Measurement of the WZ cross section and triple gauge couplings in pp collisions at s=1.96TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Measurement of the WZ cross section and triple gauge couplings in p\bar{p} collisions at $\sqrt{s} = 1.96$ TeV

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439, USA
3 University of Athens, 157 71 Athens, Greece
4 Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5 Baylor University, Waco, Texas 76798, USA
6a Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6b University of Bologna, I-40127 Bologna, Italy
7 University of California, Davis, Davis, California 95616, USA
8 University of California, Los Angeles, Los Angeles, California 90024, USA
9 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
10 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
11 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
12 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
13 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
14 Duke University, Durham, North Carolina 27708, USA
15 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
16 University of Florida, Gainesville, Florida 32611, USA
17 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
18 University of Geneva, CH-1211 Geneva 4, Switzerland
19 Glasgow University, Glasgow G12 8QQ, United Kingdom
20 Harvard University, Cambridge, Massachusetts 02138, USA
21 Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
22 University of Illinois, Urbana, Illinois 61801, USA
23 The Johns Hopkins University, Baltimore, Maryland 21218, USA
24 Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
25 Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea
26 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
27 University of Liverpool, Liverpool L69 7ZE, United Kingdom
28 University College London, London WC1E 6BT, United Kingdom
29 Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
30 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
31 Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
32 University of Michigan, Ann Arbor, Michigan 48109, USA
33 Michigan State University, East Lansing, Michigan 48824, USA
34 Institute for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
35 University of New Mexico, Albuquerque, New Mexico 87131, USA
MEASUREMENT OF THE WZ CROSS SECTION AND...

PHYSICAL REVIEW D 86, 031104(R) (2012)

36 The Ohio State University, Columbus, Ohio 43210, USA
37 Okayama University, Okayama 700-8530, Japan
38 Osaka City University, Osaka 588, Japan
39 University of Oxford, Oxford OX1 3RH, United Kingdom
40a Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy
40b University of Padova, I-35131 Padova, Italy
41 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
42a Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
42b University of Pisa, I-56127 Pisa, Italy
42c University of Siena, I-56127 Pisa, Italy
42d Scuola Normale Superiore, I-56127 Pisa, Italy
43 University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
44 Purdue University, West Lafayette, Indiana 47907, USA
45 University of Rochester, Rochester, New York 14627, USA
46 The Rockefeller University, New York, New York 10065, USA
47a Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1,
47b Sapienza Università di Roma, I-00185 Roma, Italy
48 Rutgers University, Piscataway, New Jersey 08855, USA
49 Texas A&M University, College Station, Texas 77843, USA
50a Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, I-33100 Udine, Italy
50b University of Udine, I-33100 Udine, Italy
51 University of Tsukuba, Tsukuba, Ibaraki 305, Japan
52 Tufts University, Medford, Massachusetts 02155, USA
53 University of Virginia, Charlottesville, Virginia 22906, USA
54 Waseda University, Tokyo 169, Japan
55 Wayne State University, Detroit, Michigan 48201, USA
56 University of Wisconsin, Madison, Wisconsin 53706, USA
57 Yale University, New Haven, Connecticut 06520, USA

(Received 2 March 2012; published 23 August 2012)
This article describes the current most precise measurement of the WZ production cross section as well as limits on anomalous WWZ couplings at a center-of-mass energy of 1.96 TeV in proton-antiproton collisions for the Collider Detector at Fermilab (CDF). WZ candidates are reconstructed from decays containing three charged leptons and missing energy from a neutrino, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector (7.1 fb$^{-1}$ of integrated luminosity), 63 candidate events are observed with the expected background contributing 8 ± 1 events. The measured total cross section $\sigma(p\bar{p} \to WZ) = 3.93^{+0.60}_{-0.53}\text{(stat)}^{+0.59}_{-0.46}\text{(syst)}$ pb is in good agreement with the standard model prediction of 3.50 ± 0.21. The same sample is used to set limits on anomalous WZW couplings.

DOI: 10.1103/PhysRevD.86.031104 PACS numbers: 12.15.Ji, 13.85.Qk, 14.70.Fm, 14.70.Hp

The measurement of WZ production is an important test of the standard model (SM) of particle physics. WZ pairs are produced both in s-channel ($q\bar{q} \to W^+ \to WZ$) and in t-channel ($q\bar{q} \to WZ$) interactions. The WZ production is unique in that the s-channel mode of production provides sensitivity to the WZW vertex, which is governed by trilinear s-channel boson couplings (TGCs); the presence of anomalous couplings [1] could be an indication of new physics at a higher mass scale leading to different rates and kinematic distributions than predicted by the SM. Furthermore, this process is an essential background for Higgs boson searches at particle colliders because the WZ decay into leptons is the primary background to high mass Higgs boson searches in the three-lepton signature, as well as an important background process in two-lepton Higgs boson analyses [2].

This article reports a measurement of the WZ production cross section and limits on anomalous TGCs using a final state consisting of three charged leptons and one neutrino in p\bar{p} collision data collected by the CDF II detector from 7.1 fb$^{-1}$ of integrated luminosity. The WZ → l$^+l^-$l decay, where l is an electron or muon and ν is a neutrino contributing missing energy, allows for the reconstruction of a variety of kinematic quantities that are utilized to distinguish signal from background by training a neural network [3]. The cross section is then extracted from the output of the neural network by fitting the shape with a maximum likelihood method. Limits on anomalous TGCs are set by analyzing the shape of the component of the momentum of the Z boson that is transverse to the beam line as a discriminant.

The $SU(2)_L \times U(1)_Y$ part of the SM implies that W and Z weak vector bosons may interact via trilinear or quartic vertices. The WZ cross section is proportional to the interaction coupling strength predicted by the SM as $e \cot \theta_W$, where e is the electric charge and θ_W is the weak mixing angle. We want to measure the cross section of the process $p\bar{p} \to WZ$, whose expected value in the limit of zero W and Z boson decay widths is 3.50 pb [4,5]. We therefore measure the cross section by performing a likelihood fit to a parameter representing the ratio of the measured to expected WZ cross section, to be discussed below.

The cross section of this process was first reported by CDF with 1.1 fb$^{-1}$ [6] in 2007. Subsequently, D0 reported with 1.0 fb$^{-1}$ [7] in 2005, updated with 4.1 fb$^{-1}$ [8] in 2007, and again with 8.6 fb$^{-1}$ [9] in 2012. Limits on anomalous TGCs were reported previously by LEP2 [10], by D0 [11], and recently by CMS [12] and ATLAS [13]. All results reported measurements consistent with the standard model. This analysis describes CDF’s most precise measurement of the WZ cross section and TGCs.

In the CDF II detector [14], a particle’s direction is characterized by the azimuthal angle ϕ and the pseudorapidity $\eta = -\ln[\tan(\theta/2)]$, where θ is the polar angle measured with respect to the proton beam direction. The transverse energy E_T is defined as $E \sin \theta$, where E is the energy in the electromagnetic and hadronic calorimeter towers associated with a cluster of energy deposition. The transverse momentum p_T is the particle’s momentum component transverse to the beam line. The magnitude of the p_T for an electron is scaled according to the energy measured in the calorimeter in order to account for momentum loss from final state radiation and bremsstrahlung.

The missing transverse energy vector \vec{E}_T is defined as $-\sum_i E_T \hat{n}_i$, where the index i loops over all towers of the calorimeter and \hat{n}_i is the unit vector in the transverse plane pointing from the interaction point to the energy deposition in calorimeter tower i. The \vec{E}_T is corrected for the p_T of muons, which do not deposit all of their energy in the calorimeter, and tracks that point to uninstrumented regions in the calorimeter. The scalar missing transverse energy is defined as $|\vec{E}_T|$ and denoted as E_T. Strongly interacting partons produced in the p\bar{p} collision undergo fragmentation that results in highly collimated jets of hadronic particles. Jet candidates are reconstructed using the calorimeter signals and are required to have $E_T > 15$ GeV and $|\eta| < 2.5$. Isolated lepton candidates are accepted out to an $|\eta|$ of 2.0 for electron candidates and $|\eta|$ of 1.0 for muon candidates.

The experimental signature for the decay WZ → l$^+l^-$l is reconstructed as three charged leptons (electrons or muons) and E_T from the neutrino(s) that escaped undetected. Events are also detected if the W or Z decays to tau lepton(s) and those tau(s) subsequently decay to detectable electrons or muons—these events are considered part of the signal. Consequently, events containing three charged leptons, not all with the same charge, are selected from the data sample. The online event triggering and selection of
lepton candidates are identical to those used in the search for SM Higgs bosons decaying to two W bosons at CDF
[2]. Our baseline event selection is to require the leading lepton’s E_T (or p_T for muons) to be above 20 GeV
(GeV/c) to satisfy the trigger requirements, while the second and third leptons are allowed to have an E_T (p_T)
as low as 10 GeV (GeV/c). Additionally, because the neutrino in the $W \rightarrow l \nu$ decay carries undetected energy,
the $WZ \rightarrow l l l l$ process tends to produce events with higher missing energy than the background processes—aside
from $t\bar{t}$ whose E_T distribution is also similarly high valued but is a nearly negligible background. We therefore require
$E_T > 25$ GeV.

Lastly, the dominant background remaining after these cuts is SM ZZ production. This motivates two more cuts to
require one and only one $Z \rightarrow ll$ candidate in the event. We make a standard Z boson identification cut by requiring
events to have a pair of same-flavor, opposite-signed leptons whose two-lepton mass falls within a window of
± 15 GeV/c^2 around the Z mass. This removes most of
the SM backgrounds with no Z in the final state. We note that this cut reduces $Z\gamma \rightarrow ll\gamma$ events because
the dilepton mass would not reconstruct back to the Z when the γ is emitted by one of the two leptons. In that case,
the two-lepton mass underestimates the Z mass because the three-body ($ll\gamma$) mass is what reconstructs the Z.

To further reduce the $ZZ \rightarrow llll$ background, we reject any event with an extra track with $p_T > 8$ GeV/c, thereby
rejecting events that may have a fourth lepton that failed to be identified. This cut reduces the remaining ZZ
background by ~36% while leaving the WZ signal contribution essentially unchanged. Even so, ZZ remains the primary
background in this measurement.

There are several SM processes that result in a similar
final state to WZ and are backgrounds in this measurement.
The aforementioned $ZZ \rightarrow llll$ process appears as a background
when one of the four leptons fails to be reconstructed by the detector. This leaves three reconstructed
leptons with the one lepton failing reconstruction providing the missing energy signature. Drell–Yan events produced
in association with hadronic jets that mimic the signature of a third lepton as well as Drell–Yan pairs produced
with an associated photon that converts to an electron–positron pair via interaction with the detector are also
significant backgrounds. Lastly, top quark pair production ($t\bar{t} \rightarrow W^+ b W^- b$) provides a minor contribution to the
background when one of the subsequent b-quark jets mimics a lepton signature. The sum of these four backgrounds
is quite small compared to the expected signal in the signal kinematics region.

The background modeling—with the exception of the $Z +$ jets background—is Monte Carlo simulated. Events from
WZ, ZZ, and $t\bar{t}$ are simulated using the PYTHIA [15]
generator. The $Z\gamma$ background is determined using the generator described in Ref. [16]. The response of the
CDF II detector is modeled with a GEANT3-based simulation
[17] program. The expected yields for each process are normalized to the cross sections calculated at partial
next-to-next-to-leading order ($t\bar{t}$ [18]), next-to-leading order (WZ and ZZ [4]), or leading order with an estimated
normalization correction to account for higher orders ($Z\gamma$ [16]). Efficiency corrections for the simulated detector
response to lepton candidates are determined using samples of observed $Z \rightarrow l^+ l^-$ events. The $Z +$ jets background
normalization is calculated using the probability that a hadronic jet will be reconstructed as a lepton candidate
(the same as is done in CDF’s $H \rightarrow WW$ search [2]), which is measured in independent jet-triggered data samples.
These probabilities are applied to the jets in the $Z +$ jets data sample to estimate the number of such events that will
pass the lepton identification and signal selection criteria. The expected signal and background contributions are
given in Table I along with the observed number of events.

The dominant systematic uncertainties on the estimated
cross sections come from the luminosity measurement
(6%) [19] and the simulated acceptances of the signal
and background processes. The acceptance uncertainty
due to the parton distribution function modeling ranges from
2.1% to 2.7% for the various processes. A 10% uncertainty is assigned to WZ and ZZ processes for the
kinematic differences between leading-order and higher-order
calculations. The cross section uncertainty is 6% on the ZZ process, 7% on $t\bar{t}$, and 5% on $Z\gamma$. The $Z\gamma$
process has another 20% uncertainty that accounts for possible
mismodeling of the rate at which the γ is misidentified
as a lepton. Similarly, there is a 25% (23%) uncertainty for
$Z +$ jets ($t\bar{t}$) for mismodeling the rate at which light jets
(b jets) are misidentified as a lepton. The uncertainty for
the modeling of lepton identification is 2% and of trigger
efficiencies is 5.4%. Lastly, uncertainties for overall rates
for the modeling of jets accounts for 1.2%.

Within the signal kinematic region, we seek to further
isolate the signal from background by utilizing a
NeuroBayes neural network treatment [3]. In general, the
benefits of using a neural network (NN) over a simple

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
Process & Events & \%\
\hline
ZZ & 3.6 & ± 0.5\
$Z +$ jets & 3.4 & ± 0.8\
$Z\gamma$ & 0.8 & ± 0.3\
t\bar{t} & 0.1 & ± 0.04\
Total background & 7.9 & ± 1.0\
WZ & 47.4 & ± 4.8\
Total expected & 55.3 & ± 4.9\
Data & 63 & \\
\hline
\end{tabular}
\caption{Expected number of signal (WZ) and background events along with the total number of expected and observed events in the data. Uncertainties include all systematic uncertainties described in the text.}
\end{table}
counting experiment are twofold: it can better isolate the signal from the background and provide a single distribution from which the cross section value can be extracted by fitting the data to the shape of the expected physical processes. We train a neural network with a combination of background events and simulated signal events. The input variables for the NN are kinematic quantities selected to exploit differences between signal and background distributions. Starting with many quantities that show relatively small differences in the distributions of backgrounds and signal, a neural network will assign a numerical score whose distribution for backgrounds and signal will be better separated than in any single input quantity alone. The E_T is a very useful input quantity for the NN because the $W \rightarrow l \nu$ decay in the signal yields a E_T distribution with higher values than the backgrounds. Similarly, the azimuthal angle distribution between the W lepton and the E_T is useful for distinguishing WZ from the backgrounds because they do not contain W decays. The total energy transverse to the beam line deposited by the WZ decay compared to that of background processes and lepton flavor combinations ($eeee$, $epee$, $e\mu\mu\mu$, etc.) are also examples of NN input variables used. Figure 1 shows the output of the NN treatment, with backgroundlike events in simulation and data trending toward a value of -1 while signal-like events trend toward $+1$. Note that $t\bar{t}$ is represented in Fig. 1, but has too small of a contribution to be visible.

The measured cross section for WZ is extracted from the NN output in Fig. 1 with a binned maximum likelihood fit method. The likelihood function is formed from a product of Poisson probabilities for each bin in the NN output, and Gaussian constraints are applied corresponding to each systematic uncertainty:

$$\mathcal{L} = \left(\prod_i \frac{(e^{-\mu_i} n_i^{\mu_i})}{n_i!} \right) \cdot \prod_i e^{-\frac{S_i^2}{2}},$$

(1)

where μ_i is the total expectation in the ith bin, n_i is the number of data events in the ith bin, and S_i is a floating parameter associated with the systematic uncertainty c. The μ_i parameter is given by

$$\mu_i = \sum_k \left(\frac{\sigma_{\text{measured}}}{\sigma_{\text{expected}}} \right)_k \prod_c (1 + f_k^i S_c) \left(N_{\text{expected}}^i \right)_k.$$

(2)

The sum k over the five processes (one signal and four background) that can contribute to events in bin i, and f_k^i is the fractional uncertainty for the process k due to the systematic uncertainty c. Some systematic uncertainties are common to more than one process and so are correlated. These correlations are accounted for in the definition of μ_i through the f_k^i parameters. The $(N_{\text{expected}}^i)_k$ is the expected number of events from process k in the ith bin. All the background processes are constrained to their SM expectations by setting the proportion of measured to expected cross section to unity. The likelihood is then maximized with respect to the floating systematic (S_c) and cross section proportion $(\sigma_{\text{measured}}/\sigma_{\text{expected}})_{WZ}$ parameters, where σ_{expected} is the expected signal cross section and σ_{measured} is the WZ cross section ultimately measured from the data. This method gives a measured value for the WZ cross section of $\sigma(p \bar{p} \rightarrow WZ) = 3.93^{+0.60}_{-0.53} \text{(stat)}^{+0.59}_{-0.46} \text{(syst)} \text{ pb}$, which is in good agreement with the aforementioned standard model prediction of 3.50 ± 0.21 [4,5].

The shape and normalization of the p_T spectrum of the Z boson (Fig. 2) are used to place limits on anomalous TGCs. The most general modification of the WWZ vertex preserving C and P separately is parametrized by λ_Z, g_Z^γ, and κ_Z [20]. In the SM, $\lambda_Z = \Delta g_Z^\gamma = \Delta \kappa_Z = 0$ where Δg_Z^γ and

![FIG. 1 (color online). The NN output for discriminating the WZ signal events from background processes within the selected signal sample. Note that the $t\bar{t}$ contribution is small enough to not be visible. The processes are stacked.](image1)

![FIG. 2 (color online). The Z p_T distributions for data compared to the SM expectation for signal (WZ) and background. Also presented is how the signal expectation would change with the introduction of anomalous couplings near the observed limits. The processes are stacked.](image2)

\[\Delta \kappa_Z \text{ are used to denote the deviations of } g_1^Z \text{ and } \kappa_Z \text{ from their SM values. In general, the parameters } \lambda_c, \Delta g_1^Z, \text{ and } \Delta \kappa_Z \text{ can be functions of the invariant mass } \sqrt{s} \text{ of the WZ system. Nonzero values of } \lambda_c, g_1^Z, \text{ and } \kappa_Z \text{ at large } \sqrt{s} \text{ violate unitarity. To avoid this, each coupling is modified by a form factor } \alpha(s) = \frac{\alpha_0}{(1+s/M^2)}, \text{ where } \alpha_0 \text{ is the unmodified coupling } \lambda_c, g_1^Z, \text{ or } \kappa_Z. \]

The likelihood of the Z p_T distribution for various anomalous TGC models is used to set limits. The expected Z p_T distribution for a given TGC before the effect of the detector response is obtained using MCFM [4]. The detector acceptance and efficiency are modeled by multiplying the MCFM distribution by a Z p_T-dependent factor. This factor is calculated using six different simulated event samples generated at different TGC values with the full detector response simulated by GEANT3. The TGC values are chosen to be in the parameter space near the existing limits. For each sample, the product of acceptance and efficiency is extracted from the simulation as a ratio of the reconstructed and generated yields. These ratios are averaged together as a function of Z p_T using the maximum variation as an estimate of the uncertainty due to assuming the efficiency and acceptance are not dependent on the TGC values.

A likelihood for each of the couplings, \(L(\lambda_Z), L(\Delta g_1^Z), \) and \(L(\Delta \kappa_Z) \), is computed as a product of the Poisson probability of each of the bins of the Z p_T distribution for the assumed anomalous coupling. Then 95% confidence levels are set where \(-2 \ln L - (-2 \ln L_{\text{min}}) = (1.96)^2 \). The systematic uncertainties include everything considered for the WZ cross section and the additional p_T-dependent uncertainty on the efficiency, which ranges from 5% to 20%. Systematic uncertainties are implemented in a way that most reduces the TGC limit sensitivity when fluctuating the signal and background by 1 standard deviation, thereby taking a conservative approach in assigning systematic uncertainty. The observed 95% confidence level limits are consistent with expectations as shown in Table II.

To summarize, the WZ production cross section has been measured in pp collisions at \(\sqrt{s} = 1.96 \text{ TeV} \) from reconstructed events in the trilepton plus \(E_T \) final state using a likelihood ratio formed from a NeuroBayes neural network distribution that discriminates signal from background. This result, \(\sigma(pp \rightarrow WZ) = 3.93^{+0.60}_{-0.53}(\text{stat})^{+0.59}_{-0.46}(\text{syst}) \text{ pb} \), is the most precise measurement at this energy with an overall uncertainty of less than 20% and in agreement with SM predictions. The same event sample is also used to perform the most sensitive probe to date at this energy of anomalous WWZ couplings. The Z p_T distribution of the sample is found to be in agreement with the SM expectation and is used to place limits on anomalous triple-gauge couplings.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC).

\[\begin{array}{cccc} \hline \Lambda (\text{TeV}) & \lambda_Z & \Delta g_1^Z & \Delta \kappa_Z \\ \hline \text{Exp.} & 1.5 & (-0.11, 0.12) & (-0.12, 0.23) & (-0.58, 0.94) \\ \text{Obs.} & 1.5 & (-0.09, 0.11) & (-0.09, 0.22) & (-0.42, 0.99) \\ \text{Exp.} & 2.0 & (-0.10, 0.10) & (-0.11, 0.20) & (-0.53, 0.86) \\ \text{Obs.} & 2.0 & (-0.08, 0.10) & (-0.08, 0.20) & (-0.39, 0.90) \\ \hline \end{array} \]

