Search for New Physics with Same-Sign Isolated Dilepton Events with Jets and Missing Transverse Energy

Citation

As Published
http://dx.doi.org/10.1103/PhysRevLett.109.071803

Publisher
American Physical Society

Version
Final published version

Accessed
Fri Dec 14 10:50:49 EST 2018

Citable Link
http://hdl.handle.net/1721.1/74062

Terms of Use
Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.

Detailed Terms

Please share how this access benefits you. Your story matters.
Search for New Physics with Same-Sign Isolated Dilepton Events with Jets and Missing Transverse Energy

S. Chatrchyan et al.*
(CMS Collaboration)

(Received 30 May 2012; published 16 August 2012)

A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 fb$^{-1}$ produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.

DOI: 10.1103/PhysRevLett.109.071803

PACS numbers: 12.60.Jv, 13.85.Rm, 14.80.Ly

The standard model (SM) is a very successful theory of elementary particles and their interactions. It is generally believed that new physics (NP) could manifest itself at the TeV scale. Supersymmetry (SUSY) is one of these attractive possibilities. It leads to gauge coupling unification at very high energy, provides a mechanism to mitigate large radiative corrections to the Higgs mass and, in its R-parity-conserving [1] realization, can provide a dark matter candidate. A comprehensive program of searches for the production of supersymmetric particles has been underway since 2010 at the Large Hadron Collider (LHC). Since SUSY models vary widely, these searches target a broad range of possible final states, including purely hadronic states [2,3], leptonic states with one lepton [4,5], two leptons of the opposite sign [6,7], two leptons of the same sign [6,8], and three or more leptons [9], as well as photonic final states [10,11].

In this Letter we report on a search for NP based on isolated same-sign (SS) dileptons, missing transverse energy (E_T^{miss}), and hadronic jets. In SUSY SS dileptons can arise, for example, from pair production of colored superpartners (gluinos and/or squarks), with a lepton in the decay chain of each primary SUSY particle [12–14]; more generally, this signature is sensitive to final states with same-sign W bosons and/or top quarks [15–20]. The rarity of SS dileptons in the SM makes a NP search in this final state particularly attractive.

All types of charged leptons, e, μ, and hadronically decaying τs, are included in our search. These final states are indicators of the possible presence of SUSY particles as well as other possible NP scenarios. The results are based on a data sample corresponding to 4.98 \pm 0.11 fb$^{-1}$ of pp collisions at a center-of-mass energy of 7 TeV collected in 2011 by the Compact Muon Solenoid (CMS) [21] experiment at the LHC. This study results in a major improvement in sensitivity with respect to the search performed with data collected in 2010 [8] because of the 140-fold increase in the integrated luminosity of the data sample. These results are interpreted using the constrained minimal supersymmetric extension of the standard model (CMSSM) [22]. In addition, this analysis provides information on the event selection and detector response in order to facilitate the application of our results to a broader range of NP scenarios.

A detailed description of the CMS detector is found elsewhere [21]. Its central feature is a superconducting solenoid providing an axial magnetic field of 3.8 T. Muons are measured in gas detectors embedded in the steel return yoke of the magnet, while all other particle detection systems are located inside the bore of the solenoid. Charged particle trajectories are measured by a silicon pixel and strip tracker system, covering $|\eta| < 2.5$, where the pseudorapidity is defined as $\eta = -\ln[\tan(\theta/2)]$, and θ is the polar angle with respect to the counterclockwise beam direction. A crystal electromagnetic calorimeter (ECAL) and a brass-scintillator hadronic calorimeter surround the tracker volume. In addition, the CMS detector has an extensive forward calorimeter and nearly hermetic 4π coverage. The CMS trigger consists of a two-stage system. The first level of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select a subset of the events. The high level trigger processor farm further decreases the event rate from around 100 kHz to around 300 Hz, before data storage.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
All lepton candidates are required to have $|\eta| < 2.4$ and to be consistent with a common interaction vertex. Muon candidates are reconstructed [23] by matching tracks in the silicon detector to signals in the muon system. The reconstruction of muons is refined further by imposing track quality and calorimeter energy deposition requirements. Electron candidates are reconstructed [24] starting from a cluster of energy deposits in the ECAL, which is then matched to signals in the silicon tracker. The energy shower in the ECAL must have a shape consistent with the extrapolated track. Both electrons and muons are required to be isolated from other activity in the event. This is achieved using a scalar sum of transverse track momenta and transverse calorimeter energy deposits, within $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.3$ of the candidate’s direction, where ϕ is the azimuthal angle. The sum is required to be less than 15% of the candidate’s transverse momentum (p_T). Hadronic τ candidates are reconstructed using the Hadron plus Strip algorithm [25]. We select isolated hadronic τ candidates with one or three charged hadrons in a narrow cone around the τ direction.

Jets and E_T^{miss} are reconstructed using the particle-flow technique [26,27]. For jet clustering, the anti-k_T algorithm is used with the distance parameter $R = 0.5$ [28]. We require selected jets to have $p_T > 40$ GeV and $|\eta| < 2.5$ to be considered for analysis. The H_T is defined to be the scalar sum of the p_T of all selected jets whose angular distance to the nearest lepton satisfies $\Delta R > 0.4$. Events are required to have two same-sign leptons and at least two jets. A minimum dilepton invariant mass of 8 GeV is required in order to suppress the low-mass dilepton background. Events having a third lepton are removed if two of the leptons form a Z boson candidate with an invariant mass within ± 15 GeV of the Z boson mass.

Three selection strategies are followed to maximize the sensitivity to the presence of NP. The first one is to use a fully efficient dilepton and H_T based trigger in the ee, $\mu\mu$, and $e\mu$ channels with $p_T^e > 5$ GeV and $p_T^\mu > 10$ GeV, and a requirement of $H_T > 200$ GeV applied to the offline reconstructed objects. The second strategy trades an increased lepton p_T threshold against a reduced H_T threshold. Here both leptons are required to have $p_T > 10$ GeV and at least one to have $p_T > 20$ GeV. Such events are collected with a purely leptonic trigger with no requirement on H_T. The third strategy focuses on ee, $\tau\mu$ and $\tau\tau$ final states with $p_T^e > 5$ GeV, $p_T^\mu > 10$ GeV, and $p_T^\tau > 15$ GeV. Triggers for hadronic τ-leptons typically lead to high rates. For this reason dedicated triggers are used that rely on significant H_T and E_T^{miss}, in addition to the presence of a single lepton or two hadronic τ-leptons.

Using R-parity-conserving SUSY as a guiding example, we note that the simplest incarnation of the topology probed by this analysis involves three distinct mass scales. In this example, these masses would belong to the gluino, chargino, and lightest SUSY particle (LSP). The mass differences of these particles can strongly influence the kinematics of the final-state objects, hence affecting several main observables used in this analysis: lepton p_T, H_T, and E_T^{miss}. Therefore, in order to maximize the sensitivity of our analysis to a variety of NP scenarios, we define multiple search regions in the (H_T, E_T^{miss}) plane: Region 1 ($H_T > 80$ GeV, $E_T^{\text{miss}} > 120$ GeV), Region 2 ($H_T > 200$ GeV, $E_T^{\text{miss}} > 120$ GeV), Region 3 ($H_T > 450$ GeV, $E_T^{\text{miss}} > 50$ GeV), Region 4 ($H_T > 450$ GeV, $E_T^{\text{miss}} > 120$ GeV), and Region 5 ($H_T > 450$ GeV, $E_T^{\text{miss}} > 0$ GeV). The H_T requirements of 200 GeV and 450 GeV are also motivated in part by trigger thresholds. A scatter plot of events observed in these search regions is shown in Fig. 1.

The background for the same-sign dilepton topology has three components: irreducible background from rare SM processes; leptons resulting from semileptonic decays within a jet, or jets mimicking leptons in events with zero or one genuine isolated lepton; and opposite-sign dilepton events where the charge of one of the two leptons has been mismeasured.

The irreducible backgrounds are dominated by $t\bar{t} + W^+W^-, W^+W^-qq$, and W^+Z production, combining in similar parts to about 95% of the total. The remaining contributions originate from processes such as triboson and ZZ production, $W^+Z + \gamma$, and double-parton scattering $2 \times (q\bar{q} \rightarrow W^\pm)$, in descending order of importance. All irreducible backgrounds are estimated using leading-order Monte Carlo simulation normalized to the next-to-leading-order (NLO) production cross sections. Events are generated with the MADGRAPH [29] event generator and then passed on to PYTHIA [30] for parton showering.

FIG. 1 (color online). Selected SS dilepton events in the various search regions displayed in the H_T, E_T^{miss} plane.
and hadronization. The generated events are processed by the CMS event simulation and the same chain of reconstruction programs used for collision data. A 50% systematic uncertainty is assigned to this irreducible background prediction. These processes constitute 35%–75% of the total background, depending on the search region.

The background due to lepton candidates originating from jets, hereafter referred to as nonprompt, forms 20%–60% of the total background. Such candidates can be genuine leptons, for example, from heavy-flavor decays, hadrons reconstructed as leptons, or jets fluctuating to give hadronic τ signatures. We have developed and validated a set of techniques to measure this background from data. In each case, a tag-and-probe method is applied to a control sample rich in two-jet events containing leptons selected with loose requirements to measure the conditional probability that the probe jet yields a candidate passing tight lepton requirements. This probability, measured as a function of jet kinematics and event characteristics, is then applied to signal sidebands to estimate nonprompt lepton backgrounds. This suite of techniques encompasses a range of control samples, jet tags, lepton requirements, and variations in the jet kinematics to provide independent and complementary assessments of 50% systematic uncertainties. Full details are given in Ref. [8]. At least two techniques are used in all non-τ dilepton modes and they yield consistent results within their respective uncertainties.

We quantify backgrounds from events with lepton charge misreconstruction by analyzing SS ee or ττ events inside the Z mass peak [8]. This background forms less than 5% of the total background across all search regions. The charge misreconstruction probability for muons is of the order of 10⁻⁵ and can be neglected.

We determine the performance of the background prediction methods using the low \(H_T \) and low \(E_T^{\text{miss}} \) region in the data that is expected to be dominated by SM events. We find good agreement between observed yields and the predicted background.

We show the predicted background contributions from each source mentioned above as well as the observed event yields in Fig. 2 and summarize them in Table I for each search region. The beam related multiple interactions do not alter these results. There is no evidence of an excess over the expected SM predictions. This measurement is used together with the uncertainty on the signal acceptance to set an upper limit (UL) on the contribution from NP events.

We measure the electron and muon selection efficiencies in data and simulation using Z events to derive simulation-to-data correction factors. The uncertainty on the combined lepton selection efficiency decreases with lepton \(p_T \), from 5% at the lowest \(p_T \) to 3% above 20 GeV. We assign an additional 5% systematic uncertainty per lepton to cover potential mismodeling of the lepton isolation efficiency due to varying hadronic activity in signal events. We estimate in a sample of \(Z \rightarrow \tau \tau \) events the uncertainty on the \(\tau \) selection and reconstruction efficiency to be 10% [25].

We conservatively choose to attribute a flat uncertainty of 7.5% to the energy measurement of all jets as well as to the hadronic component used for the \(E_T^{\text{miss}} \) observable. The cumulative effect of this uncertainty on the signal acceptance is intrinsically model dependent. We observe uncertainties below 3% for models with characteristically high \(H_T \) scales, well above the \(H_T \) requirements. For models with characteristic \(H_T \) scales near or below the \(H_T \) requirements, uncertainties due to jet energy calibration can be as high as 30%.

The theoretical uncertainties on the signal acceptance due to the modeling of initial- and final-state radiation and knowledge of the parton distribution functions are estimated to be 2%. Using the LM6 benchmark model (CMSSM point with \(m_0 = 85 \) GeV, \(m_{1/2} = 400 \) GeV, \(\tan \beta = 10 \), \(A_0 = 0 \), and \(\mu > 0 \) [31] as a signal model, the total experimental and theoretical uncertainties in the signal yield add up to 14% or 20% depending on the search region. This includes a 2.2% systematic uncertainty in the integrated luminosity [32].

We set a 95% confidence level (CL) upper limits on the number of observed events using the modified frequentist construction CL\(_s \) method [33–35]. We assume log-normal distributions for the efficiency and background uncertainties. As a reference, we provide in Table I the upper limits based on a 20% signal acceptance uncertainty.

In order to compare our signal sensitivity to that of other searches for SUSY, we interpret the results in the context of the CMSSM model. We compare the observed upper limits on the number of signal events reported in Table I to the expected number of events in each signal region in the CMSSM model in a plane of \((m_0, m_{1/2})\) for \(\tan \beta = 10 \).
TABLE I. Observed number of events in data compared to the predicted background yields for the considered search regions. The uncertainties include the statistical and systematic components added in quadrature with correlations taken into account. The 95% CL upper limit (UL) on the contribution from NP events is also given.

<table>
<thead>
<tr>
<th>Region</th>
<th>Mode or p_T threshold</th>
<th>Total</th>
<th>UL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$p_T^{l_1l_2}$ $> 20, 10$ GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High p_T: $p_T^{e\mu}$ $> 20, 10$ GeV</td>
<td>ee</td>
<td>$\mu\mu$</td>
<td>$e\mu$</td>
</tr>
<tr>
<td>1</td>
<td>6.8 ± 2.7</td>
<td>8.6 ± 3.3</td>
<td>18.7 ± 6.9</td>
</tr>
<tr>
<td>2</td>
<td>4.3 ± 1.9</td>
<td>6.1 ± 2.4</td>
<td>12.2 ± 4.6</td>
</tr>
<tr>
<td>3</td>
<td>3.8 ± 1.7</td>
<td>3.1 ± 1.4</td>
<td>6.1 ± 2.4</td>
</tr>
<tr>
<td>4</td>
<td>1.1 ± 1.1</td>
<td>1.2 ± 1.2</td>
<td>2.6 ± 1.4</td>
</tr>
<tr>
<td>5</td>
<td>9.1 ± 3.6</td>
<td>4.7 ± 1.9</td>
<td>9.8 ± 3.7</td>
</tr>
<tr>
<td>Low p_T: $p_T^{e}\mu$ $> 10, 5$ GeV</td>
<td>ee</td>
<td>$\mu\mu$</td>
<td>$e\mu$</td>
</tr>
<tr>
<td>2</td>
<td>4.4 ± 1.8</td>
<td>14.1 ± 6.0</td>
<td>16.5 ± 6.4</td>
</tr>
<tr>
<td>3</td>
<td>3.4 ± 1.6</td>
<td>6.5 ± 2.8</td>
<td>8.9 ± 3.6</td>
</tr>
<tr>
<td>4</td>
<td>1.0 ± 0.8</td>
<td>2.4 ± 1.2</td>
<td>3.2 ± 1.5</td>
</tr>
</tbody>
</table>

Tau channels: $p_T^{e\tau}$ $> 10, 5, 15$ GeV

<table>
<thead>
<tr>
<th>Region</th>
<th>Mode or p_T threshold</th>
<th>Total</th>
<th>UL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$e\tau$</td>
<td>$\mu\tau$</td>
<td>$\tau\tau$</td>
</tr>
<tr>
<td>4</td>
<td>2.6 ± 1.0</td>
<td>4.4 ± 2.2</td>
<td>0.0 ± 0.1</td>
</tr>
</tbody>
</table>

For each point in the CMSSM, we choose the signal region providing the best expected upper limit on the cross section to evaluate the observed limit; in all cases the best limit is achieved in Region 4, where high p_T leptons, large $H_T > 450$ GeV, and $E_T^{\text{miss}} > 120$ GeV are required. We interpret all points having mean expected values above the corresponding observed upper limit as excluded at the 95% CL. For this exercise the systematic uncertainty on the signal acceptance is re-evaluated for each point in order for the upper limit to reflect the varying influences of the jet energy scale uncertainty. We display the observed exclusion region in Fig. 3. For $m_0 > 1.3$ TeV, the exclusion curve flattens out at about $m_{1/2} \sim 290$ GeV, which corresponds to a winolike χ_T^+ mass of ~200 GeV. The new result extends the excluded CMSSM region to gluino masses of 710 GeV. This exclusion includes a -1σ reduction to account for theory uncertainty [36–44] on the cross section; the limit is independent of the squark masses.

One of the challenges of signature-based searches is to convey information in a form that can be used to test a variety of NP models. In Ref. [8], additional information is presented that can be used to confront NP models in an approximate way through generator-level simulation studies. The approximate model of lepton, jet, and E_T^{miss} selection efficiencies in terms of the generator-level quantities are shown to be sufficiently accurate to reproduce the constraints on NP models that otherwise would require the full CMS detector simulation. The efficiency dependence can be parameterized as a function of p_T (expressed in GeV) as $0.72[\text{erf}(p_T/10)/22.5] + 0.22[1 - \text{erf}(p_T/10)/22.5]$ for electrons, $0.79[\text{erf}(p_T/5)/19.5] + 0.41[1 - \text{erf}(p_T/5)/19.5]$ for muons, and $0.341 - \text{exp}[-0.052(p_T - 15)]$ for taus, where erf is the error function. We studied the efficiency for an event to pass a given reconstructed E_T^{miss} (H_T) threshold as a function of the generator-level E_T^{miss} (H_T), where in the latter case E_T^{miss} is computed using neutrinos and the LSPs and H_T is the scalar sum of the transverse momenta of the partons that satisfy the same jet selection criteria used in this analysis. The dependences are parameterized by $0.5\epsilon_\infty[\text{erf}(x - x_{1/2})/\sigma] + 1$, where x corresponds to the generator-level E_T^{miss} or H_T, ϵ_∞ is the selection efficiency plateau at high values of x, $x_{1/2}$ is the value of x corresponding to half the plateau efficiency, and σ determines how fast the efficiency changes with x. For the H_T selections of 200 and 450 GeV, the values of (ϵ_∞, $x_{1/2}$, σ) are (0.997, 185 GeV, 99 GeV), and (0.992, 441 GeV, 120 GeV), respectively. For the E_T^{miss} selections of 50 and 120 GeV, the parameters are (0.999, 43 GeV, 39 GeV), and (0.999,
We have also shown the excluded region in the CMSSM most restrictive limits in this particular final state to date. These are the parameter space.

123 GeV, 37 GeV), respectively. We tested the parameterized efficiency model in the CMSSM, and the results obtained agree at the 15% level with the full simulation results.

In summary, we conducted a search for physics beyond the standard model based on same-sign dileptons in the ee, $\mu\mu$, $e\mu$, $e\tau$, $\mu\tau$, and $\tau\tau$ final states, and find no evidence for an excess over the expected standard model background. We set 95% CL upper limits on contributions from new physics processes based on an integrated luminosity of 4.98 fb$^{-1}$ in the range of 6.2 to 16.9 events, depending on the signal search region. These are the most restrictive limits in this particular final state to date. We have also shown the excluded region in the CMSSM parameter space.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPEMIG, and FAEPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NCPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFS, and HGF (Germany); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST, MAE and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der OeAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14University of Sofia, Sofia, Bulgaria
15Institute of High Energy Physics, Beijing, China
16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
17Universidad de Los Andes, Bogota, Colombia
18Technical University of Split, Split, Croatia
19University of Split, Split, Croatia
20Institute Rudjer Boskovic, Zagreb, Croatia
21University of Cyprus, Nicosia, Cyprus
22Charles University, Prague, Czech Republic
23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25Department of Physics, University of Helsinki, Helsinki, Finland
26Helsinki Institute of Physics, Helsinki, Finland
27Lappeenranta University of Technology, Lappeenranta, Finland
28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS-IN2P3, Strasbourg, France
31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

PRL 109, 071803 (2012) PHYSICAL REVIEW LETTERS week ending 17 AUGUST 2012

071803-12
PRL 109, 071803 (2012) PHYSICAL REVIEW LETTERS

071803-13

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

Konkuk University, Seoul, Korea

Korea University, Seoul, Korea

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico

Kangwon National University, Chunchon, Korea

Kyungpook National University, Daegu, Korea

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
139 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
140 University of Minnesota, Minneapolis, Minnesota, USA
141 University of Mississippi, University, Mississippi, USA
142 University of Nebraska-Lincoln, Lincoln, Nebraska, USA
143 State University of New York at Buffalo, Buffalo, New York, USA
144 Northeastern University, Boston, Massachusetts, USA
145 Northwestern University, Evanston, Illinois, USA
146 University of Notre Dame, Notre Dame, Indiana, USA
147 The Ohio State University, Columbus, Ohio, USA
148 Princeton University, Princeton, New Jersey, USA
149 University of Puerto Rico, Mayaguez, USA
150 Purdue University, West Lafayette, Indiana, USA
151 Purdue University Calumet, Hammond, Indiana, USA
152 Rice University, Houston, Texas, USA
153 University of Rochester, Rochester, New York, USA
154 The Rockefeller University, New York, New York, USA
155 Rutgers, The State University of New Jersey, Piscataway, New York, USA
156 University of Tennessee, Knoxville, Tennessee, USA
157 Texas A&M University, College Station, Texas, USA
158 Texas Tech University, Lubbock, Texas, USA
159 Vanderbilt University, Nashville, Tennessee, USA
160 University of Virginia, Charlottesville, Virginia, USA
161 Wayne State University, Detroit, Michigan, USA
162 University of Wisconsin, Madison, Wisconsin, USA

a Deceased.
b Also at Vienna University of Technology, Vienna, Austria.
c Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
d Also at Universidade Federal do ABC, Sã o N d e, Brazil.
e Also at California Institute of Technology, Pasadena, USA.
f Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
g Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
h Also at Suez Canal University, Suez, Egypt.
i Also at Zewail City of Science and Technology, Zewail, Egypt.
j Also at Cairo University, Cairo, Egypt.
k Also at Fayoum University, El-Fayoum, Egypt.
l Also at Ain Shams University, Cairo, Egypt.
m Also at Solt Institute for Nuclear Studies, Warsaw, Poland.
n Also at Université de Haute-Alsace, Mulhouse, France.
o Also at Moscow State University, Moscow, Russia.
p Also at Brandenburg University of Technology, Cottbus, Germany.
q Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
r Also at Eötvös Loránd University, Budapest, Hungary.
s Also at Tata Institute of Fundamental Research - HECR, Mumbai, India.
t Also at University of Visva-Bharati, Santiniketan, India.
u Also at Sharif University of Technology, Tehran, Iran.
v Also at Isfahan University of Technology, Isfahan, Iran.
w Also at Shiraz University, Shiraz, Iran.
\(x\) Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran.
y Also at Facoltà Ingegneria Università di Roma, Roma, Italy.
z Also at Università della Basilicata, Potenza, Italy.
\(aa\) Also at Università degli Studi Guglielmo Marconi, Roma, Italy.
\(bb\) Also at Università degli studi di Siena, Siena, Italy.
\(cc\) Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania.
\(dd\) Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia.
\(ee\) Also at University of Florida, Gainesville, USA.
\(ff\) Also at University of California, Los Angeles, Los Angeles, USA.
Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

Also at INFN Sezione di Roma, Università di Roma “La Sapienza”, Roma, Italy.

Also at University of Athens, Athens, Greece.

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at The University of Kansas, Lawrence, USA.

Also at Paul Scherrer Institut, Villigen, Switzerland.

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

Also at Gaziosmanpasa University, Tokat, Turkey.

Also at Adiyaman University, Adiyaman, Turkey.

Also at The University of Iowa, Iowa City, USA.

Also at Mersin University, Mersin, Turkey.

Also at Ozyegin University, Istanbul, Turkey.

Also at Kafkas University, Kars, Turkey.

Also at Suleyman Demirel University, Isparta, Turkey.

Also at Ege University, Izmir, Turkey.

Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.

Also at University of Sydney, Sydney, Australia.

Also at Utah Valley University, Orem, USA.

Also at Institute for Nuclear Research, Moscow, Russia.

Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

Also at Argonne National Laboratory, Argonne, USA.

Also at Erzincan University, Erzincan, Turkey.

Also at Kyungpook National University, Daegu, Korea.

Now at British University, Cairo, Egypt.