta \sin k \) vanishes and they are natural candidates for constructing a singly occupied fermion state. All other momentum \( k \)'s are paired at the ground state. The energies at these two points are given by \( E_{0,\pi} = \lambda - (\mp)2\chi \). Notice that \( E_0 < 0 \) and \( E_\pi > 0 \) in the weak pairing phase (we choose a gauge where \( \chi > 0 \)) whereas both \( E_{0,\pi} > 0 \) in the strong pairing phase.

We now consider the weak pairing phase. In this case, a lowest-energy state is formed for chains with odd \( L \) when the \( k = 0 \) state is occupied, i.e., periodic boundary condition is preferred. On the other hand, for chains with even \( L \) an antiperiodic boundary condition is preferred so that the \( k = 0 \) state is not available and a paired BCS state is naturally formed.
Next, we consider the strong pairing phase. Suppose \( L \) is even. Under antiperiodic boundary condition, all the fermions are paired in the ground state. Under periodic boundary condition, since \( E_{0,1} > 0 \), the unpaired fermion modes at \( k = 0 \) and \( k = \pi \) are unoccupied. The remaining fermions are paired. Both of the two boundary conditions are allowed. When \( L \) is odd, the ground state is not a spin singlet and behaves differently.\(^{24}\) In later discussion about the strong pairing phase, we will mainly consider the case where \( L \) is even.

The above result suggests that the weak-pairing ground state is unique, whereas the strong-pairing ground state is doubly degenerate. To see this, we note that for a closed chain, the existence or absence of \( \pi \) flux through the ring (which corresponds to the antiperiodic boundary condition or the periodic boundary condition for fermions, respectively) usually result in two degenerate time-reversal invariant fermion states. However, as shown above, for a chain with fixed \( L \), we cannot choose boundary condition freely for the Gutzwiller projected state in the weak-coupling phase, whereas both boundary conditions are available in the strong-coupling phase.

In the following, we shall report our numerical results for the antiferromagnetic bilinear-biquadratic Heisenberg model in the parameter range \( K < J \) \((-3\pi/4 < \theta < \pi/4)\). As in \( S = 1/2 \) case, the optimization of energy of the projected wave function is carried out using a variational Monte Carlo method (VMC). We set the length of the chain to be \( L = 100 \), and has taken \( 10^6 \) MC steps in our numerical work. We note that because of the difference between \( S = 1/2 \) and \( S = 1 \) systems as discussed above, the VMC for spin-1/2 Gutzwiller projection procedure has to be modified for \( S = 1 \) models. We shall not go into these technical details in this paper. We shall first report in Sec. III A our overall numerical results and phase diagram which are in good agreements with known results as long as the ground state is a spin singlet. Our Gutzwiller projected wave function provides a good description of the system even around the critical point \( K = -1 \) \((\theta = -\pi/4)\) between the Haldane and dimer phases. In Sec. III B, we illustrate analytically that a projected BCS state becomes the exact ground state of the model at the AKLT point \( K = 1/3 \) \([\theta = \tan^{-1}(1/3)]\).

### A. Overall results and phase diagram

Our numerical results of Gutzwiller projection for the bilinear-biquadratic Heisenberg model is summarized in Table I. The ground-state energy computed from the (optimized) Gutzwiller projected wave function is compared with the exact result or results obtained from the “infinite time-evolving block decimation” algorithm.\(^{25}\) Here, the unit of energy is set as \(|J|\), except at the point \((J,K) = (0,-1), (\theta = -\pi/2)\) where the energy is measured by \(|K|\).

From Table I, we see that agreement in energy is better than 0.8% in the range \( J = 1, -\infty \leq K \leq 1 \) \((-\pi/2 \leq \theta \leq \pi/4)\).\(^{26}\) The optimized parameters given in the table suggests that the system is in the weak pairing phase when \(-1 < K < 1 \((-\pi/4 < \theta < \pi/4)\) and is the strong pairing phase otherwise. The critical point at \( K \sim 1\) \((\theta = -\pi/4)\) will be studied more carefully in the following. To understand the nature of the weak- and strong-pairing phases, we first study the spin-spin or dimer-dimer correlation functions at \( K = 0 \) and \(-2\).

At \( K = 0 \), the self-consistent mean-field solution gives \( \chi = 0.5671, \Delta/\chi = 1.3447, \lambda/\chi = 1.3594 \). The energy of corresponding Gutzwiller projected wave function is \( E_{\chi} = -1.3984 \pm 0.0004 \) per site, which is already quite close to the known ground-state energy \( E_{\chi} = -1.4015 \)\(^{27,28}\) with a difference \(-0.2\%\). The correlation length determined from a fitting to the spin-spin correlation function is roughly 3.25 units of lattice constant, which is smaller than the value 6.03 given in literature\(^{27-29}\).

Our result can be further improved by optimizing the parameters \( \chi, \Delta, \lambda \). The optimal parameters we obtain are \( \chi = 1, \Delta = 0.9767, \lambda = 1.7810 \) (here, we normalize \( \chi = 1 \) because the wave function before the projection is only dependent on \( \Delta/\chi \) and \( \lambda/\chi \)). The energy of the projected state is \( E_{\chi} = -1.4001 \pm 0.0004 \) which is further improved by 0.1%. The spin-spin correlation function is plotted in Fig. 2. The correlation \( \langle S_i^z S_j^z \rangle \) matches very well with \( \langle S_i^z S_j^{-z} \rangle \), indicating the rotational invariance of the projected wave function. The correlation length determined from the optimized wave function is 5.92 lattice constants, which is very close to the accepted value 6.03.

### Table I. Comparison of the energies obtained from VMC (with \( L = 100 \)) and those from other methods. All of the points studied in this table are marked in the phase diagram in Fig. 1. The points \((1,1)_{ULS}, (1,\frac{1}{2})_{AKLT}, (1,-1)_{TH}, (0,-1)_{SU(3)}\) are exactly solvable. The comparison energy of the rest points are obtained with the “infinite time-evolving block decimation” algorithm.\(^{25}\) In the last line we list the optimal variational parameters \((\chi, \Delta, \lambda)\) obtained by VMC.

<table>
<thead>
<tr>
<th>((J,K))</th>
<th>((1,1)_{ULS})</th>
<th>((1,\frac{1}{2})_{AKLT})</th>
<th>((1,1)_{Heisenberg})</th>
<th>((1,-1)_{TH})</th>
<th>((1,-2))</th>
<th>((1,-3))</th>
<th>((0,-1)_{SU(3)})</th>
<th>((-1,-3))</th>
<th>((-1,-2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>comparison</td>
<td>(0.2971^a)</td>
<td>(-\frac{1}{7})</td>
<td>(-1.4015^b)</td>
<td>(-4^c)</td>
<td>(-6.7531)</td>
<td>(-9.5330)</td>
<td>(-2.7969^d)</td>
<td>(-7.3518)</td>
<td>(-4.5939)</td>
</tr>
<tr>
<td>VMC</td>
<td>(0.2997^e)</td>
<td>(\pm0.0004)</td>
<td>(\pm7 \times 10^{-15})</td>
<td>(\pm0.0004)</td>
<td>(\pm0.0002)</td>
<td>(\pm0.0023)</td>
<td>(\pm0.0034)</td>
<td>(\pm0.0005)</td>
<td>(\pm0.0038)</td>
</tr>
<tr>
<td>((\chi, \Delta, \lambda))</td>
<td>((1,1))</td>
<td>((1,\frac{1}{2},0))</td>
<td>((1,0.98,1.78))</td>
<td>((1,1.11,2.00))</td>
<td>((1.115,2.07))</td>
<td>((1.179,2.22))</td>
<td>((0,1.0,14))</td>
<td>((0,1.0,21))</td>
<td>((0,1.0,12))</td>
</tr>
</tbody>
</table>

\(^a\)Reference 38.
\(^b\)Reference 12.
\(^c\)Reference 27.
\(^d\)Reference 30.
\(^e\)Reference 30.
\(^f\)Due to the \(SU(3)\) symmetry, the particle number of \(c_x, c_y, c_z\) should be equal. To this end, we have set \(L = 99\).
\(^g\)Reference 41.

\(^e\)The unit of the energy is \(|K|\), which is normalized to 1.
A trademark for the Haldane phase is the existence of spin-1/2 end states. Indeed, end Majorana fermion states are observed to exist in the weak-pairing phase of the fermionic mean-field theory. The question is whether these Majorana end states become spin-1/2 end states after Gutzwiller projection. This question is discussed in Appendix where we show how the Majorana fermion end states turn into spin-1/2 end states after Gutzwiller projection.

Next, we consider $K = -2$. In this case, the mean-field solution has $\chi = 0$, $\Delta = 0.9203$, $\lambda = 0.9110$, and the energy of the projected mean-field state is $E_g = -6.6691 \pm 0.0023$. The energy can be lowered by optimizing the mean-field parameters. The optimal parameters found from the VMC are $\chi = 1$, $\Delta = 1.1532$, $\lambda = 2.0661$ with energy $E_g = -6.7372 \pm 0.0023$. The Gutzwiller projected wave function is obviously translationally invariant and does not explicitly break the translation symmetry. To see that the state described a dimer state, we compute the spin-Peierls correlation function. The result is shown in Fig. 3. We note that the spin-Peierls correlation is clearly short-ranged in the Heisenberg model($K = 0$) but is long-ranged in the $K = -2$ model. The “weak-pairing/Haldane” and “strong pairing/dimer” mapping is in agreement with the ground-state degeneracy we deduced in last section. It is remarkable that in the strong pairing phase the spin-Peierls correlation becomes long-ranged only after the Gutzwiller projection and is short-ranged before projection.

Now, we examine the phase transition point between the Haldane phase and the dimer phase. Figure 4 shows the spin-Peierls correlation at distance $L/2$ as a function of $K$ for the projected optimal trial wave function near the phase transition point. Within numerical error, our results show that $\lambda - 2\chi = 0$ and the spin-Peierls correlation vanishes at the point $K \approx -1$. The spontaneous breaking of translation symmetry indicates that the transition is of second order, consistent with exact solution at the Takhtajan-Babujian (TB) point $K = -1$. We would like to point out that the transition point determined by the self-consistent mean-field theory is $K = -0.33$, which is far away from the exact result.

B. AKLT point: the projected wave function as exact ground state

The validity of the Gutzwiller projected wave function approach for $S = 1$ spin chains is further supported by an
exact result at the AKLT point\textsuperscript{12} ($K = 1/3$), where we find that the AKLT state can be exactly represented as a Gutzwiller projected BCS wave function with parameters $\chi = 1, \Delta = 3/2, \lambda = 0$.

It is convenient to adopt the cartesian coordinate in the discussion. Firstly, we consider the closed boundary condition. Since there are three flavors $\{x, y, z\}$, we may concentrate on a single flavor $H_a$ and define $c_{\alpha i} = \frac{1}{\sqrt{2}}(Y_{\alpha i}^{\dagger} + Y_{\alpha i})$, where $Y_{\alpha i}$ and $Y_{\alpha i}^{\dagger}$ are Majorana operators satisfying $(Y_{\alpha i}^{\dagger})^{a} = \delta_{ab}\delta_{q} Y_{\alpha i}$ where $a, b = l, r$ and $\alpha, \beta = x, y, z$. Setting $\chi = (1 - K)\Delta = 1$, $\lambda = 0$, and adopting close boundary condition $\chi_{11} = (1 - K)\Delta_{11} = (-1)^{\eta} (\eta = 0$ for periodic boundary condition and $\eta = 1$ for antiperiodic boundary condition), the mean-field Hamiltonian $H_a$ can be mapped into Kitaev’s Majorana chain,\textsuperscript{22}

$$H_a = (-1)^{\eta}(2iY_{l1}^{\dagger}Y_{r1}^l) + \sum_{i=1}^{L-1}(2iY_{l1}^{\dagger}Y_{r2}^i),$$

where we have dropped an unimportant constant. Notice that every term in Eq. (9) has eigenvalues $\pm 1$ and is commuting with all other terms. Defining the fermion parity\textsuperscript{22}

$$P_a = e^{i\pi \sum \eta_{\alpha i}} = \prod_{i}(1 - 2c_{\alpha i}^{\dagger}c_{\alpha i}) = \prod_{i}(2iY_{l1}^{\dagger}Y_{r1}^i),$$

it is easy to see that the fermion parity of the ground state of the mean-field Hamiltonian is given by

$$P_a = -2iY_{l1}^{\dagger}Y_{r2}^1 \prod_{i}(2iY_{l1}^{\dagger}Y_{r2}^i) = (-1)^{\eta+1}$$

and is even(odd) under antiperiodic (periodic) boundary condition. The total Fermi parity is the product of the three flavors $P_{\text{ferm}} = P_1 P_2 P_3 = (P_1)^3 = P_1$. Notice that the periodic boundary condition is ruled out by the particle number constraint for even $L$. This is a general property of the BCS Hamiltonian in weak-coupling phase as we have discussed before.

Since all terms in Eq. (9) are commuting, the ground state of one term in the Hamiltonian (9) provides a supporting Hilbert space for the reduced density matrix constructed for the whole ground state. The ground state of $H_a$ for two neighboring sites $i$ and $i + 1$ is two-fold degenerate:

$$|\phi_{a1}\rangle = (c_{\alpha i}^{\dagger} + c_{\alpha i+1}^{\dagger})|\text{vac}\rangle,$$

$$|\phi_{a2}\rangle = (1 + c_{\alpha i}^{\dagger}c_{\alpha i+1}^{\dagger})|\text{vac}\rangle.$$

Since there are three flavors $\alpha = x, y, z$, the ground state of the two sites is a product state $|\phi\rangle = |\phi_{a1}\rangle|\phi_{a2}\rangle$ and are eightfold degenerate. It is easy to see by direct computation that the Gutzwiller projection kills half of these states, and the surviving four states are

$$(c_{x i}^{\dagger}c_{x i+1}^{\dagger} + c_{x i}^{\dagger}c_{y i+1}^{\dagger} + c_{x i}^{\dagger}c_{z i+1}^{\dagger})|\text{vac}\rangle,$$

$$(c_{x i}^{\dagger}c_{y i+1}^{\dagger} - c_{x i}^{\dagger}c_{y i+1}^{\dagger})|\text{vac}\rangle,$$

$$(c_{x i}^{\dagger}c_{y i+1}^{\dagger} - c_{z i}^{\dagger}c_{z i+1}^{\dagger})|\text{vac}\rangle,$$

$$(c_{x i}^{\dagger}c_{z i}^{\dagger} - c_{z i}^{\dagger}c_{z i}^{\dagger})|\text{vac}\rangle.$$

The first one is a spin singlet, and the remaining three form a $(S = 1)$ triplet. The absence of spin-2 states for every two neighboring sites is a fingerprint of the spin-1 AKLT state.\textsuperscript{12} Thus we prove that the Gutzwiller projected trial state with $\chi = 1, \Delta = 3/2, \lambda = 0$ is equivalent to the spin-1 AKLT state.

We note that the above proof can be extended straightforwardly to the SO($n$) symmetric AKLT models.\textsuperscript{31} When $n$ is odd, the $n$ Majorana fermions at the edge form the irreducible spinor representation of SO($n$) group. So, after Gutzwiller projection, the ground state of $n$ copies of Kitaev’s Majorana chain model exactly describes the ground state of the SO($n$)-AKLT model. When $n$ is even, the ground state is dimerized since the spinor representation of SO($n$) is reducible. The equivalence between the ground state of the SO($n$)-AKLT model and the projected ground states of $n$ copies of Kitaev’s Majorana chain remains valid.\textsuperscript{32,33} In that case, the $n$ Majorana fermions at the edge form a direct sum of two versions of irreducible SO($n$) spinor representations.

IV. EFFECTIVE LOW-ENERGY THEORY

The success of the Gutzwiller projected wave function in describing the ground-state properties of the Haldane and dimer phases suggests that the low-energy properties of these phases may be well described by effective field theories constructed from the corresponding mean-field states. We provide two approaches in this section. The first one is a $Z_2$ gauge field description by integrating out the fermions, and the other one is an effective (Majorana) fermionic field theory.

The mean-field theory provides a correct description of the low-energy properties of the Haldane and dimer phases when $Z_2$ gauge fluctuations or $Z_2$ instantons are taken into account. Since the mean-field state is a fermion paired state with finite gap, the resulting low-energy effective theory is $Z_2$ gauge theory. Usually, the $Z_2$ gauge theory in $(1 + 1)$D is always confined since the $Z_2$ instantons [i.e., the $Z_2$ vortices in $(1 + 1)$D discrete space time] have a finite action. However, the low-energy effective $Z_2$ gauge theory obtained from our models has different dynamical properties.

In the weak pairing phase, a $Z_2$ instanton gives rise to a fermionic zero mode.\textsuperscript{24} As a result, the action of separating two instantons is proportional to $-t/\xi$, where $t$ is the time-distance between the instantons and $1/\xi$ is the excitation gap.\textsuperscript{24} This means that the $Z_2$ instantons are confined and consequently the $Z_2$ gauge theory is deconfined (this situation still holds if the Hamiltonian contains a dimerized interaction). The $Z_2$ vortex changes the fermion parity of the mean-field ground state. Owing to the particle number constraint, a permitted instanton operator should be a composition of a $Z_2$ vortex and a spinon operator. Thus, an instanton carries $\pi$ momentum and spin 1. An example of such instanton operator is given as

$$\tilde{\phi} = \sum_{i}(-1)^i S_i = S_{\pi}.$$  

Above instanton operator creates a magnon with momentum $\pi$.

In the strong pairing phase, due to the absence of fermion zero modes, the $Z_2$ vortices in $(1 + 1)$D space time have a finite action and consequently have a finite density. However, since the $Z_2$ instanton carry $\pi$ crystal momentum, there will
be an extra phase factor \((-1)^z\) associated with it. When sum over the contribution of instantons at all spacial positions, the phase factors will cause cancellation. Consequently, the effect of instantons is suppressed, and the \(Z_2\) gauge theory is still deconfined. On the other hand, if the Hamiltonian has a translation symmetry breaking term (such as a dimmerized interaction), then the action of the instantons will not be canceled and will define the \(Z_2\) gauge filed. (This is a remarkable difference between the strong pairing phase and the weak pairing phase.) Since a \(Z_2\) instanton carries \(\pi\) momentum and zero spin, we can give an example of such an operator:

\[
\phi = \sum_i S_i \cdot S_{i+1} (-1)^{i+1} + \sum_k S_k \cdot S_{\pi-k} e^{ik}.
\]

The finite action of the instantons indicates that the ground state is degenerate and has a finite spin-Peierls order.

At the transition point, the mean-field dispersion is gapless at \(k = 0\) due to \(\lambda - 2\chi = 0\), and the low-energy excitations are consist of three species of Majorana fermions with energy \(E_k = 2(1 - K)\Delta|k|\). Notice that three Majorana fermions form a spin-1/2 object. Consequently, after Gutzwiller projection, the elementary excitations carry spin 1/2. Notice that the number of excited Majorana fermions must be even in a physical state, so the spin-1/2 excitation must appear in pairs. This physical picture arising from mean-field theory agrees well (in long-wavelength limit) with result coming from the Bethe ansatz solution of the TB model.

Since the effective \(Z_2\) gauge fields are deconfined in both the Haldane and the dimer phases of model (1), it will be a good approximation to ignore the gauge field and consider the fermion theory only. Tsvelik proposed an effective Majorana field theory to describe the low-energy physics close to the TB regime. This physical picture arising from mean-field theory agrees well (in long-wavelength limit) with result coming from the Bethe ansatz solution of the TB model.

The Hamiltonian becomes a free-fermion model. Moreover, \(\lambda = \chi\) since the fermion bands are \(1/3\) filled with fermi points at \(k = \pm \pi/3\). In this case, the variational wave function \(|\Psi_{HS}\rangle = \langle\chi,0,\chi\rangle_{mf}\) is an \(SU(3)\) singlet and is the exact ground state of the \(SU(3)\) Haldane-Shastry model with inverse-square interactions. Since the effective-field theory of the \(SU(3)\) Haldane-Shastry chain is just an unperturbed version of the \(SU(3)\) WZNW model, which shares similar low-energy physics with the ULS model, we expect that the Gutzwiller projected fermi sea state is a good variational wave function for the \(K = 1\) \((\theta = \pi/4)\) antiferromagnetic bilinear biquadratic model.

Lastly, we consider the \(J < 0\) \((-3\pi/2 < \theta < -\pi/2)\) regime. There are two phases. The ferromagnetic phase is located at \(J < K < \infty\) \((-3\pi/2 < \theta < -3\pi/4)\). This phase is again beyond our present mean-field theory, which is designed to describe spin-singlet states. The remaining part \(K < J < 0\) \((-3\pi/4 < \theta < -\pi/2)\) also belongs to the dimer phase and is described by the projected BCS state in strong-pairing regime. The difference between this dimer phase and the dimer phase at \(J > 0\) \((-\pi/2 < \theta < \pi/4)\) is that the hopping term in Eq. (2) becomes irrelevant and \(\chi\) vanishes when \(J < 0\) \((-3\pi/4 < \theta < -\pi/2)\), see Table I for three examples.

To conclude, we introduce in this paper Gutzwiller projection for the mean-field states obtained from a fermionic mean-field theory for \(S = 1\) systems. The method is applied to study the one-dimensional bilinear-biquadratic Heisenberg model. We find that the topology of the mean-field state determines the character of the Gutzwiller projected wave function. The projected weak pairing states belong to the Haldane phase, while the projected strong pairing states belong to the dimer phase. This result is consistent with the \(Z_2\) gauge theory above the (trial) mean-field ground state. Our theory agrees well with the Majorana effective-field theory at the TB critical point and the method can be generalized to higher dimensions or other spin models. After the submission of this paper, we were reminded of some interesting works...
modes exponentially approaches to zero with increasing zero modes manifest themselves. The energy of these two Majorana modes correspond to each flavor for an open chain. Due to particle-hole symmetry, the 200 with known results.27,28,40 In this appendix, we show how the zero modes may form spin-1 

ACKNOWLEDGMENTS

We thank Tao Li, Ying Ran, Su-Peng Kou, Yong-Shi Wu, Zheng-Yu Weng, Hui Zhai, Xie Chen, and Meng Cheng for helpful discussion. We especially thank Liang Fu and Yang Qi for very helpful discussion about the dimer phase. This work is supported by HKRGC through Grant No. CRF09/HKUST3. Y.Z. is supported by National Basic Research Program of China (973 Program, No. 2011CBA00103), NSFC (No. 11074218), and the Fundamental Research Funds for the Central Universities in China.

APPENDIX: END STATES IN OPEN HEISENBERG CHAINS

It was shown in Ref. 7 that the mean-field ground state in the fermionic mean-field theory for \( S = 1 \) Heisenberg model is topologically nontrivial. As a result, each of the three flavors of fermions \( c_x, c_y, c_z \) have one Majorana zero mode located at each end of an open chain with wave function exponentially decay away from the chain end. (We adopt the cartesian coordinate here.) It was shown in Ref. 35 that three Majorana fermions together may represent a spin-1/2 object via \( S^a = \frac{1}{2} \epsilon^{a\beta\gamma} \gamma^\beta \gamma^\gamma \), where \( \alpha, \beta, \delta = x, y, z \) and \( \gamma^a \) is a Majorana fermion operator corresponding to the flavor \( c_a \) (see also Sec. III B). This suggests that the mean-field Majorana zero modes may form spin-1/2 states at each end, in agreement with known results.27,28,40 In this appendix, we show how the Majorana zero modes become the spin-1/2 edge states after Gutzwiller projection. First, we demonstrate numerically the existence of Majorana end modes in mean-field theory for open spin chain.

The existence of Majorana fermion edge mode in mean-field theory can be seen from the mean-field dispersion \( E_i \) for open chains (see Fig. 5), where the existence of two zero-energy modes (for each favor) are clear. These two Majorana modes, noted as \( \gamma'^a \) and \( \gamma''^a \) can be combined into a zero-energy complex fermion mode \( c^\text{end}_a = \gamma'^a + i \gamma''^a \), which can either be occupied or unoccupied. Correspondingly, the fermion number of the flavor \( c_a \) fermion can be either even or odd (fermion parity) in the ground state.22 We note that strictly speaking, under open boundary condition, the mean-field parameters \( \lambda_{ij}, \Delta_{ij} \), and \( \lambda_i \) vary from site to site and should be determined self-consistently.40 We assume for simplicity that they take uniform values determined by closed spin chain.

For the three flavors of fermions, there are a total of six Majorana zero modes, resulting in eightfold degenerate mean-field ground states. Half of these states have odd total number of fermions and half have even. For chains with fixed length \( L \), only half of them survives for the same reason as discussed in Sec. III.

The remaining four states have different fermion parity distributions \( (P_x, P_y, P_z) \). One of them is (even, even, even). In this case, the three flavors have equal weight in the projected state, corresponding to a spin singlet. The other three are (even, odd, odd), (odd, even, odd), or (odd, odd, even). These three states form a spin-triplet because they can be transformed from one to another by a global spin rotation.

FIG. 6. (Color online) Projected singlet ground state. The spin-spin correlation function of \( \langle S^z_{i,N} S^z_{L−N+1−j} \rangle \approx −1/4 \) when \( N \geq 15 \) shows that the edge states carry spin-1/2.

FIG. 7. (Color online) Projected spin-triplet ground state with fermion parity distribution \( (N_x, N_y, N_z) = (\text{odd}, \text{odd}, \text{even}) \). The spin-spin correlation function of \( \langle S^z_{i,N} S^z_{L−N+1−j} \rangle \approx −1/4 \) when \( N \geq 15 \) shows that the edge states carry spin 1/2.

FIG. 5. (Color online) The mean-field excitation spectrum \( E_i \) of each flavor for an open chain. Due to particle-hole symmetry, the 200 modes correspond to \( L = 100 \) fermion modes. The two Majorana zero modes manifest themselves. The energy of these two Majorana modes exponentially approaches to zero with increasing \( L \).
These four states remain degenerate (in the $L \to \infty$ limit) after Gutzwiller projection, suggesting that the Majorana fermion states become stable $S = 1/2$ end spin states after projection.

To confirm the above picture we calculate the correlation function $\langle S^z_{i-N} S^z_{L-N+1} \rangle$, where $S^z_{i-N} = \sum_{i=1}^{N} S^z_i$ and $S^z_{L-N+1} = \sum_{i=1}^{N} S^z_{L-i}$ measures the total spin $S^z$ accommodated from sites $i = 1$ to $N$ and from $i = L - N + 1$ to $L$, respectively. Note that $\langle S^z_{i-N} \rangle \approx 0$ and $\langle S^z_{L-N+1} \rangle \approx 0$. We first compute $\langle S^z_{i-N} S^z_{L-N+1} \rangle$ in the singlet state (even, even, even). The result is shown in Fig. 6 where we find that the correlation function approaches $-1/4$ when $N \geq 15$, indicating that the magnitude of effective end spins ($S^z_{i-N}$ and $S^z_{L-N+1}$) is exactly $1/2$.

The same analysis can also be applied to the triplet states. We consider in Fig. 7 the correlation $\langle S^z_{i-N} S^z_{L-N+1} \rangle$ in the (odd, odd, even) state. It is clear that $\langle S^z_{i-N} S^z_{L-N+1} \rangle \approx -1/4$ when $N \geq 15$, confirming the existence of spin-1/2 effective end spin in the weak-pairing phase.