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In free fermion systems with given symmetry and dimension, the possible topological phases are labeled

by elements of only three types of Abelian groups, 0,Z2, orZ. For example, noninteracting one-dimensional

fermionic superconducting phaseswithSz spin rotation and time-reversal symmetries are classified byZ.We

show that with weak interactions, this classification reduces to Z4. Using group cohomology, one can

additionally show that there are only four distinct phases for such one-dimensional superconductors

even with strong interactions. Comparing their projective representations, we find that all these four

symmetry-protected topological phases can be realized with free fermions. Further, we show that

one-dimensional fermionic superconducting phases with Zn discrete Sz spin rotation and time-reversal

symmetries are classified by Z4 when n is even and Z2 when n is odd; again, all these strongly interacting

topological phases can be realized by noninteracting fermions. Our approach can be applied to systemswith

other symmetries to see which one-dimensional topological phases can be realized with free fermions.

DOI: 10.1103/PhysRevLett.109.096403 PACS numbers: 71.10.Fd, 74.25.Dw, 74.78.Na

Symmetry-protected topological (SPT) phases [1,2] are
short-range entangled states with symmetry-protected gap-
less edge excitations [3–8]. The Haldane phase on a spin-1
chain [9,10] and two- or three-dimensional topological
insulators [11–16] are examples of SPT states. Using K
theory or topological terms, all free fermion SPT phases
can be classified [17,18] for all 10 Altland-Zirnbauer sym-
metry classes [19] of single-body Hamiltonians. It turns
out that different free fermion SPT phases are described by
only three types of Abelian groups, 0, Z2, or Z.

With interactions the classification is more varied; how-
ever, we must first describe the symmetry differently.
Instead of specifying the symmetry of single-body
Hamiltonians, we treat the free fermion systems as
many-body systems and specify the many-body symmetry
of their many-body Hamiltonians. Only in this case can
we accurately add interaction terms to the many-body
Hamiltonians that preserve the many-body symmetry and
study their effect on the SPT phases of free fermions. A
classification of various free fermion gapped phases, given
their many-body symmetry, can be found in Ref. [20].

Fidkowski and Kitaev (also Turner, Pollmann, and Berg)
studied the interaction effects in one case: In their one-
dimensional time-reversal (TR) invariant topological
superconductors [21–23], the Z classification in the free
case breaks down to Z8 with interactions that preserve TR
symmetry. Here, we present another model beginning with
a lattice Hamiltonian for a one-dimensional superconduc-
tor with both TR and Sz spin-rotation symmetries,
described by the Z classification in the free case. With
the addition of weak interactions that preserve these sym-
metries, the classification reduces to Z4 (see Table I). Our
interaction results are obtained by assuming that edge
degeneracy fully distinguishes each gapped phase; e.g.,

all states without edge degeneracy belong to the same
trivial phase.
We compare these four fermionic phases to the four

phases predicted separately from group cohomology
[4,5,24] (a method valid for strong interactions). We find
that each fermionic phase has a distinct projective repre-
sentation [3,4], and since the group cohomology also gives
rise to four, and only four distinct phases [7], we conclude
that free fermions can realize all strongly interacting SPT
phases in this case. We further study interaction effects on
a one-dimensional superconductor with Zn discrete Sz spin
rotations and TR symmetries. For this symmetry group, we
find that the SPT phases are classified by Z4 when n is even
and Z2 when n is odd. Again, these results are separately
obtained both from perturbing our fermionic lattice
Hamiltonian and from the group cohomology classification
for strong interactions—again showing that all strongly
interacting topological phases can be realized by noninter-
acting fermions.
Free fermion lattice model.—We write a one-

dimensional Hamiltonian with one trivial and two non-
trivial phases,

H ¼ �t
X
hiji�

cyi�cj� � 2�s

X
j

cyj"c
y
j# þ H:c:

� i�p=2
X
j

cyjþ1"c
y
j# þ cjþ1#cj" þ H:c: (1)

where the first term is typical nearest-neighbor hopping,
the second term �s represents on-site pairing, and the last
term with �p pairs electrons on adjacent sites.

This Hamiltonian satisfies time-reversal T and Sz
spin-rotation symmetries specified on cTi� ¼ fĉi"; ĉi#g as
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T̂ci�T̂
�1 ¼ i�yci�;

ei�Ŝzci�e
�i�Ŝz ¼ e�i�=2

ei�=2

 !
ci�

so that T̂HT̂�1 ¼ H and ei�ŜzHe�i�Ŝz ¼ H. As the band
gap closes to leave just the hopping component when
�s ¼ ��p, we obtain the phase diagram in Fig. 1.

We start by identifying the trivial phase N ¼ 0. When
j�sj> j�pj, we can arbitrarily increase the strength of �s

without closing the gap. In the limit of �s � t; �p, we can

neglect the hopping and p-wave pairing terms so the
Hamiltonian reduces to on-site pairing—any cut separates
the system into two parts leaving no boundary states (see
Fig. 1); this is the trivial N ¼ 0 phase. Next, we look for
ground-state degeneracy at the interface between this
phase and its neighbors. This is most conveniently done
in a low-energy continuum model, where the effective
Hamiltonian becomes

H ¼ �i
Z

dx ~�y
�
ð�z � IÞ@x þ m

�mT

� ��
~�

in a basis of right and left-moving fermion operators ~�T ¼
ðc R"; ic

y
R#; ic

y
L#; c L"Þ close to the Fermi surface. Here,

m ¼ �pI��s�z.

Smoothly varying our mass term mðxÞ across an inter-
face, we set �pðxÞ ¼ 1

2 ð1þ tanhxÞ and �sðxÞ ¼
1
2 ð1� tanhxÞ. This has the zero-energy solution

ĉ 0þ ¼
Z

dxsechðxÞðĉ R" þ iĉ y
L#Þ (2)

This complex fermion operator (ĉ 0þ � ĉ y
0þ) with energy

E ¼ 0 contains a double degeneracy (empty or filled) that
allows labelling of �p > j�sj as the nontrivial N ¼ 1

phase. This mode transforms under symmetry as

T̂
ĉ 0þ
ĉ y

0þ

 !
T̂�1 ¼ ��y

ĉ 0þ
ĉ y

0þ

 !
;

ei�Ŝz ĉ 0þe�i�Ŝz ¼ e�i�=2 ĉ 0þ

(3)

Since the two degenerate states differ by Sz ¼ 1=2 and are
related by time-reversal, they carry the quantum numbers
Sz ¼ �1=4.
Using the symmetry relations in Eq. (3), we check if any

perturbations in the Hamiltonian can shift the energy of

this mode. We find that the density terms �H ¼ cĉ y
0þ ĉ 0þ

are forbidden by TR; hence, our ground state degeneracy is
protected by system symmetries—this N ¼ 1 phase is
stable against perturbations.
To find the N¼�1 phase, we change�pðxÞ ! ��pðxÞ,

and upon repeating our procedure, we find a different zero
mode solution, which we label as

ĉ 0� ¼
Z

dxsechðxÞðiĉ y
R# � ĉ L"Þ (4)

which transforms as

T̂
ĉ 0�
ĉ y

0�

 !
T̂�1 ¼ �y

ĉ 0�
ĉ y

0�

 !
;

ei�Ŝz ĉ 0�e�i�Ŝz ¼ e�i�=2 ĉ 0�

(5)

This state has stable ground state degeneracy, as �H ¼
cĉ y

0� ĉ 0� is also forbidden by TR, indicating�p < j�sj is
a nontrivial phase as well.
Let us see if it is meaningful to label this second non-

trivial phase N ¼ �1. We examine what happens upon
stacking the two chains with nontrivial phases, the first
with �p > j�sj and the second with �p < j�sj. (The first
chain would have the zero mode ĉ 0þ and the second ĉ 0�.)
We find that the coupling �H ¼ cĉ y

0þ ĉ 0� þ H:c: is al-

lowed within system symmetries, making the ground state
nondegenerate. So two chains with two distinct zero modes
(labelled þ and �) combine to become trivial, indicating
that the two phases should be labelled with opposite

indices. Naturally, the phase with ĉ 0� would then be the
N ¼ �1 phase, so this model indeed gives three
symmetry-protected phases N ¼ �1, 0, and þ1.
While two chains containing zero modes with opposite

indices become trivial, we further consider the stability of

FIG. 1 (color online). Phase diagram when varying the pa-
rameters �s and �p: The phase boundaries are �s ¼ ��p,

which separate three phases denoted by N ¼ þ1, 0, and �1.
We can make �s arbitrarily large without closing the gap: this
limit describes on-site pairing where any cut cleanly separates
the system into two without leaving edge states—allowing
identification of this trivial N ¼ 0 phase.

TABLE I. Symmetry groups described by the one-dimensional
Hamiltonian in Eq. (1) (where ZT

2 is time-reversal), showing

their free fermion classification and how they reduce with
interactions. The latter remains true with strong interactions,
so all such phases can be realized with free fermions.

Symmetry Free classificationWith interactions

Uð1Þ � ZT
2 Z Z4

Zn � ZT
2 (n even) Z Z4

Zn � ZT
2 (n odd and n > 1) Z Z2
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two chains containing zero modes with the same positive
(or negative) index. This may generalize to larger integers
in the Z group, so now we examine the stacking of two
chains with a similar index more systematically.

A generic coupling term (see Fig. 2) is �H ¼
cĉ y

þaMab ĉþb þ H:c: Here, a and b are indices running

over the chain number 1; 2 . . . ; e.g., ĉþ1 denotes a zero
mode from the N ¼ 1 phase in the first chain, and Mab is
any generic coupling between these two operators. We
examine the simplest case of a ¼ 1 and b ¼ 2. Terms of

the form �H ¼ cĉ y
þ1M12 ĉþ2 þ H:c: are forbidden by TR

symmetry, as specified in Eq. (3), while fermion pairing

terms such as �H ¼ cĉ y
þ1M12ĉ

y
þ2 þ H:c: violate Sz spin

rotation symmetry. As there are no other quadratic fermion
terms, the stacking of two chains is stable against pertur-
bations and combine to give an N ¼ 2 phase.

Thus, adding a number of one-dimensional chains with a
positive index gives a positive integer in the Z group.
Negative numbers are obtained simply by stacking chains

with ĉ 0�. As we showed earlier, a pair of ĉ 0þ and ĉ 0�
coupled together become trivial, so the integer N in our Z
group is the difference between all positive and negative

zero modes. Then each phase labelled by N has 2jNj
degenerate ground states.

Interaction effects.—Now let us allow couplings with an
arbitrary number of fermion operators. We look at terms
with four and two operators that take the general form

�H¼Vabcdĉ
y
þa ĉþb ĉ

y
þc ĉþdþWab ĉ

y
þa ĉþbþH:c: (6)

�H is compatible with both TR and Sz spin rotation
symmetry when Vabcd and Wab satisfy certain conditions.

A possible term couples four separate chains through an
interaction with only V1234 � 0. This �H is invariant under
both TR and Sz spin rotation symmetry and couples two
states j0101i and j1010i in our four-mode basis (0 and 1
denote unoccupied and occupied, respectively, for each of
the four chains). Without interactions, we have a ground
state degeneracy of 24 ¼ 16; with interactions, two of
these 16 states split in energy by �E ¼ �jV1234j; see
Fig. 3. This makes the ground state nondegenerate and
the phase N ¼ 4 trivial.

Since four chains with all positive (or negative) indices
are equivalent to the trivial phase, we can smoothly

connect the N ¼ 3 phase to the N ¼ �1 phase by adding
four chains with all negative indices. So, with only three
distinct nontrivial phases, the Z integer classification for
free fermions reduces to Z4 in the presence of interactions.
Four-fermion interaction terms also reduce the ground

state degeneracy in the N ¼ 2 phase from 22 ¼ 4 to a
twofold degeneracy. The term

�H ¼ V1122ðĉ y
þ1 ĉþ1 � ĉþ1 ĉ

y
þ1Þðĉ y

þ2 ĉþ2 � ĉþ2 ĉ
y
þ2Þ

causes two states j00i and j11i to shift in energy by V1122,
while two other states j01i and j10i shift by�V1122. As we
still have doubled ground state degeneracy, the stateN ¼ 2
remains nontrivial. To summarize, interaction effects re-
duce our degeneracy, leaving three nontrivial phases each
with a twofold ground state degeneracy.
Four distinct projective representations.—Our results

demonstrate the stability of free fermion phases with
weak interactions. This method may not capture all
possible interacting phases because strongly interacting
topological phases may not adiabatically connect to free
fermion phases. Alternatively, different phases from weak
interactions may become the same phase with strong in-
teractions. To address these issues, we illustrate a distinct
projective representation [25] for each phase correspond-
ing to a different one-dimensional SPT phase.
Using the symmetry operations defined in Eqs. (3) and

(5), we write their matrix representations on the degenerate
subspace. In the N ¼ 1 phase with basis j0þi and j1þi

U� ! MðU�Þ ¼ 1
e�i�=2

� �
; ~T ! Mð ~TÞK ¼ �xK

where ~T ¼ U��T, a rotated TR operator we can introduce
since U� and T commute, and K is the antiunitary operator
corresponding to complex conjugation. Then

Mð ~TÞKMðU�Þ ¼ ei�=2MðU�ÞMð ~TÞK (7)

andMð ~TÞKMð ~TÞK ¼ 1. This is a projective representation,
as the phase in Eq. (7) cannot be removed by adding any
phase factor to MðU�Þ.
Moving to the N ¼ �1 phase with ground states j0�i

and j1�i, we have the same representation for MðU�Þ,

FIG. 2 (color online). We stack two chains in the same non-
trivial phase with positive (or negative) index to see if their edge
states are stable. With the first chain a ¼ 1 and the second
b ¼ 2, Mab is any coupling between them. We find that all
possible couplings are forbidden by our system symmetries, and
so the two similar modes are stable and form the N ¼ 2 phase.

FIG. 3 (color online). Without interactions V1234 ¼ 0, the
ground state degeneracy for four zero modes is 24 ¼ 16. With
interactions V1234 � 0, the two states are split by �E ¼
�jV1234j, making the ground state nondegenerate and this
N ¼ 4 phase trivial. As this N ¼ 4 phase is now smoothly
connected to the trivial N ¼ 0 phase, our classification reduces
from Z to Z4 with interactions.
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while Mð ~TÞK ¼ e�i�z�=2�xK in this case. Equation (7)
remains true, but now Mð ~TÞKMð ~TÞK ¼ �1, so we have
a different projective representation.

In the N ¼ 2 phase, our ground states are fourfold:
j0þ0þi, j0þ1þi, j1þ0þi, and j1þ1þi. Here

MðU�Þ ¼
ei�=4

e�i�=4

 !
� ei�=4

e�i�=4

 !
;

Mð ~TÞK ¼ �x � �yK:
(8)

While Mð ~TÞK and MðU�Þ commute this time,
Mð ~TÞKMð ~TÞK ¼ �1, again making a third nontrivial pro-
jective representation.

As each nontrivial phase has a distinct nontrivial pro-
jective representation, they remain distinct phases even
when interactions are strong. We can compare our results
to the unperturbative bosonic classification in one dimen-
sion obtained by group cohomology [4,7,24], as we can
bosonize our fermionic model. The resulting bosonic
model would have the same symmetry Uð1Þ � ZT

2 , with
phases classified by Z2 � Z2; i.e., the four distinct projec-
tive representations there correspond to the four different
strongly interacting phases. Our fermionic results similarly
contain all the four phases with these distinct projective
representations, so this model realizes all possible non-
trivial phases with strong interactions.

Modifying symmetry from Uð1Þ to Zn spin rotation.—As
our fermion model respects Sz spin rotation and TR sym-
metry, it naturally contains Zn discrete spin rotations as
well. We can replaceUð1Þ spin rotation by Zn spin rotation;
i.e., rotation by an arbitrary angle is now constrained
to values of � ¼ 2�=n and our new symmetry group
has generators time-reversal T and discrete Sz rotation

R ¼ eiSz2�=n, satisfying

T2 ¼ ð�ÞNF ; Rn ¼ ð�ÞNF ; TR ¼ RT: (9)

Here ð�ÞNF is the fermion number parity operator. When n

is even, this group GðT; ZnÞ is generated by R and ~T ¼
Rn=2T; so GðT; ZnÞ ¼ Z2n � Z

~T
2 . When n is odd, we find

that ~R ¼ RT alone generates this group GðT; ZnÞ ¼ ZT
4n

(see Supplemental Material [26]).
For n � 2, no new fermion bilinear terms are allowed,

so the free fermion classification does not change from Z.
In the case of n ¼ 1, new quadratic terms of the form

�H ¼ cĉ y
þ1 ĉ

y
þ2 þ H:c: are permitted. This term couples

two chains forming the N ¼ 2 phase to make the ground
state nondegenerate. TheN ¼ 2 phase becomes trivial, and
the classification for n ¼ 1 reduces to Z2.

Similarly, for higher n, we can always add interacting

terms with 2n ĉþ operators similar to the term in the
n ¼ 1 case above. For n ¼ 2, for instance, this term is

�H ¼ cĉ y
þ1 ĉ

y
þ2 ĉ

y
þ3 ĉ

y
þ4 þ H:c:. Such interactions

couple 2n zero modes each in the N ¼ 1 phase to render
the ground state nondegenerate. In effect, Zn spin rotation

symmetry allows interactions that reduce the classification
to Z2n.
We have established that under Uð1Þ spin rotation sym-

metry, interactions reduce the classification to Z4.
Including more interactions as allowed by Zn spin rotation
further reduces the classification toZ2n. Taken together, we
find that there is no effect on even n, which remains Z4,
since 2n is a multiple of 4. Odd n, however, reduces to a Z2

classification (as 2 becomes the largest common denomi-
nator between 2n and 4).
The number of nontrivial phases can be compared to and

matched with the group cohomology prediction Z2 � Z2

for even n and Z2 for odd n (see Supplemental Material
[26]). We find that different symmetry groups with the
same free fermion classification reduce to various results
(here Z4 or Z2 are examples) in the presence of interactions
(see the summary in Table I). As verified by comparison of
these phases with group cohomology, all the possible
strongly interacting phases can be realized by free fermi-
ons in this model.
Finally, we note that our classification is protected only

by system symmetries of spin rotation and TR. As shown

earlier, without such symmetry a term �H ¼ cĉ y
0þ ĉ 0þ

would be permitted, which would render the ground state
nondegenerate and the classification trivial (Z1).
Discussion.—We study the SPT phases of one-

dimensional fermionic superconductors with TR and Sz
spin rotation symmetries. If fermions do not interact, their
classification is given by the Z group; with weak interac-
tions, this reduces to a Z4 classification. As each of our four
fermion phases have distinct projective representations, they
correspond to four distinct phases by comparison with group
cohomology, which predicts four, and only four, different
gapped phases, even with strong interactions.
Hence, all distinct symmetric gapped phases with strong

interactions are realized by noninteracting fermions in this
case. Fermion parity is part of our Uð1Þ symmetry, which
cannot be spontaneously broken. Therefore, this model
does not have the fermion parity symmetry broken phases
corresponding to Majorana topological modes [24]. The
edge states in our one-dimensional superconductors are
described by complex fermions, and it is not surprising
that our interacting classification comprises half of the
results from Kitaev and Fidkowski’s Majorana model
[21–23].
We further studied the SPT phases of one-dimensional

superconductors with TR and Zn discrete Sz spin rotation
symmetries, to find they are classified by Z4 when n is even
andZ2 when n is odd. Again, as the phases in our fermionic
model match with the group cohomology prediction, all
gapped phases of these one-dimensional fermionic super-
conductors are also realized by noninteracting fermions.
Interactions on different symmetry groups with the same

free fermion classification give rise to varied results
(Table I). Here, perturbing from a free fermion model gives
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all strongly interacting phases; however, in other cases
such phases may not be realizable with free fermions.
Finally, the effectiveness of this method remains open,
especially in higher dimensions, where additional tools
may be needed. Further study of different symmetry groups
or in higher dimensions would be worthwhile.

Toward the completion of this Letter, we noted the study
of A. Rosch (arXiv:1203.5541), which shows ‘‘a topologi-
cal insulator made of four chains of superconducting spin-
less fermions characterized by four Majorana edge states
can adiabatically be deformed into a trivial band insulator’’
via ‘‘interactions to spinful fermions,’’ which has some
relation to our Z4 classification of one-dimensional fermi-
onic superconducting phases with TR and Sz spin rotation
symmetries.

We thank Zheng-Xin Liu, Andrew Potter, and Xie Chen
for helpful discussions. This work is supported by NSF
Grants Nos. DMR-1005541 and NSFC 11074140.
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