TCR Feedback Signals Inhibit the Coupling of Recombinationally Accessible V14 Segments with DJ Complexes

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.4049/jimmunol.0900723</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Association of Immunologists</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Mar 28 21:10:06 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/73894</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike 3.0</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/3.0/</td>
</tr>
</tbody>
</table>
TCRβ Feedback Signals Inhibit the Coupling of Recombinationally Accessible Vβ14 Segments with DJβ Complexes

Katherine S. Yang-Iott²,†, Andrea C. Carpenter²,*,†, Marta A. W. Rowh*,†, Natalie Steinel*,†, Brenna L. Brady*,†, Konrad Hochedlinger‡, Rudolf Jaenisch#, and Craig H. Bassing³,*,†

*Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
†Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
‡Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Cancer Center and Center for Regenerative Medicine, Boston, MA 02114
#Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142

Abstract

Antigen receptor allelic exclusion is thought to occur through mono-allelic initiation and subsequent feedback inhibition of recombinational accessibility. However, our previous analysis of mice containing a V(D)J recombination reporter inserted into Vβ14 (Vβ14Rep) indicated that Vβ14 chromatin accessibility is bi-allelic. To determine whether Vβ14 recombinational accessibility is subject to feedback inhibition, we analyzed TCRβ rearrangements in Vβ14Rep mice containing a pre-assembled in frame transgenic Vβ8.2DJβ1Jβ1.1 or an endogenous Vβ14DJβ1Jβ1.4 rearrangement on the homologous chromosome. Expression of either pre-assembled VβDJβCβ chain accelerated thymocyte development due to enhanced cellular selection, demonstrating that the rate-limiting step in early αβ T cell development is the assembly of an in-frame VβDJβ rearrangement. Expression of these pre-assembled VβDJβ rearrangements inhibited endogenous Vβ14-to-DJβ rearrangements as expected. However, in contrast to results predicted by the accepted model of TCRβ feedback inhibition, we found that expression of these pre-assembled TCRβ chains did not down-regulate recombinational accessibility of Vβ14 chromatin. Our findings suggest that TCRβ mediated feedback inhibition of Vβ14 rearrangements depends upon inherent properties of Vβ14, DJβ, and Jβ recombination signal sequences.

Keywords

T cells; T cell receptor; gene rearrangements; molecular biology; transgenic/knockout mice
Introduction

Adaptive immunity relies on the ability of an organism to generate large numbers of lymphocytes that express antigen receptors of unique specificity. During lymphocyte development, the exons that encode T cell receptor (TCR) and immunoglobulin (Ig) variable regions are assembled through the rearrangement of germline variable (V), diversity (D), and joining (J) gene segments (1). V(D)J recombination is initiated by the lymphocyte-specific RAG1/RAG2 (RAG) endonuclease, which cleaves DNA strands between gene segments and their flanking recombination signal sequences (RSs), and completed by the RAG proteins, TdT, and generally expressed non-homologous end-joining proteins, which together repair these DNA ends to form V(D)J coding joins and signal joins (2,3). This site-specific recombination process generates a vast repertoire of antigen specificities through the large combination of possible joining events and the inherent imprecision in coding join formation. The majority of lymphocytes assembles and expresses functional TCR or Ig chains from only a single allele, a phenomenon referred to as allelic exclusion that limits development of lymphocytes expressing antigen receptors of multiple specificities (4). Current dogma is that antigen receptor allelic exclusion is regulated through allele-specific modulation of recombinational accessibility (5,6), which is defined as the chromatin structure of a gene segment being open and available to, but not necessarily bound by, the V(D)J recombinase (7,8). However, additional mechanisms, such as RAG deposition/binding onto RSs (9–11) and changes in locus topology or location (12,13), may contribute to the regulation of allelic exclusion.

The assembly of TCR β and α variable region exons is regulated within the context of thymocyte development (6,14). TCRβ genes recombine in an ordered fashion with Dβ-to-Jβ rearrangement occurring before the joining of a Vβ segment to an assembled DJβ complex on one allele in CD4−/CD8− (double negative, DN) thymocytes (15,16). Vβ-to-DJβ rearrangements proceed through the coupling of RAG accessible Vβ segments and DJβ complexes (17–19), likely mediated by TCRβ locus contraction and chromosome looping that juxtapose Vβ and Dβ-Jβ-Cβ segments (13). Due to imprecise joining, approximately one-third of VβDJβ rearrangements is assembled productively (in-frame) and encodes a functional TCRβ chain. TCRβ chains pair with pTα molecules to form pre-TCR complexes that signal β-selection, which involves allelic exclusion, survival, expansion, and further differentiation to the CD4+/CD8+ (double positive, DP) stage (14). In cells that assemble a non-productive (out-of-frame) VβDJβ rearrangement on the first allele, Vβ-to-DJβ recombination can initiate on the second allele, which, if productive, signals survival, expansion and differentiation (14). TCRα variable region exons are assembled from Vα and Jα segments in DP thymocytes (20). Productive VαJα rearrangements generate TCRα chains that can associate with TCRβ chains to form αβ TCRs, which, upon positive selection, promote further differentiation to CD4+ or CD8+ (single positive, SP) thymocytes (14). These cells exit the thymus and migrate to the peripheral lymphoid compartments as naive αβ T cells.

Allelic exclusion is thought to occur through asynchronous initiation of V-to-(D)J rearrangement between homologous loci, followed by inhibition of recombination on the second allele through feedback signals generated by expression of an in-frame antigen receptor gene assembled on the first allele (5,21–23). Molecular mechanisms by which Vβ rearrangements initiate asynchronously in DN thymocytes have not been demonstrated, but several have been proposed from experimental observations. The asynchronous replication of TCRβ loci may promote epigenetic changes that render the earlier replicating allele preferentially accessible to RAG (24). In addition, the association of TCRβ alleles with repressive nuclear environments could limit recombinational accessibility to one allele in the time-window during which newly assembled VβDJβ rearrangements can be expressed and signal (12,13). Moreover, in DN cells exhibiting bi-allelic Vβ chromatin accessibility (17,
25), the inherent low recombination potential of Vβ RSSs might limit Vβ-to-DJβ rearrangements to one allele at a time (9).

Expression of productive TCRβ chains in DN thymocytes activates distinct signaling pathways for preventing Vβ-to-DJβ rearrangements and for promoting proliferation, expansion, and differentiation (26–28). TCRβ mediated down-regulation of E47 transcription factor binding to the locus leads to decreased Vβ chromatin accessibility in DN cells (29). DN to DP differentiation leads to epigenetic changes in Vβ chromatin that render Vβ segments inaccessible to RAG (30,31), and de-contraction of TCRβ loci such that germline Vβ segments are no longer juxtaposed with DJβ-Jβ segments (13). These latter two mechanisms may cooperate to maintain TCRβ allelic exclusion by preventing the rearrangement of germline upstream Vβ segments to DJβ complexes in DP cells (12,13). Unique among Vβ segments, germline Vβ14 segments remain recombinationally accessible in DP thymocytes (32) and DP cells attempting Vβ14-to-DJβ rearrangements can be eliminated by apoptosis to maintain TCRβ allelic exclusion (33). However, the mechanisms by which TCRβ mediated feedback signals inhibit the rearrangement of Vβ14 and other Vβ segments in DN cells remains to be determined.

To date, all studies of antigen receptor allelic exclusion or feedback regulation have been conducted using correlative measures of recombinational accessibility, such as germline transcription, nuclease sensitivity, histone modifications, DNA methylation, DNA replication, and/or expression of an inserted reporter gene (24,25,30,31,33–37). To elucidate mechanisms that regulate Vβ rearrangement, we previously generated and analyzed mice with replacement of the endogenous Vβ14 RS with a V(D)J recombination reporter consisting of germline DJβ1-Jβ1.1 segments (the Vβ14Rep allele)(17). Since DJβ1-to-Jβ1.1 rearrangement depends upon promoter-driven recombinational accessibility of DJβ1-Jβ chromatin (38,39), we hypothesized Vβ14Rep DJβ1-to-Jβ1.1 rearrangements would occur only if the Vβ14 promoter and other potential cis elements rendered Vβ14 chromatin accessible to the RAG proteins. We proved that Vβ14 chromatin environment imparts lineage and developmental-stage specific recombinational accessibility upon Vβ14Rep (17). Notably, despite the presence of a functional TATA box in the 5'DJβ1 RS (40) and the influence of the Jβ1.1 RS upon steady-state DJβ1-Jβ1.1 transcripts (41), the frequency of Vβ14Rep recombination events was similar to the frequency of Vβ14 rearrangements on alleles containing specific replacement of the Vβ14 RS with the 3'DJβ1 RS (19). Collectively, these observations indicated that the higher intrinsic recombination potential of the 3'DJβ1 RS compared to the Vβ14 RS (42), and likely the ability of the 3'DJβ1 RS to bind c-fos/RAG complexes (11), enables the minimal frequency at which Vβ14 chromatin is rendered accessible and RSs within this region available for RAG binding to be quantified by Vβ14Rep rearrangement events (17).

Unexpectedly, we found that Vβ14Rep DJβ-to-Jβ rearrangement occurred on both TCRβ alleles in the majority of developing thymocytes, demonstrating that regulation of Vβ14 recombinational accessibility and Vβ14-to-DJβ rearrangements are not mechanistically linked (17). These data also could indicate that Vβ14 recombinational accessibility is not subject to TCRβ mediated feedback inhibition. Alternatively, Vβ14Rep may simply rearrange efficiently and on both alleles during the time window required for the assembly and expression of VβDJβ rearrangements to signal inhibition of Vβ14 accessibility. To distinguish between these possibilities and determine whether undiscovered mechanisms might contribute to inhibition of Vβ14 rearrangements, we sought to directly evaluate the effect that TCRβ mediated feedback signals have upon Vβ14 recombinational accessibility by analyzing TCRβ rearrangements in αβ T lineage cells of Vβ14Rep mice that express an in-frame VβDJβ rearrangement prior to initiation of Vβ14 accessibility.
Materials and Methods

Mice

Generation and characterization of DO11.10 TCRβ transgenic mice (43) and Vβ14Rep/Rep mice (17) were previously described. Generation and characterization of the LN2 embryonic stem cells containing the pre-assembled Vβ14Dβ1Jβ1.4 rearrangement also were previously characterized (44). All experiments in mice were performed in accordance relevant institutional and national guidelines and regulations and approved by the Children’s Hospital of Philadelphia IACUC committee.

Analysis of αβ T cell development

Single cell suspensions were prepared from the thymuses and spleens of 4–6 week old mice of each genotype. Cell numbers were obtained by counting trypan blue excluded cells using a hemocytometer. Cells were stained with the combinations of FITC-conjugated anti-CD8, anti-Vβ8, or anti-Vβ14 antibodies and PE-conjugated anti-CD4 or anti-CD8 antibodies (BD Pharmingen). To analyze DN thymocyte populations, cells were stained with a cocktail of PE-conjugated anti-Cβ, anti-Cδ, anti-CD8, anti-CD45R, anti-CD11c, anti-CD11b, anti-Ter119, anti-NK.1, and PE-Cy7-conjugated anti-CD25 and APC-conjugated anti-CD117 antibodies (BD Pharmingen). A BD FACSCalibur equipped with BD CellQuest Pro was used to acquire data and FlowJo software (Tree Star) was used to analyze data. All experiments were performed at least three separate times on independent mice of each genotype.

FACS analysis of β selection

Small versus large cells were distinguished after FACS analysis by plotting CD117 versus forward scatter and gating on small (forward scatter low) and large (forward scatter high) cells. BrdU incorporation into thymocyte populations was determined using the FITC BrdU Flow Kit (BD Pharmingen). Mice were injected i.p. with 100 µL of kit-provided BrdU according to manufacturer instructions for in vivo labeling of mouse cells. After 1.5 hours, mice were sacrificed and thymuses were removed for FACS analysis. The number of cells was modified from manufacturer instructions by increasing to 20 × 10^6 cells in 50 µL staining buffer. The time of staining was also increased to 1 hour at 4°C. The rest of the procedure was followed exactly as if the cell amounts were not modified.

Western blots

Primary thymocytes from specified genotypes were lysed in Tween 20 buffer (50 mM HEPES [pH 8.0], 150 mM NaCl, 2.5 mM EGTA, 1 mM EDTA, 0.1% Tween 20) containing a cocktail of protease inhibitors (Roche 11697498001). Samples were run on a denaturing 10% Tris-Glycine gel and transferred to nitrocellulose. Membranes were first incubated with a 1:1000 dilution of an anti-cyclin D3 antibody (Santa Cruz Biotechnology sc-182) in 5% milk overnight at 4°C and washed for 10 minutes 4x with PBS containing 0.01% Tween. Secondary antibody was diluted 1:5000 in 5% milk and incubated for 2 hours at room temperature. Membranes were then stripped and probed in the same manner with an anti-tubulin antibody (Fischer 05829MI) to control for loading.

Analysis of Vβ14Rep and TCRβ rearrangements

Cell sorting of DN and DP thymocytes was conducted with a MoFlow cell sorter (DakoCytomation) following staining of thymocytes with FITC-conjugated anti-CD8α and PE-conjugated anti-CD4. PCR analysis of Vβ14Rep Dβ-to-Jβ rearrangements were conducted using 20 ng of genomic DNA as previously described (17). αβ T cell hybridomas were generated as previously described (45). Genomic DNA was isolated, digested with EcoRI, and subject to Southern blot analysis as described (45). Endogenous Dβ1-to-Jβ1 rearrangements
were characterized using the 5′Dβ1, inter-genic Dβ1-Jβ1, and 3′Jβ1 probes previously described (46). Endogenous Vβ14 and Vβ14Rep rearrangements were characterized using the 5′Vβ14 and 3′Vβ14 probes previously described (17).

Results

Generation of germline mice expressing a pre-assembled endogenous Vβ14Dβ1Jβ1.4 rearrangement

Due to the lack of a Cβ allotypic marker, TCRβ allelic exclusion studies are often conducted using mice that express an in-frame VβDJβ rearrangement from a transgene randomly integrated into the genome (28,29,47–51). Thus, to directly evaluate the effect that TCRβ mediated feedback signals have upon recombinational accessibility of Vβ14 chromatin, we sought to analyze TCRβ rearrangements in αβ T cells of Vβ14Rep mice that also express a transgenic pre-assembled in-frame VβDJβ rearrangement. Since the D011.10 TCRβ transgene has been used to study TCRβ allelic exclusion and αβ T cell development (28,29,43), we decided to use this classical model of TCRβ mediated feedback inhibition as part of our analysis. This transgene consists of an in-frame pre-assembled Vβ8.2Dβ1Jβ1.1 rearrangement integrated into mouse chromosome 6 near the endogenous TCRβ locus (43)(Figure 1A; A.C.C. and C.H.B., unpublished observations). Germline mice carrying this transgene are hereafter referred to as Vβ8Tg mice. As previously reported, greater than 99% of αβ T lineage cells isolated from Vβ8Tg mice express Vβ8 as part of cell surface TCRβ chains (Figure 1B).

We were concerned that transgenic VβDJβ rearrangements integrated at chromosomal locations outside of endogenous TCRβ loci might not recapitulate physiological TCRβ mediated feedback signals. Nuclei of Vβ14+ αβ T cells have been used in nuclear transfer (NT) experiments to generate embryonic stem (ES) cells containing an endogenous in-frame Vβ14Dβ1Jβ1.4 rearrangement on one TCRβ allele (the Vβ14NT allele; Figure 1A), an endogenous DJβ rearrangement on the other TCRβ allele, and endogenous VαJα rearrangements on both TCRα alleles (44). We used these ES cells to generate mice with the Vβ14NT allele transmitted through the germline and bred these mice with wild-type 129SvEv mice for several generations to separate the Vβ14NT allele from the DJβ allele and the two rearranged TCRα alleles. Through this approach, we generated Vβ14NT/WT mice that carry the Vβ14NT allele, a wild-type un-rearranged TCRβ allele, and two wild-type un-rearranged TCRα alleles. As expected, greater than 99% of αβ T lineage cells isolated from Vβ14NT/WT mice express Vβ14 as part of cell surface TCRβ chains (Figure 1B).

Accelerated early thymocyte development in Vβ8Tg and Vβ14NT/WT mice

Despite the previous use of Vβ8Tg mice to study TCRβ feedback inhibition and αβ TCR selection (28,29,43), a thorough analysis of αβ T cell development in Vβ8Tg mice has never been published. In addition, thymocyte development in Vβ14NT/WT mice has never been reported. Thus, we first sought to investigate the potential influence of Vβ8Tg or Vβ14NT expression on gross αβ T cell development. Both Vβ8Tg and Vβ14NT/WT mice exhibited similar numbers of thymocytes and splenocytes as wild-type mice (Figure 2A). FACS analysis of thymocytes with anti-CD4, and anti-CD8 antibodies revealed a similar distribution of DN, DP, and SP populations among wild-type, Vβ8Tg, and Vβ14NT/WT mice (Figure 2B,C). However, we did observe statistically significant increases in the percentages of CD4+ SP thymocytes and decreases in the percentages and CD8+ SP thymocytes in Vβ8Tg and Vβ14NT/WT mice, as compared to in wild-type mice (Figure 2C). FACS analysis of splenocytes with anti-CD4 and anti-CD8 antibodies also revealed substantial increases in the percentages of CD4+ αβ T cells and decreases in the percentages of CD8+ αβ T cells in Vβ8Tg and Vβ14NT/WT mice, as compared to in wild-type mice (Figure 2B, D). Since the numbers of thymocytes and splenocytes were comparable among wild-type, Vβ8Tg, and Vβ14NT/WT mice, these data

J Immunol. Author manuscript; available in PMC 2011 February 1.
indicate that expression of either one of these pre-assembled VβDJβ rearrangements directs development of CD4+ αβ T cells at the expense of CD8+ αβ T cells. The latter effect is most likely due to preferential binding of αβ TCR containing the Vβ8Tg and Vβ14NT/WT TCRβ chains with class II MHC chains (52).

Development of DN thymocytes proceeds through four stages that can be defined by cell surface expression of CD117 or CD44 and CD25. TCRβ locus Dβ-to-Jβ rearrangements initiate in CD117+CD25− early T lineage progenitors (ETPs, or DNI cells) and continue in CD117+CD25+ DNII thymocytes, while Vβ-to-DJβ rearrangements occur in CD117−CD25+ DNIII thymocytes (16,53,54). The differentiation of ETP/DNI cells into DNII thymocytes and DNII cells into DNIII thymocytes occur independent of V(D)J recombination (55,56). In contrast, the development of DNIII cells into DNIV and then DP thymocytes requires the assembly and expression of an in-frame VβDJβ rearrangement (57). To determine whether expression of these pre-assembled VβDJβ rearrangements alters early thymocyte development, we analyzed the DN populations of thymocytes in wild-type, Vβ8Tg, and Vβ14NT/WT mice. FACS analysis with lineage markers and anti-CD117 and anti-CD25 antibodies revealed similar percentages of ETP/DNI and DNII cells in thymuses isolated from wild-type, Vβ8Tg, or Vβ14NT/WT mice (Figure 3A, B). In contrast, we observed significant decreases in the frequencies of DNIII thymocytes in Vβ8Tg and Vβ14NT/WT mice, as compared to in wild-type mice (Figure 3A,B). In addition, the frequencies of CD117−CD25low cells transitioning between the DNIII and DNIV populations were increased in Vβ8Tg and Vβ14NT/WT mice, as compared to in wild-type mice (Figure 3A). Since Vβ8Tg and Vβ14NT/WT mice contain similar numbers of total thymocytes as wild-type mice, our data indicate that the DNIII to DNIV developmental transition is accelerated in these mice. Similar observations have been found in mice expressing other transgenic VβDJβ rearrangements and in mice expressing a different endogenous VβDJβ rearrangement (58,59). Collectively, these observations indicate that the acceleration of developing thymocytes through the DNIII stage is a general phenomenon in mice expressing a pre-assembled TCRβ chain.

Assembly of an in-frame VβDJβ rearrangement is the rate-limiting step in early αβ T cell development

Expression of TCRβ chains in DNIII thymocytes activates β-selection signaling pathways that promote differentiation into DNIV cells and also promote cyclin D3 expression to stimulate cellular proliferation (14,60). To evaluate whether the accelerated thymocyte development in mice expressing a pre-assembled in-frame VβDJβ rearrangement is due to enhanced β-selection, we conducted further phenotypic analysis of DN thymocyte populations among wild-type, Vβ8Tg, and Vβ14NT/WT mice. FACS analysis with anti-Vβ8, and anti-Vβ14 antibodies demonstrated that Vβ8 and Vβ14 TCRβ chains are expressed on the cell surface of all DNIII thymocytes (Figure 4A). Western blot analysis revealed higher cyclin D3 protein levels in total thymocytes of Vβ8Tg and Vβ14NT/WT mice, as compared to wild-type mice (Figure 4B). In addition, BrdU incorporation experiments demonstrated a greater than two-fold increase in the percentage of S phase cells in the DNIII thymocytes of Vβ8Tg and Vβ14NT/WT mice, as compared to wild-type mice (Figure 4C). These data indicate that β-selection is enhanced in the DNIII thymocyte populations of mice expressing pre-assembled TCRβ chains, most likely because the time ordinarily required to assemble and express an in-frame endogenous VβDJβ rearrangement is bypassed. These observations formally demonstrate that the rate-limiting step in β selection is the assembly of an in-frame VβDJβ rearrangement.

Despite intracellular expression of pre-assembled VβDJβ rearrangements initiating in bone marrow lymphoid progenitor cells (58), TCRβ chains are not expressed on the cell surface of developing thymocytes until down-regulation of CD25 correlating with DNII to DNIII differentiation (14). This restricted expression is due to developmental-stage specific
expression of the CD3 subunits required for cell surface expression of pTα-TCRβ heterodimers. Unexpectedly, we also observed a greater percentage of large and S phase cells in the ETP/DNI and DNII populations of Vβ8Tg and Vβ14NT/WT mice, as compared to wild-type mice (Figure 4C). These findings suggest that pre-assembled TCRβ chains expressed in the cytoplasm or at undetectable levels on the cell surface of ETP and DNII cells might activate intracellular signaling cascades that regulate cellular size and proliferation. Alternatively, the decreased numbers of DNIII cells in the Vβ8Tg and Vβ14NT/WT mice could create a niche of physical space and/or cytokine exposure that leads to increased proliferation of ETP/DNI and DNII cells. However, further investigation of the molecular or cellular basis this phenomenon is beyond the scope of our current study.

The assembly and expression of TCRδ and TCRγ chains in DNIII thymocytes leads to the development of γδ T cells (61). FACS analysis with anti-Cβ and anti-Cδ antibodies revealed significant decreases in the frequencies of γδ T cells in the thymuses and spleens of Vβ8Tg and Vβ14NT/WT mice, as compared to in wild-type mice (Figure 4D). Since the numbers of thymocytes and splenocytes are equivalent among mice of the three genotypes, these data indicate that the numbers of γδ T cells that develop is reduced in Vβ8Tg and Vβ14NT/WT mice. This observation, which also has been published for mice expressing other pre-assembled transgenic or endogenous TCRβ chains (58,62,63), indicates that the more efficient β-selection of thymocytes in Vβ8Tg and Vβ14NT/WT mice occurs at the expense of δ-selection.

The goal of our current study is to evaluate the effect that TCRβ mediated feedback signals have upon Vβ14 recombinational accessibility by analyzing TCRβ rearrangements in αβ T lineage cells of Vβ14Rep mice containing a pre-assembled in-frame VβDJβ rearrangement. Our experimental approach depends upon expression of pre-assembled TCRβ chains in developing thymocytes prior to or concurrent with initiation of Vβ14 recombinational accessibility. We previously detected Vβ14Rep Dβ-to-Jβ rearrangements in DNIII thymocytes, but not in DNII cells, indicating that Vβ14 recombinational accessibility predominantly initiates in DNIII thymocytes (17). Here, we have shown that β-selection is enhanced and DNIII to DNIV thymocyte differentiation accelerated in Vβ8Tg and Vβ14NT/WT mice due to the premature and invariant expression of the pre-assembled TCRβ chains in DNIII cells. Collectively, these data demonstrate that the pre-assembled TCRβ rearrangements used in this study are expressed prior to or concurrent with initiation of Vβ14 accessibility, thereby validating our experimental approach.

Expression of pre-assembled TCRβ chains inhibits endogenous Vβ14-to-DJβ and Dβ-to-Jβ rearrangements

Before analyzing the effects of TCRβ mediated feedback signals upon modulation of Vβ14 RAG accessibility, we needed to determine whether expression of the pre-assembled VβDJβ rearrangements inhibits endogenous Vβ14-to-DJβ rearrangements. To this aim, we established panels of αβ T cell hybridomas from Vβ8Tg and Vβ14NT/WT mice and analyzed Vβ rearrangements by Southern blot analysis using a Vβ14 probe on EcoRI-digested genomic DNA isolated from these cells. We found no Vβ14-to-DJβ rearrangements on the wild-type alleles in all 77 Vβ8Tg and all 86 Vβ14NT/WT αβ T cell hybridomas (Table I). Vβ14-to-DJβ rearrangements normally occur on non-selected alleles in approximately 7% of wild-type αβ T cell hybridomas (17). Consequently, our data demonstrate that expression of either pre-assembled TCRβ chain prevents Vβ14-to-DJβ rearrangements at the frequency they ordinarily occur in wild-type thymocytes.

We also sought to quantify the effect that expression of the transgenic Vβ8.2Dβ1Jβ8.1.1 rearrangement or endogenous Vβ14Dβ1Jβ1.4 rearrangement has upon the levels of endogenous Dβ-to-Jβ rearrangements. For this purpose, we conducted Southern blot analysis using an inter-genic Dβ1-Jβ1 probe on EcoRI-digested genomic DNA isolated from our panels.
of Vβ8Tg and Vβ14NT/WT αβ T cell hybridomas. We found that 5 of 77 (6%) of Vβ8Tg and 5 of 86 (6%) Vβ14NT/WT cells contained germline DJβ1-Jβ1 segments and, thus, lacked DJβ1-to-Jβ1 rearrangements on at least one allele (Table I). In wild-type αβ T cells, endogenous DJβ1-to-Jβ1 rearrangements occur to completion on both alleles (10,46). Consequently, these data demonstrate that expression of either the transgenic or endogenous pre-assembled VDJβ rearrangement leads to a reduction in the overall frequency of DJβ1-to-Jβ1 rearrangements. Importantly, since Vβ14-to-DJβ1 rearrangements only occur on alleles that have already assembled DJβ1 complexes (19), these data further demonstrate that the pre-assembled TCRβ rearrangements used in this study are expressed prior to initiation of Vβ14 recombinational accessibility and endogenous Vβ14-to-DJβ1 rearrangement.

Vβ14 recombinational accessibility is maintained in thymocytes expressing pre-assembled VβDJβ rearrangements

To directly evaluate the effect that TCRβ mediated feedback signals have upon Vβ14 recombinational accessibility, we analyzed Vβ14Rep rearrangements in DN and DP cells sorted from the thymuses of germline mice containing Vβ14Rep on one allele and expressing Vβ14NT from the other allele (Vβ14Rep/NT mice). PCR with a primer that hybridizes to TCRβ locus sequences upstream of Vβ14Rep and a primer that hybridizes to Jβ1.1 sequences amplifies an 850 bp product from germline Vβ14Rep alleles and a 200 bp product from alleles with Vβ14Rep DJβ1-to-Jβ1 rearrangements (Figure 5A). We observed amplification of the germline and DJβ rearranged Vβ14Rep products to similar extents in Vβ14Rep/WT and Vβ14Rep/NT DN thymocytes (Figure 5B), indicating that Vβ14Rep recombinational accessibility is not down-regulated in DN cells expressing a pre-assembled TCRβ chain. In DP thymocytes, we observed amplification of the DJβ rearranged Vβ14Rep product to similar levels in Vβ14Rep/WT and Vβ14Rep/NT cells, but amplification of the germline Vβ14Rep product to a lower level in Vβ14Rep/WT cells as compared to Vβ14Rep/NT cells (Figure 5B). Considering that Vβ, DJβ, and Jβ segments rearrange to Vβ14Rep in approximately 10% of thymocytes (Figure 5C)(17), these data suggest that TCRβ feedback signals inhibit the rearrangement of endogenous Vβ, DJβ, and/or Jβ segments to Vβ14Rep, but do not down-regulate Vβ14 recombinational accessibility.

To quantify the effect that TCRβ mediated feedback signals have upon Vβ14 recombinational accessibility and the rearrangement of endogenous Vβ, DJβ, and/or Jβ segments to Vβ14Rep, we sought to analyze Vβ14Rep rearrangements in αβ T lineage cells of germline mice containing Vβ14Rep on one allele and expressing either Vβ8Tg or Vβ14NT from the homologous chromosome. For this purpose, we bred germline Vβ14Rep/Rep mice with Vβ8Tg mice or Vβ14NT/WT mice to generate Vβ8Tg;Vβ14Rep/WT and Vβ14Rep/NT mice. Analyses of Vβ8Tg;Vβ14Rep/WT and Vβ14Rep/NT mice demonstrated that they exhibited αβ T cell development and populations identical to Vβ8Tg and Vβ14NT/WT mice, respectively (data not shown). To analyze TCRβ rearrangements, we established panels of αβ T cell hybridomas from Vβ14Rep/WT, Vβ8Tg;Vβ14Rep/WT, and Vβ14Rep/NT mice. The Vβ14Rep allele contains a unique EcoRI restriction site that distinguishes between Vβ14Rep recombination events and Vβ14-to-DJβ rearrangements on the Vβ14WT allele (17). Thus, we conducted Southern blot analysis using a Vβ14 probe on EcoRI-digested genomic DNA isolated from these cells to analyze Vβ14Rep and Vβ14 rearrangements. Of the 67 Vβ14Rep/WT αβ T cell hybridomas analyzed, 47 (73%) contained Vβ14Rep recombination events (Table II). This observation is consistent with our earlier findings obtained from chimeric mice that Vβ14 is RAG accessible in a substantially higher percentage of thymocytes than the approximately 7% in which Vβ14-to-DJβ rearrangements occur (17,19,64). Unexpectedly, 52 of the 66 (79%) Vβ8Tg;Vβ14Rep/WT αβ T cell hybridomas and 105 of the 185 (58%) Vβ14Rep/NT αβ T cell hybridomas contained Vβ14Rep recombination events (Table II). These data indicate that expression of neither pre-
assembled V\(\beta\)DJ\(\beta\) rearrangement prevented V\(\beta\)14 recombinational accessibility during thymocyte development.

V\(\beta\)14\(\text{Rep}\) recombination events include V\(\beta\)14\(\text{Rep}\) D\(\beta\)-to-J\(\beta\) rearrangements that require V\(\beta\)14 recombinational accessibility, and rearrangement of endogenous V\(\beta\), D\(\beta\), and J\(\beta\) segments to V\(\beta\)14\(\text{Rep}\) that also require accessibility of the participating TCR\(\beta\) gene segments and their juxtaposition with V\(\beta\)14\(\text{Rep}\) (Figure 5C) (17). To quantify the level of each specific V\(\beta\)14\(\text{Rep}\) recombination event in the V\(\beta\)14\(\beta\)\(\text{Rep}\)/WT, V\(\beta\)8\(\text{Rep}\)/V\(\beta\)14\(\text{Rep}\)/WT, and V\(\beta\)14\(\text{Rep}\)/NT \(\alpha\)\(\beta\) T cell hybridomas, we conducted additional Southern blot analysis using a series of TCR\(\beta\) locus probes on EcoRI-digested genomic DNA isolated from these cells. The V\(\beta\)14\(\text{Rep}\) allele lacks endogenous D\(\beta\)2-J\(\beta\)2 segments (17), which limits the number of possible recombination events and simplifies analyses (10). We also confirmed the identity of rearrangements by sequence analysis of PCR amplified joins (data not shown). Of the 67 V\(\beta\)14\(\beta\)/WT \(\alpha\)\(\beta\) T cell hybridomas analyzed, 36 (54%) contained V\(\beta\)14\(\text{Rep}\) D\(\beta\)-to-J\(\beta\) rearrangements, seven (10%) harbored endogenous D\(\beta\) or J\(\beta\) segments rearranged to V\(\beta\)14\(\text{Rep}\), and four (6%) carried endogenous V\(\beta\) segments rearranged to V\(\beta\)14\(\text{Rep}\) (Table II). These data are consistent with our previous observations from chimeric mice that revealed RAG accessible V\(\beta\)14 segments are juxtaposed with RAG accessible V\(\beta\), D\(\beta\), and J\(\beta\) segments in a greater percentage of thymocytes than the 7% in which V\(\beta\)14-to-DJ\(\beta\) rearrangements normally occur (17, 19, 64). Of the 66 V\(\beta\)8\(\text{Rep}\)/V\(\beta\)14\(\text{Rep}\)/WT \(\alpha\)\(\beta\) T cell hybridomas analyzed, 37 (56%) contained V\(\beta\)14\(\text{Rep}\) D\(\beta\)-to-J\(\beta\) rearrangements, seven (11%) harbored endogenous D\(\beta\) or J\(\beta\) segments rearranged to V\(\beta\)14\(\text{Rep}\), and eight (12%) carried endogenous V\(\beta\) segments rearranged to V\(\beta\)14\(\text{Rep}\) (Table II). However, of the 185 V\(\beta\)14\(\beta\)/NT \(\alpha\)\(\beta\) T cell hybridomas analyzed, 82 (44%) contained V\(\beta\)14\(\text{Rep}\) D\(\beta\)-to-J\(\beta\) rearrangements, 19 (10%) harbored endogenous D\(\beta\) or J\(\beta\) segments rearranged to V\(\beta\)14\(\text{Rep}\), and four (2%) carried endogenous V\(\beta\) segments rearranged to V\(\beta\)14\(\text{Rep}\) (Table II).

These data reveal that the predominant manner by which expression of the endogenous V\(\beta\)14\(\text{D}14\)\(\beta\)J\(14\)\(\beta\) rearrangement decreased V\(\beta\)14\(\text{Rep}\) recombination events is through the reduction of V\(\beta\)14\(\text{Rep}\) D\(\beta\)-to-J\(\beta\) rearrangements, which require V\(\beta\)14 recombinational accessibility but not necessarily juxtaposition of V\(\beta\)14\(\text{Rep}\) with endogenous D\(\beta\)-J\(\beta\) segments. The expression of either pre-assembled TCR\(\beta\) chain also had no effect upon the level at which endogenous D\(\beta\)-J\(\beta\) segments rearranged with V\(\beta\)14\(\text{Rep}\). For reasons detailed in the discussion, our collective data are consistent with the notion that TCR\(\beta\) mediated feedback inhibition of V\(\beta\)14-to-D\(\beta\) rearrangements depends upon the inherent properties of V\(\beta\)14, D\(\beta\), and J\(\beta\) RSs.

Discussion

Here, we have analyzed the effect that expression of a classical TCR\(\beta\) transgene (V\(\beta\)8\(\text{Rep}\)) or a pre-assembled endogenous TCR\(\beta\) gene (V\(\beta\)14\(\text{NT}\)) has upon recombinational accessibility of V\(\beta\)14 chromatin. We first showed that greater than 99% of \(\alpha\)\(\beta\) T lineage cells isolated from V\(\beta\)8\(\text{Rep}\) or V\(\beta\)14\(\text{NT}/\text{WT}\) mice expressed V\(\beta\)8 or V\(\beta\)14, respectively, as part of their cell surface TCR\(\beta\) chains. We then demonstrated that expression of each pre-assembled TCR\(\beta\) chain accelerated the DNIII to DNIV step of early thymocyte development due to enhanced \(\beta\)-selection in the DNIII population. Our analyses of TCR\(\beta\) rearrangements revealed that expression of these pre-assembled V\(\beta\)DJ\(\beta\) rearrangements inhibited endogenous V\(\beta\)14-to-D\(\beta\) rearrangements as expected. However, in contrast to results predicted by the accepted model of TCR\(\beta\) feedback inhibition, we found that expression of these pre-assembled TCR\(\beta\) chains neither blocked recombinational accessibility of V\(\beta\)14 chromatin nor inhibited rearrangements between V\(\beta\)14\(\text{Rep}\) and endogenous D\(\beta\)-J\(\beta\) segments.

One concern related to our study is that the V\(\beta\)14\(\text{Rep}\) V(D)J recombination reporter might alter recombinational accessibility of V\(\beta\)14 chromatin. Although we have previously proved that
local chromatin environment imparts lineage and developmental-stage specific recombinational accessibility upon Vβ14Rep (17), it is conceivable that replacement of the Vβ14 RS with Vβ14Rep increases the frequency at which Vβ14 chromatin is rendered recombinationally accessible and the RSs within this region available for RAG binding (17). However, the frequency of Vβ14Rep recombination events is similar to the frequency of Vβ14 rearrangements on alleles containing specific replacement of the Vβ14 RS with the 3'Dβ1 RS (17,19), demonstrating that intrinsic properties of the 5'Dβ1 and Jβ1.1 RSs have negligible ability to promote Vβ14 recombinational accessibility. The ability of the 3'Dβ1 RS to recombine with Jβ RSs, and by extension potential c-fos mediated RAG deposition, requires prior recombinational accessibility of the 3'Dβ1 RS. In this context, gene-targeted insertion of the 3'Dβ1 RS into Vβ14 chromatin would be expected to increase the frequency of RAG binding without affecting Vβ14 recombinational accessibility (19), which was our logic behind using Vβ14Rep to quantify Vβ14 recombinational accessibility independent of Vβ14 synopsis/cleavage with endogenous Dβ-Jβ segments (17).

Recombinational accessibility involves removal of nucleosomes from RSs (65–69). Consensus RSs repress recombinational accessibility in vivo by positioning nucleosomes over themselves, while RSs that lack a consensus nonamer fail to position nucleosomes and exhibit higher rearrangement potential (66). Considering that the 3'Dβ1 RS, but not the Vβ14 RS, contains a consensus nonamer, it seems unlikely that intrinsic properties of the 3'Dβ1 RS would position nucleosomes in a manner that promotes recombinational accessibility more so than the Vβ14 RS. Thus, we interpret our findings within this and prior studies to accurately reflect Vβ14 recombinational accessibility.

Our findings here and before (17) that endogenous Vβ segments can rearrange directly to Vβ14Rep Dβ1 segments that have not recombined with Vβ14Rep Jβ1.1 segments has important implications for mechanisms that direct ordered TCRβ gene rearrangements. We had previously demonstrated that the assembly of endogenous TCRβ variable region exons through DJβ intermediates is not driven solely by intrinsic properties of DJβ/Jβ versus Vβ/Dβ RSSs, indicating that chromosomal factors such as the location or distance between participating gene segments influences their recombination in vivo (19). Since then two groups have shown in vitro and in vivo that RAG proteins bind to 3'Dβ RSs and hinder RAG binding to the adjacent 5'Dβ RSs until deletion of the 3'Dβ RS RAG binding site through Dβ-to-Jβ rearrangement (11,70). One group also demonstrated that c-fos binds 3'Dβ RSs and recruits the RAG proteins, which may help suppress Vβ rearrangements in vivo prior to Dβ-to-Jβ rearrangement (11). Notably, each of these in vivo studies was conducted with endogenous TCRβ loci or chromosomally-integrated TCRβ mini-loci in which the 3'Dβ RSs were in their native location relative to the germline Dβ promoters that function with the TCRβ (or heterologous) enhancer to direct Dβ-Jβ recombinational accessibility. In contrast, our in vivo study analyzes TCRβ rearrangements involving DJβ1-Jβ1.1 genomic sequences outside of their native location. Our data reveal that completion of Dβ-to-Jβ recombination before Vβ-to-DJβ rearrangement depends upon the chromosomal location of DJβ1-Jβ1.1 and reveals that neither c-fos dependent nor c-fos independent RAG deposition upon 3'Dβ RSs are sufficient to direct ordered TCRβ rearrangements. Thus, the location of Dβ-Jβ segments relative to their germline Dβ promoters and/or the TCRβ enhancer may be critical for directing the assembly of endogenous TCRβ variable region exons through DJβ intermediates.

The observation that expression of transgenic pre-assembled VβDJβ rearrangements prevented endogenous Vβ-to-DJβ rearrangements, but not Dβ-to-Jβ rearrangements, led to the hypothesis that TCRβ mediated feedback signals inhibit recombinational accessibility of Vβ segments (47,71). Consistent with this notion, TCRβ mediated down-regulation of E47 transcription factor binding to the locus leads to decreased Vβ chromatin accessibility in DN cells (29). However, a clear mechanistic link between recombinational accessibility and general

J Immunol. Author manuscript; available in PMC 2011 February 1.
chromatin accessibility or transcriptional accessibility is lacking for V\(\beta\) segments. Our study, which directly investigates the effect that TCR\(\beta\) mediated feedback signals have upon V\(\beta\) recombinational accessibility in vivo, reveals that RAG access to V\(\beta\)14 chromatin is maintained in thymocytes expressing pre-assembled V\(\beta\)DJ\(\beta\) rearrangements. It had previously been demonstrated that germline V\(\alpha\)14 segments remain recombinationally accessible in DP thymocytes expressing a classical TCR\(\beta\) transgene and that DP cells attempting V\(\beta\)14-to-DJ\(\beta\) rearrangements are eliminated by apoptosis to maintain TCR\(\beta\) allelic exclusion (33). Yet, the mechanisms by which TCR\(\beta\) mediated feedback signals inhibit V\(\beta\)14 rearrangements in DN cells were never explored. As discussed below, our current observation indicates that TCR\(\beta\)-mediated feedback signals must inhibit endogenous V\(\beta\)14-to-DJ\(\beta\) rearrangements in DN thymocytes through mechanisms other than down-regulation of RAG access to V\(\beta\)14 chromatin.

The physiological relevance of conclusions reached from studies of TCR\(\beta\) feedback regulation using mice that express transgenic V\(\beta\)DJ\(\beta\) rearrangements has been questioned due to their accelerated early thymocyte development (28). Rapid progression through the DNIII stage could be due to aberrantly high and/or premature expression of TCR\(\beta\) chains driven by multiple integrated copies of the transgenic V\(\beta\)DJ\(\beta\) rearrangement (28,47). Such accelerated development could prevent normal initiation of V\(\beta\) recombinational accessibility or TCR\(\beta\) locus looping. We have shown here that \(\beta\)-selection is enhanced in the DNIII thymocyte populations of mice containing pre-assembled V\(\beta\)DJ\(\beta\) rearrangements due to the premature and invariant expression of TCR\(\beta\) chains, even those expressed from a single copy of an endogenous V\(\beta\)14DJ\(\beta\)1.4 rearrangement. However, expression of either pre-assembled V\(\beta\)DJ\(\beta\) rearrangements prior to initiation of endogenous V\(\beta\)14-to-DJ\(\beta\) rearrangements enabled us evaluate the effect that TCR\(\beta\) mediated feedback signals have upon V\(\beta\)14 recombinational accessibility. Despite the five-fold decrease in the numbers of DNIII cells where V\(\beta\)-to-DJ\(\beta\) rearrangements occur, the overall level of V\(\beta\)14 recombinational accessibility in DN cells was maintained in cells expressing the TCR\(\beta\) transgene or the endogenous V\(\beta\)14DJ\(\beta\)1.4 rearrangement. These data indicate that the initiation of V\(\beta\)14 recombinational accessibility occurs rapidly, efficiently, and on both TCR\(\beta\) alleles in the majority of thymocytes as they differentiate into the DNIII stage. Whether these V\(\beta\)14 segments remain continually accessible until \(\beta\)-selection/death or cycle through periods of open and shut chromatin conformations, perhaps mediated by repositioning between euchromatin and heterochromatin, remains to be determined.

Why does expression of neither pre-assembled TCR\(\beta\) chain lower the level of rearrangements between V\(\beta\)14\(Rep\) and endogenous D\(\beta\)1-J\(\beta\)1 segments? TCR\(\beta\) locus RS beyond 12/23 joining restrictions mediated by RAG-RS interactions enable functional synapses between 3’D\(\beta\)1/J\(\beta\), 3’D\(\beta\)1/5’DJ\(\beta\), and V\(\beta\)5’DJ\(\beta\) RSs, but not between V\(\beta\)14/J\(\beta\) RSs (10,42,72–74). These RS constraints permit only a single rearrangement between endogenous D\(\beta\)1-J\(\beta\)1 and V\(\beta\)14 segments on wild-type TCR\(\beta\) alleles. Replacement of the V\(\beta\)14 RS with 5’D\(\beta\)1, 3’D\(\beta\)1, and J\(\beta\)1.1 RSs on the V\(\beta\)14\(Rep\) allele enables nine possible recombination events between V\(\beta\)14\(Rep\) and the endogenous D\(\beta\)1-J\(\beta\)1 segments. The in vitro recombination efficiency of each of the nine functional RS pairs on the V\(\beta\)14\(Rep\) allele is higher than that of the single compatible V\(\beta\)14/5’D\(\beta\)1 RS pair on the wild-type allele (42). In this context, the overall efficiency of recombination between V\(\beta\)14\(Rep\) and endogenous D\(\beta\)-J\(\beta\) segments on the V\(\beta\)14\(Rep\) allele would be at least one order of magnitude greater than the rate of V\(\beta\)14-to-DJ\(\beta\) rearrangement on the wild-type allele. Thus, one interpretation of our finding that expression of neither pre-assembled TCR\(\beta\) chain inhibits rearrangements between V\(\beta\)14\(Rep\) and endogenous D\(\beta\)-J\(\beta\) segments is that recombination events between these segments occur at such high efficiency that they are refractory to TCR\(\beta\) mediated feedback inhibition. Due to the orientation and location of the V\(\beta\)14\(Rep\) 3’D\(\beta\)1 RS inserted in place of the V\(\beta\)14 RS, rearrangements between V\(\beta\)14\(Rep\) and endogenous D\(\beta\)-J\(\beta\) segments cannot assemble V\(\beta\)14(D)J\(\beta\) exons that encode
functional TCRβ chains. Consequently, analysis of Vβ14-to-DJβ rearrangements and Vβ14 expression in αβ T cells containing specific replacement of the endogenous Vβ14 RS with the 3'Dβ1 RS is required to determine whether TCRβ mediated feedback inhibition of Vβ14-to-DJβ rearrangements, and possibly Vβ14 allelic exclusion, depends upon the inherent properties of Vβ14, Dβ, and Jβ RSs.

Acknowledgments

We thank William DeMuth III for technical expertise in cell sorting.

This work was supported by the Department of Pathology and Laboratory Medicine and Center for Childhood Cancer Research of the Children’s Hospital of Philadelphia (C.H.B.) and the Abramson Family Cancer Research Institute (C.H.B.). A.C.C. is supported by the Training Program in Immune System Development and Regulation of the University of Pennsylvania. M.A.W.R. is supported by the Training Program Rheumatic Disease of the University of Pennsylvania (ST32-AR007442-23). B.L.B. is supported by a Training Grant TG GM-0729 of the University of Pennsylvania. C.H.B. is a Pew Scholar in the Biomedical Sciences.

References

Figure 1. Vβ8Tg and Vβ14NT/WT mice exhibit TCRβ allelic exclusion

(A) Schematic representation of the transgenic Vβ8Tg and endogenous Vβ14NT loci. Open boxes depict Vβ, Dβ, Jβ, and Cβ segments. Closed circles depict the TCRβ enhancer (Eβ) and the promoters of the pre-assembled VβDβJβ rearrangements, with arrows indicating the direction of sense VβDβJβ transcripts. Triangles show the 5’Dβ1/Vβ14 RSS join. (B) Shown are representative anti-Cβ, by anti-Vβ8 or anti-Vβ14 FACS analysis of cells isolated from the thymuses and spleens of wild-type, Vβ8Tg, and Vβ14NT/WT mice.
Figure 2. Grossly normal αβ T cell development in Vβ8 Tg and Vβ14 NT/WT mice
(A) Bar graphs showing the average number of thymocytes and splenocytes from at least five mice of each genotype. The error bars are standard error of the mean. (B) Shown are representative anti-CD4 and anti-CD8 FACS analysis of cells isolated from the thymuses and spleens of wild-type, Vβ8 Tg, and Vβ14 NT/WT mice. The percentage of DN, DP, CD4+ SP, and CD8+ SP thymocytes and CD4+ and CD8+ αβ T cells is depicted. (C–D) Bar graphs showing the average frequency of (C) DN, DP, CD4+ SP, and CD8+ SP thymocytes and (D) CD4+ and CD8+ αβ T cells from at least five mice of each genotype. The error bars are standard error of the mean. Significant differences have been calculated using a two-tailed Student's t-test.
Figure 3. Accelerated early thymocyte development in Vβ8^Tg and Vβ14^WT/NT mice
(A) Shown are representative anti-CD117 and anti-CD25 FACS analysis of thymocytes gated on cells negative for mature cells markers (TCRβ, TCRδ, CD4, CD8α, CD19, CD11c, CD11b, B220 and NK1.1). (B) Bar graphs showing the average frequency of ETP, DNII, DNIII, DNIII/DNIV, and DNIV thymocytes at least five mice of each genotype. The error bars are standard error of the mean. Significant differences have been calculated using a two-tailed Student's t-test.
Figure 4. β-selection is enhanced in Vβ8Tg and Vβ14NT/WT mice
(A) Shown are representative histograms of anti-Vβ8 and anti-Vβ14 FACS analysis of DNIII thymocytes isolated from wild-type, Vβ8Tg, and Vβ14NT/WT mice. (B) Shown are representative Western blot analysis of cyclin D3 and tubulin protein expression in total thymocytes of wild-type, Vβ8Tg, and Vβ14NT/WT mice. (C) Shown are representative BrdU FACS analysis of ETP, DNII, DNIII, and DNIV thymocytes of wild-type, Vβ8Tg, and Vβ14NT/WT mice. The percentage of BrdU+ cells is indicated. (D) Shown are representative anti-Cδ and anti-Cβ FACS analysis of cells isolated from the thymuses and spleens of wild-type, Vβ8Tg, and Vβ14NT/WT mice. The percentage of Cδ+ T cells is depicted.
Figure 5. Vβ14 recombinational accessibility is maintained in thymocytes expressing a pre-assembled TCRβ gene

(A) Schematic representation of germline and DJβ rearranged Vβ14Rep alleles indicating the positions of the PCR primers and probe used analysis of Vβ14Rep DJβ-to-Jβ recombination events. The sizes of PCR products amplified from germline and DJβ rearranged Vβ14Rep alleles are indicated. (B) PCR analysis of Vβ14Rep DJβ-to-Jβ recombination events conducted on equal amounts of genomic DNA isolated from sort-purified DN and DP thymocytes of Vβ14Rep/WT and Vβ14Rep/NT mice. Shown are short and long exposures with the PCR product identities indicated. (C) Schematic representations of germline wild-type TCRβ (Vβ14WT) and Vβ14Rep loci, as well as the configurations of Vβ14Rep alleles that have undergone Vβ14Rep

J Immunol. Author manuscript; available in PMC 2011 February 1.
Dβ-to-Jβ rearrangements or the rearrangement of endogenous (End) Vβ, Dβ, or Jβ segments to the Vβ14Rep Dβ1 segment. Open boxes depict Vβ, Dβ, Jβ, and Cβ segments. Black triangles indicate 23-RSs and open triangles indicate 12-RSs. Also labeled are the signal join (SJ) formed during endogenous Jβ rearrangements to Vβ14Rep, the Dβ1-Dβ1 coding join formed during endogenous Dβ rearrangements to the Vβ14Rep Dβ1 segment, and the Vβ1-Dβ1 coding join formed during endogenous Vβ rearrangements to the Vβ14Rep Dβ1 segment.
Table I

A. Endogenous Vβ14 rearrangements in Vβ8^Tg and Vβ14^NT/WT αβ T cell hybridomas

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Total Number Cells</th>
<th>Vβ14Dβ1Jβ1 Rearrangements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vβ8^Tg</td>
<td>77</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Vβ14^NT/WT</td>
<td>86</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

B. Endogenous Dβ1-Jβ1 rearrangements in Vβ8^Tg and Vβ14^NT/WT αβ T cell hybridomas

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Total Number Cells</th>
<th>Dβ1-Jβ1 Germline</th>
<th>Dβ1Jβ1 Rearranged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vβ8^Tg</td>
<td>77</td>
<td>5 (6%)</td>
<td>72 (94%)</td>
</tr>
<tr>
<td>Vβ14^NT/WT</td>
<td>86</td>
<td>5 (6%)</td>
<td>81 (94%)</td>
</tr>
</tbody>
</table>
Table II

A. Vβ14Rep rearrangements in Vβ14Rep/WT, Vβ8Tg::Vβ14NT/WT, and Vβ14Rep/NT αβ T cell hybridomas

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Total Number Cells</th>
<th>Vβ14Rep Rearrangements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vβ14Rep/WT</td>
<td>67</td>
<td>47 (73%)</td>
</tr>
<tr>
<td>Vβ8Tg::Vβ14Rep/WT</td>
<td>66</td>
<td>52 (79%)</td>
</tr>
<tr>
<td>Vβ14Rep/NT</td>
<td>185</td>
<td>105 (58%)</td>
</tr>
</tbody>
</table>

B. Vβ14Rep recombination events in Vβ14Rep/WT, Vβ8Tg::Vβ14NT/WT, and Vβ14Rep/NT αβ T cell hybridomas

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Total Number Cells</th>
<th>Vβ14Rep Recombination Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vβ14Rep/WT</td>
<td>67</td>
<td>Vβ14Rep Dββ-to-Jββ 36 (54%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Djβ-Jβ to Vβ14Rep 7 (10%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vβ to Vβ14Rep 4 (6%)</td>
</tr>
<tr>
<td>Vβ8Tg::Vβ14Rep/WT</td>
<td>66</td>
<td>Vβ14Rep Dββ-to-Jββ 37 (56%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Djβ-Jβ to Vβ14Rep 7 (11%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vβ to Vβ14Rep 8 (12%)</td>
</tr>
<tr>
<td>Vβ14Rep/NT</td>
<td>185</td>
<td>Vβ14Rep Dββ-to-Jββ 82 (44%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Djβ-Jβ to Vβ14Rep 19 (10%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vβ to Vβ14Rep 4 (2%)</td>
</tr>
</tbody>
</table>