Measurement of the WZ cross section and triple gauge couplings in pp collisions at s=1.96TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Measurement of the WZ cross section and triple gauge couplings in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

(CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2Argonne National Laboratory, Argonne, Illinois 60439, USA
3University of Athens, 157 71 Athens, Greece
4Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5Baylor University, Waco, Texas 76798, USA
6aIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6bUniversity of Bologna, I-40127 Bologna, Italy
7University of California, Davis, Davis, California 95616, USA
8University of California, Los Angeles, Los Angeles, California 90024, USA
9Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
10Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
11Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
12Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
13Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
14Duke University, Durham, North Carolina 27708, USA
15Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
16University of Florida, Gainesville, Florida 32611, USA
17Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
18University of Geneva, CH-1211 Geneva 4, Switzerland
19Glasgow University, Glasgow G12 8QQ, United Kingdom
20Harvard University, Cambridge, Massachusetts 02138, USA
21Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
22University of Illinois, Urbana, Illinois 61801, USA
23The Johns Hopkins University, Baltimore, Maryland 21218, USA
24Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
25Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea
26Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
27University of Liverpool, Liverpool L69 7ZE, United Kingdom
28University College London, London WC1E 6BT, United Kingdom
29Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
30Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
31Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
32University of Michigan, Ann Arbor, Michigan 48109, USA
33Michigan State University, East Lansing, Michigan 48824, USA
34Institute for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
35University of New Mexico, Albuquerque, New Mexico 87131, USA
MEASUREMENT OF THE WZ CROSS SECTION AND ... PHYSICAL REVIEW D 86, 031104(R) (2012)

The Ohio State University, Columbus, Ohio 43210, USA
Okayama University, Okayama 700-8530, Japan
Osaka City University, Osaka 588, Japan
University of Oxford, Oxford OX1 3RH, United Kingdom
Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy
University of Padova, I-35131 Padova, Italy
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
University of Pisa, I-56127 Pisa, Italy
University of Siena, I-56127 Pisa, Italy
Scuola Normale Superiore, I-56127 Pisa, Italy
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
Purdue University, West Lafayette, Indiana 47907, USA
University of Rochester, Rochester, New York 14627, USA
The Rockefeller University, New York, New York 10065, USA
Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma, I-00185 Roma, Italy
Rutgers University, Piscataway, New Jersey 08855, USA
Texas A&M University, College Station, Texas 77843, USA
Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, I-33100 Udine, Italy
University of Udine, I-33100 Udine, Italy
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Tufts University, Medford, Massachusetts 02155, USA
University of Virginia, Charlottesville, Virginia 22906, USA
Waseda University, Tokyo 169, Japan
Wayne State University, Detroit, Michigan 48201, USA
University of Wisconsin, Madison, Wisconsin 53706, USA
Yale University, New Haven, Connecticut 06520, USA
(Received 2 March 2012; published 23 August 2012)

Deceased
With visitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy
With visitor from University of California Irvine, Irvine, CA 92697, USA
With visitor from University of California Santa Barbara, Santa Barbara, CA 93106, USA
With visitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA
With visitor from Institute of Physics, Academy of Sciences of the Czech Republic, Czech Republic
With visitor from CERN, CH-1211 Geneva, Switzerland
With visitor from Cornell University, Ithaca, NY 14853, USA
With visitor from University of Cyprus, Nicosia CY-1678, Cyprus
With visitor from Office of Science, U.S. Department of Energy, Washington, DC 20585, USA
With visitor from University College Dublin, Dublin 4, Ireland
With visitor from ETH, 8092 Zurich, Switzerland
With visitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017
With visitor from Universidad Iberoamericana, Mexico D.F., Mexico
With visitor from University of Iowa, IA City, IA 52242, USA
With visitor from Kinki University, Higashi-Osaka City, Japan 577-8502
With visitor from Kansas State University, Manhattan, KS 66506, USA
With visitor from Ewha Womans University, Seoul, 120-750, Korea
With visitor from University of Manchester, Manchester M13 9PL, United Kingdom
With visitor from Queen Mary, University of London, London, E1 4NS, United Kingdom
With visitor from University of Melbourne, Victoria 3010, Australia
With visitor from Muons, Inc., Batavia, IL 60510, USA
With visitor from Nagasaki Institute of Applied Science, Nagasaki, Japan
With visitor from National Research Nuclear University, Moscow, Russia
With visitor from Northwestern University, Evanston, IL 60208, USA
With visitor from University of Notre Dame, Notre Dame, IN 46556, USA
With visitor from Universidad de Oviedo, E-33007 Oviedo, Spain
With visitor from CNRS-IN2P3, Paris, F-75205 France
With visitor from Texas Tech University, Lubbock, TX 79069, USA
With visitor from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile
With visitor from Yarmouk University, Irbid 211-63, Jordan
This article describes the current most precise measurement of the WZ production cross section as well as limits on anomalous WWZ couplings at a center-of-mass energy of 1.96 TeV in proton-antiproton collisions for the Collider Detector at Fermilab (CDF). WZ candidates are reconstructed from decays containing three charged leptons and missing energy from a neutrino, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector (7.1 fb$^{-1}$ of integrated luminosity), 63 candidate events are observed with the expected background contributing 8 ± 1 events. The measured total cross section $\sigma(p\bar{p} \rightarrow WZ) = 3.93^{+0.69}_{-0.53}(\text{stat})^{+0.59}_{-0.46}(\text{syst})$ pb is in good agreement with the standard model prediction of 3.50 ± 0.21. The same sample is used to set limits on anomalous WZ couplings.

The cross section of this process was first reported by T. AALTONEN et al. [6] in 2007. Subsequently, D0 reported with 1.0 fb$^{-1}$ [7] in 2005, updated with 4.1 fb$^{-1}$ [8] in 2007, and again with 8.6 fb$^{-1}$ [9] in 2012. Limits on anomalous TGCs were reported previously by LEP2 [10], D0 [11], and recently by CMS [12] and ATLAS [13]. All results reported measurements consistent with the standard model. This analysis describes CDF’s most precise measurement of the WZ cross section and TGCs.

In the CDF II detector [14], a particle’s direction is characterized by the azimuthal angle ϕ and the pseudorapidity $\eta = -\ln[\tan(\theta/2)]$, where θ is the polar angle measured with respect to the proton beam direction. The transverse energy E_T is defined as $E \sin \theta$, where E is the energy in the electromagnetic and hadronic calorimeter towers associated with a cluster of energy deposition. The transverse momentum p_T is the particle’s momentum component transverse to the beam line. The magnitude of the p_T for an electron is scaled according to the energy measured in the calorimeter in order to account for momentum loss from final state radiation and bremsstrahlung.

The missing transverse energy vector \vec{E}_T is defined as $-\sum_i E_T^i \vec{\eta}_i$, where the index i loops over all towers of the calorimeter and $\vec{\eta}_i$ is the unit vector in the transverse plane pointing from the interaction point to the energy deposition in calorimeter tower i. The \vec{E}_T is corrected for the p_T of muons, which do not deposit all of their energy in the calorimeter, and tracks that point to uninstrumented regions in the calorimeter. The scalar missing transverse energy is defined as $|\vec{E}_T|$ and denoted as E_T. Strongly interacting partons produced in the $p\bar{p}$ collision undergo fragmentation that results in highly collimated jets of hadronic particles. Jet candidates are reconstructed using the calorimeter signals and are required to have $E_T > 15$ GeV and $|\eta| < 2.5$. Isolated lepton candidates are accepted out to an $|\eta|$ of 2.0 for electron candidates and $|\eta|$ of 1.0 for muon candidates.

The experimental signature for the decay $WZ \rightarrow l\nu ll$ is reconstructed as three charged leptons (electrons or muons) and E_T from the neutrino(s) that escaped undetected. Events are also detected if the W or Z decays to tau lepton(s) and those tau(s) subsequently decay to detectable electrons or muons—these events are considered part of the signal. Consequently, events containing three charged leptons, not all with the same charge, are selected from the data sample. The online event triggering and selection of
lepton candidates are identical to those used in the search for SM Higgs bosons decaying to two W bosons at CDF [2]. Our baseline event selection is to require the leading lepton’s E_T (or p_T for muons) to be above 20 GeV (GeV/c) to satisfy the trigger requirements, while the second and third leptons are allowed to have an E_T (p_T) as low as 10 GeV (GeV/c). Additionally, because the neutrino in the $W \to l \nu$ decay carries undetected energy, the $WZ \to l\nu ll$ process tends to produce events with higher missing energy than the background processes—aside from $t\bar{t}$ whose E_T distribution is also similarly high valued but is a nearly negligible background. We therefore require $E_T > 25$ GeV.

Lastly, the dominant background remaining after these cuts is SM ZZ production. This motivates two more cuts to require one and only one $Z \to ll$ candidate in the event. We make a standard Z boson identification cut by requiring events to have a pair of same-flavor, opposite-signed leptons whose two-lepton mass falls within a window of ± 15 GeV/c^2 around the Z mass. This removes most of the SM backgrounds with no Z in the final state. We note that this cut reduces $Z\gamma \to ll\gamma$ events because the dilepton mass would not reconstruct back to the Z when the γ is emitted by one of the two leptons. In that case, the two-lepton mass underestimates the Z mass because the three-body ($ll\gamma$) mass is what reconstructs the Z.

To further reduce the $ZZ \to llll$ background, we reject any event with an extra track with $p_T > 8$ GeV/c, thereby rejecting events that may have a fourth lepton that failed to be identified. This cut reduces the remaining ZZ background by $\sim 36\%$ while leaving the WZ signal contribution essentially unchanged. Even so, ZZ remains the primary background in this measurement.

There are several SM processes that result in a similar final state to WZ and are backgrounds in this measurement. The aforementioned $ZZ \to llll$ process appears as a background when one of the four leptons fails to be reconstructed by the detector. This leaves three reconstructed leptons with the one lepton failing reconstruction providing the missing energy signature. Drell–Yan events produced in association with hadronic jets that mimic the signature of a third lepton as well as Drell–Yan pairs produced with an associated photon that converts to an electron-positron pair via interaction with the detector are also significant backgrounds. Lastly, top quark pair production ($t\bar{t} \to W^+ bW^- \bar{b}$) provides a minor contribution to the background when one of the subsequent b-quark jets mimics a lepton signature. The sum of these four backgrounds is quite small compared to the expected signal in the signal kinematics region.

The background modeling—with the exception of the $Z +$ jets background—is Monte Carlo simulated. Events from WZ, ZZ, and $t\bar{t}$ are simulated using the PYTHIA [15] generator. The $Z\gamma$ background is determined using the generator described in Ref. [16]. The response of the CDF II detector is modeled with a GEANT3-based simulation [17] program. The expected yields for each process are normalized to the cross sections calculated at partial next-to-leading order ($t\bar{t}$ [18]), next-to-leading order (WZ and ZZ [4]), or leading order with an estimated normalization correction to account for higher orders ($Z\gamma$ [16]). Efficiency corrections for the simulated detector response to lepton candidates are determined using samples of observed $Z \to l^+l^-$ events. The $Z +$ jets background normalization is calculated using the probability that a hadronic jet will be reconstructed as a lepton candidate (the same as is done in CDF’s $H \to WW$ search [2]), which is measured in independent jet-triggered data samples. These probabilities are applied to the jets in the $Z +$ jets data sample to estimate the number of such events that will pass the lepton identification and signal selection criteria. The expected signal and background contributions are given in Table I along with the observed number of events.

The dominant systematic uncertainties on the estimated contributions come from the luminosity measurement (6%) [19] and the simulated acceptances of the signal and background processes. The acceptance uncertainty due to the parton distribution function modeling ranges from 2.1% to 2.7% for the various processes. A 10% uncertainty is assigned to WZ and ZZ processes for the kinematic differences between leading-order and higher-order calculations. The cross section uncertainty is 6% on the ZZ process, 7% on $t\bar{t}$, and 5% on $Z\gamma$. The $Z\gamma$ process has another 20% uncertainty that accounts for possible mismodeling of the rate at which the γ is misidentified as a lepton. Similarly, there is a 25% (23%) uncertainty for $Z +$ jets ($t\bar{t}$) for mismodeling the rate at which light jets (b jets) are misidentified as a lepton. The uncertainty for the modeling of lepton identification is 2% and of trigger efficiencies is 5.4%. Lastly, uncertainties for overall rates for the modeling of jets accounts for 1.2%.

Within the signal kinematic region, we seek to further isolate the signal from background by utilizing a NeuroBayes neural network treatment [3]. In general, the benefits of using a neural network (NN) over a simple

<table>
<thead>
<tr>
<th>Process</th>
<th>Events</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ</td>
<td>3.6</td>
<td>± 0.5</td>
</tr>
<tr>
<td>$Z +$ jets</td>
<td>3.4</td>
<td>± 0.8</td>
</tr>
<tr>
<td>$Z\gamma$</td>
<td>0.8</td>
<td>± 0.3</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>0.1</td>
<td>± 0.04</td>
</tr>
<tr>
<td>Total background</td>
<td>7.9</td>
<td>± 1.0</td>
</tr>
<tr>
<td>WZ</td>
<td>47.4</td>
<td>± 4.8</td>
</tr>
<tr>
<td>Total expected</td>
<td>55.3</td>
<td>± 4.9</td>
</tr>
<tr>
<td>Data</td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>

TABLE I. Expected number of signal (WZ) and background events along with the total number of expected and observed events in the data. Uncertainties include all systematic uncertainties described in the text.
counting experiment are twofold: it can better isolate the signal from the background and provide a single distribution from which the cross section value can be extracted by fitting the data to the shape of the expected physical processes. We train a neural network with a combination of background events and simulated signal events. The input variables for the NN are kinematic quantities selected to exploit differences between signal and background distributions. Starting with many quantities that show relatively small differences in the distributions of backgrounds and signal, a neural network will assign a numerical score whose distribution for backgrounds and signal will be better separated than in any single input quantity alone. The \(\mathbf{p}_T \) is a very useful input quantity for the NN because the \(W \to l\nu \) decay in the signal yields a \(\mathbf{p}_T \) distribution with higher values than the backgrounds. Similarly, the azimuthal angle distribution between the W lepton and the \(\mathbf{p}_T \) is useful for distinguishing WZ from the backgrounds because they do not contain \(W \) decays. The total energy transverse to the beam line deposited by the WZ decay compared to that of background processes and lepton flavor combinations (\(eee, ee\mu, e\mu \) track, etc.) are also examples of NN input variables used.

Figure 1 shows the output of the NN treatment, with backgroundlike events in simulation and data trending toward a value of \(-1\) while signal-like events trend toward \(+1\). Note that \(t\bar{t} \) is represented in Fig. 1, but has too small of a contribution to be visible.

The measured cross section for WZ is extracted from the NN output in Fig. 1 with a binned maximum likelihood fit method. The likelihood function is formed from a product of Poisson probabilities for each bin in the NN output, and Gaussian constraints are applied corresponding to each systematic uncertainty:

\[
\mathcal{L} = \left(\prod_i \frac{\mu_i^n e^{-\mu_i}}{n_i!} \right) \cdot \prod_c e^{(-S_c^2/2)},
\]

(1)

where \(\mu_i \) is the total expectation in the \(i \)th bin, \(n_i \) is the number of data events in the \(i \)th bin, and \(S_c \) is a floating parameter associated with the systematic uncertainty \(c \). The \(\mu_i \) parameter is given by

\[
\mu_i = \sum_k \left(\frac{\sigma_{i, measured}^k}{\sigma_{i, expected}^k} \right) \left(\prod_c \left(1 + f_{k,c}^i S_c \right) \right) \left(N_{i, expected}^k \right).
\]

(2)

The sum \(k \) is over the five processes (one signal and four background) that can contribute to events in bin \(i \), and \(f_{k,i}^c \) is the fractional uncertainty for the process \(k \) due to the systematic uncertainty \(c \). Some systematic uncertainties are common to more than one process and so are correlated. These correlations are accounted for in the definition of \(\mu_i \) through the \(f_{k,i}^c \) parameters. The \(\left(N_{i, expected}^k \right) \) is the expected number of events from process \(k \) in the \(i \)th bin. All the background processes are constrained to their SM expectations by setting the proportion of measured to expected cross section to unity. The likelihood is then maximized with respect to the floating systematic \((S_c) \) and cross section proportion \((\sigma_{measured}/\sigma_{expected})_{WZ} \) parameters, where \(\sigma_{expected} \) is the expected signal cross section and \(\sigma_{measured} \) is the WZ cross section ultimately measured from the data. This method gives a measured value for the WZ cross section of \(\sigma(p\bar{p} \to WZ) = 3.93^{+0.60}_{-0.53}(\text{stat})^{+0.59}_{-0.46}(\text{syst}) \) pb, which is in good agreement with the aforementioned standard model prediction of \(3.50 \pm 0.21 \) [4,5].

The shape and normalization of the \(p_T \) spectrum of the Z boson (Fig. 2) are used to place limits on anomalous TGCs. The most general modification of the WWZ vertex preserving \(C \) and \(P \) separately is parametrized by \(\lambda_Z, g_Z^\gamma \), and \(\kappa_Z \) [20]. In the SM, \(\lambda_Z = \Delta g_Z^\gamma = \Delta \kappa_Z = 0 \) where \(\Delta g_Z^\gamma \) and

FIG. 1 (color online). The NN output for discriminating the WZ signal events from background processes within the selected signal sample. Note that the \(t\bar{t} \) contribution is small enough to not be visible. The processes are stacked.

FIG. 2 (color online). The Z \(p_T \) distributions for data compared to the SM expectation for signal (WZ) and background. Also presented is how the signal expectation would change with the introduction of anomalous couplings near the observed limits. The processes are stacked.
The likelihood of the $Z p_T$ distribution for various anomalous TGC models is used to set limits. The expected $Z p_T$ distribution for a given TGC before the effect of the detector response is obtained using MCFM [4]. The detector acceptance and efficiency are modeled by multiplying the MCFM distribution by a $Z p_T$-dependent factor. This factor is calculated using six different simulated event samples generated at different TGC values with the full detector response simulated by GEANT3. The TGC values are chosen to be in the parameter space near the existing limits. For each sample, the product of acceptance and efficiency is extracted from the simulation as a ratio of the reconstructed and generated yields. These ratios are averaged together as a function of $Z p_T$ using the maximum variation as an estimate of the uncertainty due to assuming the efficiency and acceptance are not dependent on the TGC values.

A likelihood for each of the couplings, $L(\lambda_z)$, $L(\Delta g_Z^f)$, and $L(\Delta \kappa_Z)$, is computed as a product of the Poisson probability of each of the bins of the $Z p_T$ distribution for the assumed anomalous coupling. Then 95% confidence levels are set where λ_z, Δg_Z^f, and $\Delta \kappa_Z$ are used to denote the deviations of g_Z^f and κ_Z from their SM values. In general, the parameters λ_z, Δg_Z^f, and $\Delta \kappa_Z$ can be functions of the invariant mass \sqrt{s} of the WZ system. Nonzero values of λ_z, g_Z^f, and κ_Z at large \sqrt{s} violate unitarity. To avoid this, each coupling is modified by a form factor $\alpha(\sqrt{s}) = \frac{a_0}{(1 + \sqrt{s}/\Lambda^2)}$, where a_0 is the unmodified coupling λ_z, g_Z^f, or κ_Z.

To summarize, the WZ production cross section has been measured in pp collisions at $\sqrt{s} = 1.96$ TeV from reconstructed events in the trilepton plus E_T final state using a likelihood ratio formed from a NeuroBayes neural network distribution that discriminates signal from background. This result, $\sigma(pp \rightarrow WZ) = 3.93^{+0.62(\text{stat}) + 0.59(\text{syst})}_{-0.53 - 0.46}$ pb, is the most precise measurement at this energy with an overall uncertainty of less than 20% and in agreement with SM predictions. The same event sample is also used to perform the most sensitive probe to date at this energy of anomalous WWZ couplings.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucléaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC).

