BN/Graphene/BN Transistors for RF Applications

The MIT Faculty has made this article openly available. **Please share** how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/LED.2011.2160611</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers (IEEE)</td>
</tr>
<tr>
<td>Version</td>
<td>Author’s final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Mar 16 05:17:46 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/74004</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike 3.0</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/3.0/</td>
</tr>
</tbody>
</table>
BN/Graphene/BN Transistors for RF Applications

Han Wang1, Thiti Taychatanapat1, Allen Hsu1, Kenji Watanabe2, Takashi Taniguchi2, Pablo Jarillo-Herrero1, and Tomas Palacios1

Abstract—In this letter, we demonstrate the first BN/Graphene/BN field effect transistor for RF applications. The BN/Graphene/BN structure can preserve the high mobility of graphene, even when it is sandwiched between a substrate and a gate dielectric. Field effect transistors (FETs) using a bilayer graphene channel have been fabricated with a gate length Lg=450 nm. A current density in excess of 1 A/mm and DC transconductance close to 250 mS/mm are achieved for both electron and hole conductions. RF characterization is performed for the first time on this device structure, giving a current-gain cut-off frequency fT=33 GHz and an fmax product of 15 GHz μm. The improved performance obtained by the BN/Graphene/BN structure is very promising to enable the next generation of high frequency graphene RF electronics.

Index Terms—Graphene Field Effect Transistors (GFET), radio frequency (RF), hexagonal boron nitride (hBN).

I. INTRODUCTION

Graphene is a one-atom-thick layer of carbon atoms arranged in a honeycomb lattice through sp² bonding [1]. Considered for many years an impossible goal, the isolation of graphene triggered a revolution not only among condensed-matter physicists but also among chemists and engineers, eager to take advantage of its unique properties [2]. The advantages of graphene for radio-frequency (RF) applications derive in part from its high electron and hole mobility, which can exceed 100,000 cm²/V.s at T=240 K [3]. In addition, the combination of the unique properties of this material, with new device concepts and nanotechnology may overcome some of the main limitations of traditional RF electronics in terms of maximum frequency, linearity and power dissipation [4, 5]. Recently, high frequency graphene field effect transistors (GFET) have been demonstrated by several groups [6, 7]. However, despite the excellent RF performance achieved, these devices have carrier mobilities below 2,000 cm²/V.s, which are mainly limited by the interaction of graphene with the substrate and gate dielectric.

Most of today’s RF GFETs are fabricated on either SiO₂ [7] or SiC [6] substrate. Graphene was first isolated on SiO₂ due to the ability to identify single layer graphene using optical microscopes while the growth of graphene on SiC provides a natural substrate for these devices. However, neither SiO₂ nor SiC are ideal substrates for graphene. One problem with thermally grown SiO₂ (a few hundred nm thick) is that it often leads to a high surface roughness, as shown in Figure 1(a). In addition, the oxide typically has a large density of charge traps and defects. Graphene on SiC, on the other hand, suffers from a terraced rough substrate surface that can limit device performance by scattering charge carriers flowing in the active graphene layer [8]. Hence, in order to take full advantage of the ultra high mobility promised by graphene, we need to either remove the substrate [3] or use a better one. Although suspended graphene sheets have shown the highest mobility ever measured at room temperature in any semiconductor, the fragile suspended graphene membrane leads to many fabrication challenges and reliability issues. An alternative approach is to use a better substrate, such as hexagonal boron nitride (hBN) [9-11], which has the same atomic structure as graphene and shares many of its properties. The 2D planar structure of hBN also gives this material an ultra flat surface (Figure 1(a)) that is also free of dangling bonds and charge traps. Hence, it provides an ideal environment for graphene to sit on. Recent work has shown carrier mobility as high as 40,000 cm²/V.s in bilayer graphene (BLG) on hBN at room temperature [9].

In this work, we demonstrate the first BN/Graphene/BN RF field effect transistor, which has hBN as both the substrate and the gate dielectric with bilayer graphene as the channel material. This novel structure can preserve the high carrier mobility in the bilayer graphene channel and hence has a great potential for high frequency transistor applications.

II. BN/GRAPHENE/BN FETS

The fabrication process of the BN/Graphene/BN devices studied in this work is summarized in Figure 2(a-d). A hexagonal boron nitride flake is first exfoliated on a SiO₂/Si substrate. A separate SiO₂/Si sample is then coated with polyvinyl acetates (PVA) and polymethyl methacrylate (PMMA); and bilayer graphene flakes from natural graphite are exfoliated on top of the PMMA and transferred using the technique described in Ref. [10]. A flip chip bonder is used in the transfer process to allow for an accurate alignment between the hBN flake and the bilayer graphene flake. The alignment accuracy is within 1-2 μm. Figure 2(e) shows an optical micrograph of a bilayer graphene flake transferred on top of an

This work was partially supported by the Army Research Laboratory and the ONR GATE MURI program. P. J.-H. also acknowledges support by NSF Career Award (no. 0845287).

1Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: hanw@mitl.mit.edu).
2National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
The contact to sGs 2G-s consists of 285 nm SiO2 substrate forms the bottom gate of the device with a dielectric thickness of 8.6 nm as measured by atomic force microscopy (AFM), which gives a top-gate capacitance of 0.39 μF/cm². The conductive Si substrate forms the bottom gate of the device with a dielectric consisting of 285 nm SiO2 plus the hBN substrate layer. The top and bottom gate capacitances ratio is Ctg/Cbg ≈ 30.

III. RESULTS AND DISCUSSIONS

Figure 3(a) shows the transfer characteristics (ID2S vs. VGS) of the fabricated transistor. At VDS=1 V, the device achieves a high current density close to 1.2 A/mm. The minimum conduction point of the transistor is very close to 0 V. This indicates negligible doping effects from both the hBN substrate and the hBN top gate dielectric. Typically, bilayer graphene on hBN substrate produced in our laboratory show Hall mobilities in excess of 15,000 cm²/V.s. In addition, there is very little mobility degradation after the second hBN layer (i.e. the top gate dielectric) is transferred on top. The maximum transconductance gms is close to 250 mS/mm. The extrinsic DC transconductance is mainly limited by the access resistances and gate capacitance, not the mobility.

Figure 4(a) shows the RF performance of the device. With Lg=450 nm and at VDS=1 V, the device has a current-gain cut-off frequency fT=5 GHz and fmax=22 GHz before and after de-embedding the coplanar-waveguide (CPW) pad capacitances, respectively. The de-embedding procedure follows the well-established standard open-short method [13, 6, 7]. In these measurements, the back-gate, i.e. substrate, was grounded.

The substrate bias has a significant effect on the RF performance of the device. With the substrate grounded, the un-gated access regions on both the source and the drain side of the device have their Fermi energy levels located near the Dirac point (the minimum conduction point). This leads to relatively large source and drain access resistances (Rs and Rds). The resistances of these un-gated regions can be reduced through electrostatic doping them by biasing the substrate. This reduction in the resistances significantly increases the frequency performance of the device [14]. For example, Figure 4(b) shows that when the substrate is biased at -30 V, the current gain cut-off frequency increases to 6 GHz and 33 GHz before and after de-embedding.

The DC and RF performance of this device was also compared to a control device fabricated on a SiO2 substrate and with a 16 nm Al2O3 gate dielectric. This control device also uses a bilayer graphene flake exfoliated from natural graphite as the channel material. The Al2O3 gate dielectric is formed by naturally oxidizing 3 nm of e-beam evaporated Al followed by atomic layer deposition of 13 nm Al2O3. The thickness of the Al2O3 gate dielectric was chosen to render the same top gate capacitance as in the BN/Graphene/BN FET. The Hall mobility of our bilayer graphene on SiO2 is typically between 1,500 and 2,000 cm²/V.s [15]. This low mobility is mainly due to the scattering introduced by the SiO2 substrate. The mobility
An improved de-embedding technique was employed. This technique is based on the assumption that the substrate and gate dielectric material are changed during the transfer process; and that after de-embedding, the mobility and gate capacitance of the device are very close to the maximum values.

For similar device dimension and gate capacitances, the BN/Graphene/BN FET shows a peak transconductance (g_m) of 250 mS/mm, which is about 70% higher than that in the control sample that has a peak g_m of only 140 mS/mm (Figure 3). To further analyze and compare the two devices, the virtual source model proposed in Ref. [12] is used to fit their DC characteristics (Figure 3). The model extracts a field-effect mobility of 6,500 cm^2/V·s in the BN/Graphene/BN FET and 1,200 cm^2/V·s in the control device, respectively. This carrier mobility, which is much higher than the control device but relatively low compared to other reported mobility values of bilayer graphene on hBN, is possibly due to bubbles and ripples created during the transfer process; and the measurements being taken at high drain biases (V_DS=1 V) and high current density. The carrier injection velocities are estimated to be about 3.5x10^7 cm/s in the BN/Graphene/BN FET and 2.5x10^7 cm/s in the control device. This gives an indication of the significant advantage that an hBN substrate and dielectric can have over SiO_2 and Al_2O_3 in terms of preserving the high carrier mobility and carrier velocity in graphene. Figure 5 compares the peak f_T of these two devices of equal gate length and gate capacitance. For V_DS=1 V, the BN/Graphene/BN FET has its highest f_T=33 GHz at V_BG=−30 V, and V_TO=0 V while the control sample has its highest f_T=18 GHz at V_BG=−10 V, and V_TO=1 V, demonstrating a significant improvement in peak f_T due to the change of substrate and the gate dielectric material.

IV. CONCLUSION

In this letter, we fabricated the first BN/Graphene/BN RF FET and characterized its DC and RF performances. This new device is also compared to a control GFET with a SiO_2 substrate and an Al_2O_3 gate dielectric. The BN/Graphene/BN structure allows a much higher mobility and carrier velocity than in the case of SiO_2 substrates and Al_2O_3 gate dielectrics. With the same device dimensions, the BN/Graphene/BN device shows a significant improvement in f_T compared to the control device, demonstrating its great potential for applications in high frequency electronic circuits. In addition, recent developments

REFERENCES

