 Measurement of the azimuthal anisotropy for charged particle production in $s_{NN}=2.76$ TeV lead-lead collisions with the ATLAS detector

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Aad, G. et al. “Measurement of the azimuthal anisotropy for charged particle production in $s_{NN}=2.76$ TeV lead-lead collisions with the ATLAS detector.” Physical Review C 86.2 (2012). ©2012 CERN, for the ATLAS Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevC.86.014907</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Jan 03 05:35:07 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/74210</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Measurement of the azimuthal anisotropy for charged particle production in $\sqrt{s_{NN}} = 2.76$ TeV lead-lead collisions with the ATLAS detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 14 March 2012; published 24 July 2012)

Differential measurements of charged particle azimuthal anisotropy are presented for lead-lead collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS detector at the LHC, based on an integrated luminosity of approximately 8 μb$^{-1}$. This anisotropy is characterized via a Fourier expansion of the distribution of charged particles in azimuthal angle relative to the reaction plane, with the coefficients v_n denoting the magnitude of the anisotropy. Significant v_2-v_6 values are obtained as a function of transverse momentum ($0.5 < p_T < 20$ GeV), pseudorapidity ($|\eta| < 2.5$), and centrality using an event plane method. The v_n values for $n \geq 3$ are found to vary weakly with both η and centrality, and their p_T dependencies are found to follow an approximate scaling relation, $v_n^{1/n}(p_T) \propto v_n^{1/2}(p_T)$, except in the top 5% most central collisions. A Fourier analysis of the charged particle pair distribution in relative azimuthal angle ($\Delta \phi = \phi_1 - \phi_2$) is performed to extract the coefficients $v_{n,\Delta} = \langle \cos n \Delta \phi \rangle$. For pairs of charged particles with a large pseudorapidity gap ($|\Delta \eta = \eta_1 - \eta_2| > 2$) and one particle with $p_T < 3$ GeV, the $v_{2,\Delta}$-$v_{6,\Delta}$ values are found to factorize as $v_{n,\Delta}(p_T^1, p_T^2) \approx v_n(p_T^1, p_T^2)$ in central and midcentral events. Such factorization suggests that these values of $v_{2,\Delta}$-$v_{6,\Delta}$ are primarily attributable to the response of the created matter to the fluctuations in the geometry of the initial state. A detailed study shows that the $v_{1,\Delta}(p_T^1, p_T^2)$ data are consistent with the combined contributions from a rapidity-even v_1 and global momentum conservation. A two-component fit is used to extract the v_1 contribution. The extracted v_1 is observed to cross zero at $p_T \approx 1.0$ GeV, reaches a maximum at 4–5 GeV with a value comparable to that for v_3, and decreases at higher p_T.

DOI: 10.1103/PhysRevC.86.014907
PACS number(s): 25.75.Dw, 25.75.Ld

I. INTRODUCTION

The primary goal of high-energy heavy-ion physics is to understand the properties of the hot and dense matter created in nuclear collisions at facilities such as the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). An important observable toward this goal is the azimuthal anisotropy of particle emission. At low p_T ($\lesssim 3$–4 GeV), this anisotropy results from a pressure-driven anisotropic expansion of the created matter, with more particles emitted in the direction of the largest pressure gradients [1]. At higher p_T, this anisotropy is understood to result from the path-length-dependent energy loss of jets as they traverse the matter, with more particles emitted in the direction of smallest path-length [2]. These directions of maximum emission are strongly correlated, and the observed azimuthal anisotropy is customarily expressed as a Fourier series in azimuthal angle ϕ [3,4]:

$$E \frac{d^3 N}{dp^3} = \frac{d^2 N}{2 \pi p_T dp_T d\eta} \left(1 + 2 \sum_{n=1}^{\infty} v_n(p_T, \eta) \cos n (\phi - \Phi_n) \right), \quad (1)$$

where p_T is the transverse momentum, η is the pseudorapidity, and v_n and Φ_n represent the magnitude and direction of the nth-order harmonic, respectively (see Sec. IV A). The nth-order harmonic has n-fold periodicity in azimuth, and the coefficients at low p_T are often given descriptive names, such as “directed flow” (v_1), “elliptic flow” (v_2), or “triangular flow” (v_3).

In typical noncentral heavy-ion collisions where the nuclear overlap region has an “elliptic” shape (or quadrupole asymmetry) on average, the azimuthal anisotropy is expected to be dominated by the v_2 component [5–7]. However, it was recently pointed out that the positions of the nucleons in the overlap region can fluctuate to create matter distributions with additional shape components, such as dipole ($n = 1$) and sextupole ($n = 3$) asymmetries [8–11]. Owing to strong final-state interactions, manifested as either pressure or jet energy loss, these spatial asymmetries can be converted into final-state momentum anisotropies, leading to nonzero first-order and higher-order harmonic coefficients [11,12].

The observation of large v_2 for $p_T \lesssim 3$–4 GeV at the RHIC [13,14] and LHC [15,16] has led to the conclusion that the hot and dense medium behaves like a “perfect fluid” [14,17,18]. This is because the large v_2 values require hydrodynamic models [19–21] with a shear viscosity to entropy density ratio that is close to the conjectured lower bound of $1/4\pi$ [22,23]. Precise determination of this ratio using only v_2 data is limited by many model uncertainties [24]. Because the shear viscosity tends to dampen the hydrodynamics, with more damping for larger n [11,25,26], measurements of harmonic coefficients beyond v_2 can provide stronger constraints for the shear viscosity of the medium. Extending these measurements to higher p_T is also valuable for discriminating between...
jet-quenching models, as high-p_T v_n is sensitive to the path-length dependence of the jet energy loss [27–29]. These coefficients can also help to distinguish between different models of the initial geometry [30–33] and provide insights into the granularity of the initial state fluctuations [26,34–36].

Another related observable for studying the properties of the medium is the correlation function between two particles in relative azimuthal angle $\Delta \phi = \phi_a - \phi_b$ and pseudorapidity $\Delta \eta = \eta_a - \eta_b$ [37]. The distribution of pairs in $\Delta \phi$ can be expanded into a Fourier series:

$$\frac{dN_{\text{pairs}}}{d\Delta \phi} \propto 1 + 2 \sum_{n=1}^{\infty} v_{n,n}(p_T^a, p_T^b) \cos n \Delta \phi,$$ \hspace{1cm} (2)

where the coefficients $v_{n,n}$ are symmetric functions with respect to p_T^a and p_T^b. The harmonics defined in Eq. (1) also contribute to this distribution:

$$\frac{dN_{\text{pairs}}}{d\Delta \phi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n(p_T^a) v_n(p_T^b) \cos n \Delta \phi,$$ \hspace{1cm} (3)

where the global direction Φ_n drops out in the convolution, and v_n is assumed to be independent of η (which is approximately true within $|\eta| < 2.5$ at the LHC; see Sec. VA). Thus, if the anisotropy is driven by collective expansion, $v_{n,n}$ should factorize into the product of two single-particle harmonic coefficients [37]:

$$v_{n,n}(p_T^a, p_T^b) = v_n(p_T^a) v_n(p_T^b).$$ \hspace{1cm} (4)

Such factorization may also be valid if the anisotropies of the two particles are independently driven by collective expansion and path-length-dependent jet energy loss (both are associated with the same initial spatial asymmetries). This factorization relation has been used to calculate the single-particle v_n [38–40]. However, autocorrelations induced by resonance decays or fragmentation of back-to-back jets, are expected to break the factorization. Therefore, Eq. (4) can be used to identify the regions of p_T^a and p_T^b where correlations are dominated by effects controlled by the initial spatial asymmetries.

The study of the structures of two-particle correlation in $\Delta \eta$ and $\Delta \phi$ has been the focus of major experimental and theoretical efforts in the last decade. In typical proton-proton collisions, where a medium is presumably not formed, the pair distributions are dominated by strong correlation peaks at $(\Delta \phi, \Delta \eta) \sim (0, 0)$ and $\Delta \phi \sim \pi$. These peaks reflect mainly autocorrelations among particles from fragmentation of back-to-back jets. In heavy-ion collisions, additional structures have been observed for $p_T < 3–4$ GeV and large $\Delta \eta$ at $\Delta \phi \sim 0$ (known as the “ridge”) [41,42] and $|\Delta \phi - \pi| \sim 1.1$ (known as the “double-hump”) [37,43]. These unexpected structures have been interpreted as the response of the medium to the energy deposited by quenched jets [44,45]. However, similar structures can also be generated by the flow harmonics, as they all contribute constructively at $\Delta \phi \sim 0$ but tend to cancel on the away side according to Eq. (3) [8]. Therefore, a detailed comparison between the measured pair distribution [Eq. (2)] and that expected from anisotropic flow [Eq. (3)] can determine whether the structures in two-particle correlations are a consequence of the so-called “jet-induced medium response,” or whether they are a consequence of a sum of the flow harmonics.

The v_2 coefficient has been extensively studied at the RHIC [13,28,46–49] and LHC [15,16]. Results for higher-order v_n for $n \geq 3$ also became available recently [30,31,40]. In contrast, no experimental measurement of v_1 including systematic uncertainties exists at the LHC, although an estimate has recently been performed by a theoretical group [50] based on published ALICE data [39]. A primary complication for v_1 measurements is global momentum conservation, which induces a significant dipole component [51,52]. A “sideward” deflection of colliding ions can also lead to a small rapidity-odd (i.e., changes sign crossing $\eta = 0$) dipole component [53,54]. Therefore, the extraction of v_1 values associated with the initial dipole asymmetry requires careful separation of these contributions, which generally break the factorization relation given by Eq. (4).

This paper presents comprehensive results for v_1–v_6 over broad ranges of centrality, pseudorapidity, and p_T for charged particles in lead-lead (Pb-Pb) collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS detector at the LHC. The v_n values are measured directly using an “event plane” (EP) method for $n = 2–6$, and are also derived from the $v_{n,n}$ measured using a two-particle correlation (2PC) method for $n = 1–6$. These detailed measurements provide new insights into the hydrodynamic picture at low p_T, the jet energy loss picture at high p_T, and the nature of the fluctuations in the initial geometry. They also allow a detailed study of the factorization relation [Eq. (4)] over broad ranges of centrality, $\Delta \eta$, p_T, and p_T^b. Together, these measurements should shed light on the physics underlying the structures observed in two-particle correlation functions.

The paper is organized as follows. Sections II and III give a brief overview of the ATLAS detector, trigger, and selection criteria for events and tracks. Section IV discusses the details of the EP method and the 2PC method used to measure the v_n. Section VA presents results for v_2–v_6 from the EP method as a function of p_T, η, and centrality. Section VB presents a detailed Fourier analysis of the two-particle correlation functions to measure $v_{n,n}$ as a function of p_T^a, p_T^b, $\Delta \eta$, and centrality, which are then used to calculate v_2–v_6 via the factorization relation [Eq. (4)]. These v_n values are compared with those obtained from the EP method in Sec. VC, with a focus on understanding the structures of the 2PC in terms of single-particle v_n. Section VI presents results for v_1 based on a two-component fit of the $v_{1,1}$ data with a modified functional form of Eq. (4) that includes the contribution of global momentum conservation. Section VI gives a summary of the results and main observations.

II. ATLAS DETECTOR AND TRIGGER

The ATLAS detector [55] provides nearly full solid angle coverage of the collision point with tracking detectors, calorimeters, and muon chambers, well suited for measurements of azimuthal anisotropies over a large pseudorapidity...
This analysis primarily uses three subsystems for \(v_n \) measurement: the inner detector (ID), the barrel and endcap electromagnetic calorimeters (ECal), and the forward calorimeter (FCal). The ID is contained within the 2-T field of a superconducting solenoid magnet and measures the trajectories of charged particles in the pseudorapidity range \(|\eta| < 2.5\) and over the full azimuth. A charged particle passing through the ID typically traverses three modules of the silicon pixel detector (pixel), four double-sided silicon strip modules of the semiconductor tracker (SCT) and, for \(|\eta| < 2\), a transition radiation tracker composed of straw tubes. The electromagnetic energy measurement of the ECal is based on a liquid-argon sampling technology. The ECal covers the pseudorapidity range \(|\eta| < 3.2\) and is used as a reference detector in the event plane measurements. The FCal consists of three longitudinal sampling layers and extends the calorimeter coverage to \(|\eta| < 4.9\). It uses tungsten and copper absorbers with liquid argon as the active medium, and has a total thickness of about ten interaction lengths.

The centrality measurement uses towers in all three layers of the FCal, while the event plane measurements use towers in the first two layers of the FCal excluding those at the edge of the FCal \(\eta \) acceptance. These selection criteria are found to minimize the effect of fluctuations in the reaction plane measurement.

The minimum-bias level-1 trigger used for this analysis requires signals in two zero-degree calorimeters (ZDCs), each positioned at 140 m from the collision point, detecting neutrons and photons with \(|\eta| > 8.3\), or either one of the two minimum-bias trigger scintillator (MBTS) counters, covering \(2.1 < |\eta| < 3.9\) on each side of the nominal IP. The ZDC level-1 trigger thresholds on each side are set below the peak corresponding to a single neutron, for example, as produced from Coulomb dissociation of the lead ion [56]. A level-2 timing requirement based on signals from each side of the MBTS is imposed to remove beam backgrounds.

III. EVENT AND TRACK SELECTIONS

This paper is based on approximately 8 \(\mu b^{-1} \) of Pb-Pb data collected in 2010 at the LHC with a nucleon-nucleon center-of-mass energy \(\sqrt{s_{NN}} = 2.76 \) TeV. An offline event selection requires a reconstructed vertex and a time difference \(|\Delta t| < 3 \) ns between the MBTS trigger counters on either side of the IP to suppress noncollision backgrounds. A coincidence between the ZDCs at forward and backward pseudorapidity is required to reject a variety of background processes, while maintaining high efficiency for non-Coulomb processes.

Events satisfying these conditions are then required to have a reconstructed primary vertex within \(|z_{\text{ vtx}}| < 150 \) mm of the nominal center of the ATLAS detector for the EP analysis. A more stringent vertex cut of 100 mm is required for the 2PC analysis, such that enough events can be found in the same \(z_{\text{ vtx}} \) bin for the event mixing procedure (see discussion in Sec. IV B). About \(48 \times 10^6 \) and \(43 \times 10^6 \) events pass the requirements for the EP and 2PC analysis, respectively. Pileup probability is estimated to be at the \(10^{-4} \) level and is therefore negligible.

The Pb-Pb event centrality is characterized using the total transverse energy (\(\sum E_T \)) deposited in the FCal over the pseudorapidity range \(3.2 < |\eta| < 4.9\) at the electromagnetic energy scale. An analysis of this distribution after all trigger and event selections gives an estimate of the fraction of the sampled non-Coulomb inelastic cross-section to be \(98\% \pm 2\%\) [57]. This estimate is obtained from a shape analysis of the measured FCal \(\sum E_T \) distributions compared with a convolution of proton-proton data with a Monte Carlo Glauber calculation [58]. The FCal \(\sum E_T \) distribution is then divided into a set of 5\% or 10\% percentile bins, together with a bin defined for the 1\% most central events. The uncertainty associated with the centrality definition is evaluated by varying the effect of trigger and event selection inefficiencies as well as background rejection requirements in the most peripheral FCal \(\sum E_T \) interval [57].

Tracks are reconstructed within the full acceptance of the ID, requiring \(p_T > 0.5 \) GeV and \(|\eta| < 2.5\). To improve the reliability of track reconstruction in the high-multiplicity environment of heavy-ion collisions, more stringent requirements on track quality, compared to those defined for proton-proton collisions [59], are used. At least nine hits in the silicon detectors (out of a typical value of 11) are required for each track, with no missing pixel hits and not more than one missing SCT hit, in both cases where such hits are expected. In addition, the point of closest approach is required to be within 1 mm of the primary vertex in both the transverse and the longitudinal directions [16]. This selection is varied in the analysis to check the influence of both the acceptance and fake tracks. The tracking efficiency for charged particles is studied by comparing data to Monte Carlo calculations based on the HIJING event generator [60] and a full GEANT4 [61] simulation of the detector. This efficiency is estimated to be about 72\% near midrapidity in central events. However, this analysis is found to be insensitive to variations in the tracking efficiency, as found previously [16]. Fake tracks from random combinations of hits are generally negligible, reaching only \(0.1\%\) for \(|\eta| < 1\) for the highest multiplicity events. This rate increases slightly at large \(\eta \).

IV. DATA ANALYSIS

Equation (1) implies that each harmonic component of the final-state momentum distribution is represented by its magnitude \(v_n \) and azimuthal direction \(\Phi_n \). In general, any distribution can be expanded into a set of Fourier components. However, the distinguishing feature of correlation owing to initial geometry, as opposed to other sources of correlations, is that it is a “global” correlation. That is, \(\Phi_n \) specifies a common...
direction, independent of the particle species, p_T and η, and it drops out in the two-particle correlations [Eq. (3)]. This feature is quite different from the correlations expected from jet fragmentation or resonance decays, which typically involve a subset of particles correlated over a finite range in $\Delta \eta$ with no preferred global direction. Thus, v_n can be measured either by correlating tracks with the Φ_n estimated in the forward direction, or it can be measured from two-particle correlations with a large $\Delta \eta$ gap. In the following, the details of these two methods are discussed.

A. Event plane method

The azimuthal angle Φ_n and the beam direction define the nth-order reaction plane. However, owing to incomplete detector acceptance and finite event multiplicity, the true reaction plane angle Φ_n cannot be determined. Instead, it is approximated by the event plane angle Ψ_n, which is defined as the direction of the “flow vector” \vec{Q}_n, calculated in this analysis from the E_T deposited in the FCal towers in each event:

$$\vec{Q}_n = (Q_{x,n}, Q_{y,n}) = \left(\sum E_T \cos n\phi - \sum E_T \cos \phi, \sum E_T \sin n\phi - \sum E_T \sin \phi \right),$$

$$\tan n\Psi_n = \frac{Q_{y,n}}{Q_{x,n}},$$

where the sum ranges over towers in the first two layers of the FCal (see Sec. II). Subtraction of the event-averaged centroid removes biases owing to detector effects [62]. A standard flattening technique is then used to remove the residual nonuniformities in the event plane angular distribution [63]. These calibration procedures are similar to those used by the RHIC experiments [62,64].

The coefficient v_n is measured by correlating tracks with Ψ_n to obtain the raw values $v^{\text{obs}}_n = \langle \cos n(\phi - \Psi_n) \rangle$. The value of v^{obs}_n is then corrected by a resolution factor that accounts for the dispersion of Ψ_n about Φ_n [4]:

$$v_n = \frac{v^{\text{obs}}_n}{\text{Res}[n\Psi_n]} = \frac{\langle \cos n(\phi - \Psi_n) \rangle}{\langle \cos n(\Psi_n - \Phi_n) \rangle},$$

where the average is performed over all events for the denominator and all tracks and all events for the numerator. The EP resolution of the FCal, $\text{Res}[n\Psi_n]$, is [4]

$$\text{Res}[n\Psi_n] = \langle \cos n(\Psi_n - \Phi_n) \rangle = \frac{\chi_n}{\sqrt{2}} \frac{e^{-\frac{\chi_n^2}{4}}}{\sqrt{\pi}} \left[I_0 \left(\frac{\chi_n^2}{2} \right) + I_1 \left(\frac{\chi_n^2}{2} \right) \right],$$

where I_n are the modified Bessel functions of the first kind, and χ_n (known as the “resolution parameter”) is the fundamental variable that quantifies the precision of a detector for determining the event plane. The value of χ_n is proportional to the E_T-weighted harmonic coefficient v^{FCal}_n and the square root of the total multiplicity M in the FCal acceptance [4]:

$$\chi_n \propto v^{\text{FCal}}_n \sqrt{M}.$$

(8)

The values of χ_n and $\text{Res}[n\Psi_n]$ are obtained from a two-subevents (2SE) method and a three-subevents (3SE) method [4]. In the 2SE method, the signal of a detector used to measure the event plane is divided into two “subevents” covering equal pseudorapidity ranges in opposite hemispheres, such that the two subevents nominally have the same resolution. The FCal detectors located at positive and negative η, FCalP and FCalN, provide such a division. The resolution of each FCal subevent is calculated directly from the correlation between the two subevents:

$$\text{Res}[n\Psi^\text{P(N)}_n] = \sqrt{\langle \cos n(\Psi^\text{P(N)}_n - \Phi_n) \rangle / \langle \cos n(\Psi^\text{P(N)}_n - \Psi^\text{P(N)}_n) \rangle}. $$

(9)

The resolution parameter of the FCal subevent χ_n, sub is determined by inverting Eq. (7). The resolution parameter for the full FCal is $\chi_n = \sqrt{2} \chi_n, \text{sub}$, with $\sqrt{2}$ accounting for a factor of two increase in the total multiplicity [Eq. (8)]. Finally, χ_n is incorporated into Eq. (7) to obtain the resolution for the full FCal.

In the 3SE method, the $\text{Res}[n\Psi_n]$ value for a given subevent A is determined from its correlations with two subevents B and C covering different regions in η:

$$\text{Res}[n\Psi^\text{A}_n] = \sqrt{\langle \cos n(\Psi^\text{A}_n - \Psi^\text{B}_n) \rangle / \langle \cos n(\Psi^\text{A}_n - \Psi^\text{C}_n) \rangle}. $$

(10)

The large η coverage of the ID and ECal, with their fine segmentation, allows for many choices for subevents B and C. The ID and ECal are divided into a set of 22 reference subevents, each covering 0.5 units in η. The subevents B and C are chosen to ensure a minimum separation in η of 1 unit between all three subevents. This separation in η is required to suppress short-range correlations [62]. Various 3SE combinations are studied to check the sensitivity to the size of the chosen pseudorapidity gaps, as well as potential systematic effects owing to the explicit use of the correlation between FCalP and FCALs in the 2SE method.

Figure 1 shows the values of χ_n and $\text{Res}[n\Psi_n]$ measured as a function of centrality for $n = 2–6$ using the full FCal. The data points and associated statistical uncertainties are calculated using the 2SE method. However, 5% upward and 15% downward centrality-independent corrections are applied to $n = 5$ and $n = 6$, respectively, to adjust to the average of the 2SE and the 3SE estimates for the $\text{Res}[n\Psi_n]$. The differences between the two estimates are quoted as systematic uncertainties for $\text{Res}[n\Psi_n]$, and they are propagated via Eq. (7) to obtain a systematic uncertainty for χ_n. In this analysis, the centrality range for each harmonic n is chosen such that the relative statistical uncertainty for $\text{Res}[n\Psi_n]$ is less than 30% of its mean value, and the 2SE and 3SE estimations show good agreement. They are 0%–80% for v_2, 0%–70% for v_3 and v_4, and 0%–50% for v_5 and v_6, as indicated in Fig. 1.
In the event plane analysis, two complementary methods are employed to measure v_n. The first (“full FCal”) method calculates v_n^{obs} by correlating tracks in the ID with the EP from the full FCal detector; the resolution correction for the full FCal is then applied to obtain the final v_n [Eq. (6)]. In the second (“FCal subevent” or simply FCalP(N)) method [16], tracks with $\eta \geq 0$ ($\eta < 0$) are correlated with the EP in the opposite hemisphere given by the FCalN (FCalP). The resolution correction for the FCalP(N) is then applied to obtain the final v_n^{obs}. Note that the relative statistical and systematic uncertainties for Res($n\Psi_n$) are almost identical for the two methods because they both rely on similar subevent correlations [Eqs. (9) and (10)]. However, the values of v_n^{obs} from the FCal subevent method are smaller than those from the full FCal method owing to its poorer EP resolution. Therefore, these v_n^{obs} values have a larger fractional statistical uncertainty.

The primary advantage of the FCal subevent method is that it increases the minimum (maximum) pseudorapidity separation between the track and the EP from about 0.8 (4.8) units for the full FCal method to about 3.3 (7.3) units. Thus, the subevent approach is less affected by short-range autocorrelations, stemming primarily from jet fragmentation and resonance decays. In this analysis, the FCalP(N) method is used for the η dependence of v_n to minimize short-range correlations, while the full FCal method is used for the p_T and centrality dependence of v_n to optimize the EP resolution (see Sec. VA). However, the potential influence of short-range correlations on the full FCal method is cross-checked with the FCalP(N) method. Good agreements are always observed for η-integrated v_n, within the systematic uncertainties for the two methods.

The systematic uncertainty in v_n^{obs} is determined by varying the track quality cuts, comparing data for different running periods, varying the full centrality range by $\pm 2\%$ according to the uncertainty in the trigger and event selections, as well as by determining the value of $\langle \sin n(\phi - \Psi_n) \rangle$. The study of track quality cuts accounts for influences of background contaminations and tracking inefficiency. Finite sine terms can arise from detector biases that introduce a correlation between the ID and the FCal. Their magnitudes relative to the cosine terms are included in the uncertainty for v_n^{obs}. All these uncertainties are generally small, except for $n = 6$. They are also quite similar for the full FCal and FCal subevent methods, so the larger of the two is quoted as the main uncertainty. As a cross-check, v_2–v_6 values are also extracted using the EP measured either for the three layers of FCal individually or for two η regions of FCal ($3.3 < |\eta| < 4.0$ and $4.0 < |\eta| < 4.8$). Although these five FCal subevents have up to a factor of four difference in their resolution corrections, the measured v_2–v_6 all agree to within 2%–10%.

Tables I–V summarize the systematic uncertainties for v_2–v_6 in various centrality intervals. The total uncertainties are calculated as the quadrature sum of all sources in these

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Centrality & 0%–20% & 20%–50% & 50%–70% & 70%–80% \\
\hline
Resolution (%) & 5.0–2.0 & 1.0–2.0 & 3.0–4.0 & 4.0–6.0 \\
Track selection (%) & 2.0 & 0.5 & 0.5 & 1.0 \\
Residual sine term (%) & 0.8 & 0.6 & 0.5 & 0.2 \\
Running periods (%) & 0.2 & 0.2 & 0.5 & 1.0 \\
Trigger and event selection (%) & 1.0 & 1.0–0.5 & 1.0 & 1.5 \\
Total (%) & 5.6–3.2 & 1.4–2.3 & 3.4–4.2 & 4.6–6.4 \\
\hline
\end{tabular}
\caption{Summary of relative systematic uncertainties in percentage for v_2 for both full FCal and FCalP(N). See text for explanation of the arrangement of the uncertainties.}
\end{table}
B. Two-particle correlation method

The two-particle correlation function is generally defined as the ratio of the same-event pair (foreground) distribution to the combinatorial pair (background) distribution in two-particle phase space (ϕ_a, ϕ_b, η_a, η_b):

\[
C(\phi_a, \phi_b, \eta_a, \eta_b) = \frac{d^4N}{d\phi_a d\phi_b d\eta_a d\eta_b} \times \frac{d^4N}{d\phi_a d\phi_b d\eta_a d\eta_b}.
\]

In practice, the correlation function is usually studied as a function of relative azimuthal angle ($\Delta \phi$) and relative pseudorapidity ($\Delta \eta$), by averaging pair distributions over the detector acceptance:

\[
C(\Delta \phi, \Delta \eta) = \frac{S(\Delta \phi, \Delta \eta)}{B(\Delta \phi, \Delta \eta)}.
\]

Table II. Summary of relative systematic uncertainties in percentage for v_2 for both full FCal and FCal$_{p(N)}$.

<table>
<thead>
<tr>
<th>Centrality</th>
<th>0%–20%</th>
<th>20%–50%</th>
<th>50%–70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution (%)</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0–5.6</td>
</tr>
<tr>
<td>Track selection (%)</td>
<td>2.0</td>
<td>0.5</td>
<td>0.5–2.0</td>
</tr>
<tr>
<td>Residual sine term (%)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Running periods (%)</td>
<td>0.5</td>
<td>0.5–1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Trigger and event selection (%)</td>
<td>0.4</td>
<td>0.5–1.0</td>
<td>1.5–3.5</td>
</tr>
<tr>
<td>Total (%)</td>
<td>3.8</td>
<td>3.5–3.9</td>
<td>4.6–7.4</td>
</tr>
</tbody>
</table>

Table III. Summary of relative systematic uncertainties in percentage for v_2 for both full FCal and FCal$_{p(N)}$.

<table>
<thead>
<tr>
<th>Centrality</th>
<th>0%–20%</th>
<th>20%–50%</th>
<th>50%–70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution (%)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.4–16.0</td>
</tr>
<tr>
<td>Track selection (%)</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Residual sine term (%)</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0–5.0</td>
</tr>
<tr>
<td>Running periods (%)</td>
<td>1.0</td>
<td>1.5–2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Trigger and event selection (%)</td>
<td>0.6</td>
<td>0.7</td>
<td>1.0–2.0</td>
</tr>
<tr>
<td>Total (%)</td>
<td>4.9</td>
<td>4.9–5.4</td>
<td>7.9–17.5</td>
</tr>
</tbody>
</table>

Table IV. Summary of relative systematic uncertainties in percentage for v_2 for both full FCal and FCal$_{p(N)}$.

<table>
<thead>
<tr>
<th>Centrality</th>
<th>0%–1%</th>
<th>0%–20%</th>
<th>20%–40%</th>
<th>40%–50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution (%)</td>
<td>10.8</td>
<td>10.2</td>
<td>10.2–10.4</td>
<td>11.2–22.4</td>
</tr>
<tr>
<td>Track selection (%)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0–2.0</td>
<td></td>
</tr>
<tr>
<td>Residual sine term (%)</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Running periods (%)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Trigger and event selection (%)</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (%)</td>
<td>12.1</td>
<td>11.6</td>
<td>11.6–12.1</td>
<td>13.0–23.0</td>
</tr>
</tbody>
</table>

where

\[
S(\Delta \phi, \Delta \eta) = \int d\phi_a d\eta_a d\phi_b d\eta_b \delta_{ab} \frac{d^4N}{d\phi_a d\eta_a d\phi_b d\eta_b},
\]

\[
B(\Delta \phi, \Delta \eta) = \int d\phi_a d\eta_a d\phi_b d\eta_b \delta_{ab} \frac{d^2N}{d\phi_a d\eta_a} \frac{d^2N}{d\phi_b d\eta_b}.
\]

The δ_{ab} is a shorthand notation for $\delta(\phi_a - \phi_b - \Delta \phi) \delta(\eta_a - \eta_b - \Delta \eta)$.

For an ideal detector, the combinatorial pair distribution is uniform in $\Delta \phi$ and has a nearly triangular shape in $\Delta \eta$ owing to the weak dependence of the single-particle distribution on η [57]. In reality, both same-event and combinatorial pair distributions are modulated by detector inefficiencies and nonuniformity. These detector effects influence the two distributions in the same way so they cancel in the ratio. Therefore, $B(\Delta \phi, \Delta \eta)$ is often referred to as the pair acceptance function [37]. In this analysis, $B(\Delta \phi, \Delta \eta)$ is estimated from track pairs from two events with similar centrality (matched within 5%) and z_{vtx} (matched within 1 mm). The two particles in the pair are typically selected with different conditions, such as different p_T ranges, pseudorapidities, and charge signs. In this analysis, charged particles measured by the ID with a pair acceptance extending up to $|\Delta \eta| = 5$ are used.

Figure 2(a) shows the two-dimensional (2D) correlation function for pairs from a representative p_T range of 2–3 GeV and 0%–5% centrality interval. It reveals the characteristic long-range near-side ridge and away-side double-hump structures that were observed previously in heavy-ion collisions at the RHIC for a similar p_T range [41–43]. A narrow short-range correlation peak is also seen at $(\Delta \phi, \Delta \eta) \sim (0, 0)$, presumably owing to autocorrelations from jet fragmentation and resonance decays. From the 2D correlation function, a one-
According to Eq. (4), if the correlations are dominated by those arising from asymmetry of the initial geometry such as flow, \(v_{n,n} \) should factorize into the product of two single-particle harmonic coefficients. This is found to be the case for \(n \geq 2 \) at low \(p_T \) for pairs with a large \(\Delta \eta \) gap, but is not true for \(n = 1 \) (see Secs. V B and V C), similar to what was also found in other measurements [39,40]. Thus, if the two particles are selected from the same \(p_T \) interval (“fixed-\(p_T \)” correlations) as in Fig. 2, the single-particle \(v_n \) for \(n \geq 2 \) can be calculated as \(v_n = \sqrt{v_{n,n}} \). When \(v_{n,n} < 0 \), \(v_n \) is defined as \(v_n = -\sqrt{|v_{n,n}|} \) (or \(v_n = v_{n,n}/|v_{n,n}| \)) in general. This calculation is repeated for all 1D correlation functions in each \(|\Delta \eta| \) slice. The resulting full \(|\Delta \eta| \) dependencies of \(v_{n,n} \) and \(v_n \) are shown in Figs. 2(c) and 2(d), respectively.

The \(v_{n,n} \) and \(v_n \) values are found to vary rapidly for \(|\Delta \eta| \lesssim 1 \), presumably reflecting the influence of the short-range correlation at \((\Delta \phi, |\Delta \eta|) \sim (0, 0) \) [Fig. 2(a)], but they decrease much more slowly for larger \(|\Delta \eta| \). This slow decrease is expected because the single-particle \(v_n \) also decreases very slowly with \(\eta \) (see Fig. 3), and the factorization relation Eq. (4) is valid for the present \(p_T \) range (see Sec. V B). These behaviors suggest that the autocorrelations from near-side jet fragmentation and resonance decays can be largely eliminated by requiring a large \(\Delta \eta \) gap (e.g., \(|\Delta \eta| > 2 \)).

Each “fixed-\(p_T \)” correlation function provides a reference \(v_n \) for a chosen \(p_T \) range (denoted by superscript “a”). Tracks from this \(p_T \) range are then correlated with those from a target \(p_T \) range (denoted by superscript “b”), and this “mixed-\(p_T \)” correlation is used to calculate \(v_{n,n} \), and to obtain the \(v_n \) in the target \(p_T \) via Eq. (4). Because factorization is expected to be valid for the anisotropies driven by the initial geometry, but is broken by the presence of autocorrelations among the jet fragmentation products, the level of consistency between \(v_n \) obtained from different reference \(p_T \) ranges reveals whether the 2PC is dominated by anisotropies driven by the initial geometry. A detailed study of the factorization properties of \(v_1=v_0 \) is presented in Sec. V B.

The correlation function relies on the pair acceptance function to reproduce and cancel the detector acceptance effects in the foreground distribution. Mathematically, the pair acceptance function in \(\Delta \phi \) is simply a convolution of two single-particle azimuthal distributions and should be uniform in \(\Delta \phi \) without detector imperfections. A natural way of quantifying the influence of detector effects on \(v_{n,n} \) and \(v_n \) is to transform the single-particle and pair acceptance functions into the Fourier space. The resulting coefficients for pair acceptance \(v_{n,n}^{\text{det}} \) are the product of those for the two single-particle acceptances \(v_{n,n}^{\text{det,a}} \) and \(v_{n,n}^{\text{det,b}} \). In general, the pair acceptance function is quite flat: The maximum variation from its average is observed to be less than 0.001 for pairs integrated over \(2 < |\Delta \eta| < 5 \), and the corresponding \(|v_{n,n}^{\text{det}}| \) values are found to be less than \(1.5 \times 10^{-4} \). These \(v_{n,n}^{\text{det}} \) values are expected to mostly cancel in the correlation function, and only a small fraction contributes to the uncertainties of the pair acceptance function. Three possible residual effects for \(v_{n,n}^{\text{det}} \) are studied: (1) the time dependence of the pair acceptance, (2) the effect of imperfect centrality matching, and (3) the effect of imperfect \(\Delta \eta \) matching. In each case, the residual \(v_{n,n}^{\text{det}} \) values...
are evaluated by a Fourier expansion of the ratio of the pair acceptances before and after the variation. Overall, significant deviations are observed only for the effect of imperfect z_{ets} matching, and they are generally larger for narrower $|\Delta \eta|$ ranges and higher p_T.

The systematic uncertainty of the pair acceptance is the quadrature sum of these three estimates, which is $\delta v_{n,n} = (2.5–8) \times 10^{-6}$ depending on n, p_T, and the width of $|\Delta \eta|$ interval. This absolute uncertainty is propagated to the uncertainty in v_n, and it is the dominant uncertainty when v_n is small, for example, for v_6. Moreover, results for inclusive charged particles are compared to those obtained independently using same-charge and opposite-charge pairs. These two types of correlations have somewhat different pair acceptances owing to different relative bending directions between the two tracks. They are found to give consistent results for $n \leq 6$, where the $v_{n,n}$ values are dominated by physics effects. However, small systematic deviations are observed for $n > 8$, where the $v_{n,n}$ values are expected to be dominated by acceptance effects. Therefore, the systematic uncertainty also includes the RMS difference of the $v_{n,n}$ values averaged for $8 \leq n \leq 15$ between the two types of correlations. This uncertainty is usually much smaller than those associated with $v_{n,n}^{\text{def}}$, except for large p_T.

The second type of systematic uncertainty includes the sensitivity of the analysis to track quality cuts, variation between different running periods, trigger and event selection, as well as the ability to reproduce the input v_n in fully simulated, digitized, and reconstructed HIJING events with azimuthal anisotropy imposed on the generated particles. Most systematic uncertainties cancel for the correlation function when dividing the foreground and background distributions. The estimated residual effects are summarized in Table VI.

The total systematic uncertainties are the quadrature sum of the uncertainties calculated from pair acceptance, the RMS difference of the $v_{n,n}$ averaged for $8 \leq n \leq 15$ between the same-charge and opposite-charge correlations, and those listed in Table VI. They are then propagated to uncertainties for v_n. These uncertainties are plotted as shaded bands around the data points in Figs. 2(c) and 2(d). Most of these uncertainties are correlated between different p_T ranges. However, a fraction of them are found to be uncorrelated with p_T, coming mainly from the track selection, running period variation, and MC

<table>
<thead>
<tr>
<th>TABLE VI. Relative systematic uncertainties for v_n in percentage from tracking cuts, variation between different running periods, centrality variation, consistency between truth and reconstructed v_n in HIJING simulation, and the quadrature sum of individual terms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_2</td>
</tr>
<tr>
<td>Track selection (%)</td>
</tr>
<tr>
<td>Running periods (%)</td>
</tr>
<tr>
<td>Trigger and event selection (%)</td>
</tr>
<tr>
<td>MC consistency (%)</td>
</tr>
<tr>
<td>Sum of above (%)</td>
</tr>
</tbody>
</table>

V. RESULTS

A. v_2 from the event plane method

Figure 3 shows the η dependence of v_n for several centrality intervals in the 2- to 3-GeV p_T range from the FCal_P(N) EP method. Similar behaviors are observed in other p_T ranges (see also [16] for v_2). The v_2 values decrease by less than 5% toward large $|\eta|$ for central and midcentral events, and the decrease is more pronounced both for $n \geq 3$ and for peripheral events.

FIG. 3. (Color online) v_n vs η for $2 < p_T < 3$ GeV from the FCal_P(N) method (i.e., the EP is measured by either FCal_N or FCal_P) with each panel representing one centrality interval. The shaded bands indicate systematic uncertainties from Tables I–V.
Figure 4 shows the p_T dependence of v_2–v_6 for several centrality intervals. All v_n increase with p_T in the range up to 3–4 GeV and then decrease. However, they remain positive even at the highest measured p_T, where occasional fluctuations to negative values do not exceed the statistical precision. This turnover behavior in p_T was also observed at RHIC for v_2 [28,65], and it is associated with the transition from anisotropy driven by the collective expansion to anisotropy driven by a path-length-dependent jet energy loss [2,29]. The overall magnitude of v_n also decreases with increasing n, except in the most central events where v_3 is the largest.

Figure 5 shows the centrality dependence of v_n for several p_T ranges. The centrality intervals are presented in 5% or 10% increments, with an additional interval for the 1% most central events. Going from central to peripheral events (from right to left along the x axis), v_2 first increases, reaching a maximum in the 30%–50% centrality range, and then decreases. The higher-order coefficients v_3–v_6 show a similar, but much weaker, centrality dependence, and this behavior is consistent with an anisotropy related to the fluctuations in the initial geometry [32]. For most of the measured centrality range, v_2 is much larger than the other harmonic coefficients. In central events, however, v_3 and/or v_4 becomes larger than v_2 for some p_T ranges. At high $p_T (>4$ GeV$)$, v_2 increases toward more peripheral events, presumably reflecting the dominance of autocorrelations from dijets.

In an ideal hydrodynamics scenario, v_n at low p_T is a power-law function of the radial expansion velocity of the fluid, leading to the qualitative expectation that v_n is a power-law function of p_T [9,66]. Previous RHIC results have shown that v_4/v_2^2 (or equivalently $v_4^{1/4}/v_2^{1/2}$) is almost independent of p_T [48,49].

Figure 6 shows $v_n^{1/n}/v_2^{1/2}$ vs p_T for various centrality intervals. These ratios vary weakly with p_T except in the 5% most central events, suggesting that such a scaling relation largely accounts for the p_T dependence.

This v_4 was measured relative to the Φ_2 instead of the Φ_4 reaction plane and is known as mixed harmonics [4]. It can be regarded as a projection of v_4 measured in the Φ_4 onto the Φ_2.
However, the overall magnitudes of the ratios seem to vary with centrality and also vary slightly with n.

Figure 7 shows the centrality dependence of $v_{2n}^{2n}/v_2^{1/2}$ for $2 < p_T < 3$ GeV. Given that the ratios vary weakly with p_T, the results for other p_T ranges are similar. The ratios are almost independent of centrality in midcentral and peripheral events, but then increase sharply toward more central events, with a total change of almost a factor of two over the 0%–20% centrality range. In addition, the ratios for $n = 4$–6 are similar to each other, while they are systematically higher than those for $n = 3$. A similar centrality dependence was observed for the v_4/v_2 ratio at the RHIC and was argued to reflect the centrality dependence of fluctuations in the initial geometry [49].

B. v_2–v_6 from the two-particle correlation method

Figure 8 shows the evolution of the 2D correlation function with centrality for particles with $2 < p_T < 3$ GeV. While central events show structures that are long range in $\Delta \eta$ (the ridge and double-hump), the more peripheral events show a systematic disappearance of these long-range structures and the emergence of clear jet-related peaks on the away side. The magnitude of the long-range structures, measured as deviation from unity, exhibits a characteristic centrality dependence. Figure 8 shows that the near-side ridge (relative to unity) starts at about 0.015 in the 1% most central events, increases to 0.12 in 30%–50% midcentral events, and then decreases and disappears in the most peripheral (80%–90%) events. Because the harmonics for different n all contribute positively to the correlation function at $\Delta \phi = 0$, this nonmonotonic centrality dependence simply reflects the fact that v_n for $n \geq 2$ all reach their maxima in the 30%–50% centrality range for this p_T selection, as shown in Fig. 5. The away-side long-range structure exhibits a similar centrality dependence, but is complicated by the contribution from the recoil jet, which starts to dominate the away-side shape in the 60%–90% centrality range.

As discussed in Sec. IV B and shown in Fig. 2, each 2D correlation function is projected onto a set of 1D $\Delta \phi$ correlation functions in slices of $|\Delta \eta|$, and the Fourier coefficients $v_{n,n}^\perp$ and v_6^\perp are calculated from these distributions. Examples of such 1-D correlation functions are shown in Fig. 9 for pairs with $2 < |\Delta \eta| < 5$ and $3 < p_T < 4$ GeV, together with individual contributions from the first six $v_{n,n}$ components. In a scenario where the Fourier coefficients are dominated by anisotropic flow, the value of the correlation function at $\Delta \phi \sim 0$ should be larger than its value at $\Delta \phi \sim \pi$ [see Eq. (3)]. This indeed is the case up to the 40%–50% centrality interval, but for centralities greater than 50% the trend reverses. This reversal of the asymmetry between the near- and away-side amplitudes correlates with a continuous decrease of $v_{1,1}$, which eventually becomes negative at around the 40%–50% centrality interval (also see top panel of Fig. 11). The correlation function in the 80%–90% centrality interval shows that a broad peak from the away-side jet predominantly generate a negative $v_{1,1}$ and a positive $v_{2,2}$. Therefore, they tend to cancel each other at the near side but add up at the away side. This behavior suggests that in peripheral collisions and at low p_T, the appearance of a large negative $v_{1,1}$ is a good indicator for a significant contribution of autocorrelations from jets to $v_{2,2}$.

Figure 10 shows Fourier decomposition of the correlation functions in the 0%–10% centrality interval for several p_T ranges. Again, a large pseudorapidity gap of $|\Delta \eta| > 2$ is required to suppress the near-side jet peak and to expose the long-range structures. At low p_T, the $v_{n,n}$ components are mainly driven by these long-range structures. However, for $p_T^f > 6$ GeV, they are dominated by the pronounced
FIG. 8. (Color online) 2D correlations for $2 < p_T^a, p_T^b < 3$ GeV in several centrality intervals. The near-side jet peak is truncated from above to better reveal the long-range structures in $\Delta \eta$.

FIG. 9. (Color online) Centrality dependence of $\Delta \phi$ correlations for $3 < p_T^a, p_T^b < 4$ GeV. A rapidity gap of $2 < |\Delta \eta| < 5$ is required to isolate the long-range structures of the correlation functions; that is, the near-side peaks reflect the ridge instead of the autocorrelations from jet fragments. The error bars on the data points indicate the statistical uncertainty. The superimposed solid lines (thick dashed lines) indicate contributions from individual $v_{n,n}$ components (sum of the first six components).
FIG. 10. (Color online) Fixed-p_T correlation function in the 0%–10% centrality interval for several p_T ranges. A rapidity gap of $2<|\Delta \eta|<5$ is required to isolate the long-range structures of the correlation functions. The error bars on the data points indicate the statistical uncertainty. The superimposed solid lines (thick dashed lines) indicate contributions from individual $v_{n,n}$ components (sum of the first six components).

FIG. 11. $v_{n,n}$ vs centrality obtained from fixed-p_T correlations with $2<|\Delta \eta|<5$ for a low p_T interval (top) and a high p_T interval (bottom). The error bars (shaded bands) indicate the statistical (systematic) uncertainties.

As discussed in Sec. I, a necessary condition for the $v_{n,n}$ to reflect anisotropy associated with the initial spatial asymmetries is that it should factorize into the product of two single-particle v_n. A direct way to verify the factorization is to check whether the target $v_n(p_T^T)$ calculated as

$$v_n(p_T^T) = \frac{v_{n,n}(p_T^T, p_T^a)}{v_n(p_T^a)} = \sqrt{\frac{v_{n,n}(p_T^T, p_T^a)}{v_{n,n}(p_T^T, p_T^a)}},$$

is independent of the reference p_T^a. Figure 12 shows one such study of $n=1$–6 for $1<p_T<p_T^{1.5}$ GeV using four different reference p_T^T ranges. The $v_n(p_T^T)$ values calculated this way clearly change with the choice of p_T^T, indicating a breakdown of the factorization over the measured p_T range. This breakdown is mainly attributable to contributions from global momentum conservation for a system with finite multiplicity. More detailed discussions of the physics behind this breakdown and ways to separate different contributions
and extract the v_1 associated with dipole asymmetry from $v_{1,1}$ are presented in Sec. V D.

Figure 12 shows that the factorization holds for $n = 2–6$ for $|\Delta n| > 1$. Despite a factor of three variation in the reference v_0 value for the p_T ranges from 0.5–1 GeV to 3–4 GeV (see Fig. 4), the extracted $v_n(p_T^n)$ for $n = 2–6$ is constant within statistical uncertainties for $|\Delta n| > 1$. This factorization check is repeated for $n = 2–6$ for various ranges of p_T^a, p_T^b, and centrality. For correlations with the default choice of $|\Delta n| > 2$ used in this paper, factorization is found to hold at the 5%–10% level for $p_T < 3–4$ GeV in the 70% most central events. Further studies of this topic are presented in Sec. V C.

Figure 13 shows the extracted Fourier coefficients, v_n vs n, for several fixed-p_T correlations with $|\Delta n| > 2$ and for the 1% most central events. The p_T^n ranges are restricted to below 4 GeV, where the factorization for $v_2–v_6$ works reasonably well. Significant signals are observed for $n \leq 6$, while the signals for $n > 6$ are consistent with zero within statistical and systematic uncertainties. Note that in cases where the uncertainty of $v_{n,n}$ is comparable to its own value, the v_n uncertainty becomes asymmetric and highly non-Gaussian. A complete compilation of the Fourier coefficients for other centrality intervals is included in Figs. 22–27 in the Appendix. Recent model comparisons indicate that these results can provide important constraints on the nature of initial geometry fluctuations and the shear viscosity of the created matter [34].

C. Comparison of v_2–v_6 from the two methods

Figure 14 compares the centrality dependence of v_n obtained from the 2PC method and the EP method at low p_T. They agree within 5% for v_2–v_4, 10% for v_5, and 15%
for v_6 over a broad centrality range, well within the quoted systematic uncertainties for the two methods.

As the contribution of the away-side jet increases with p_T, the v_n values from the 2PC method are expected to deviate from the EP results. Figure 15 compares v_2 to v_5 from the fixed-p_T 2PC method with those from the EP method in the 0%-10% centrality interval. The two methods agree within 5%-15% for v_2 and 5%-10% for v_3 to v_5 for $p_T < 4$ GeV. Significant deviations are observed for $p_T > 4$–5 GeV, presumably owing to contributions from the away-side jet (see Fig. 10).

Figure 16 compares the v_2 to v_5 obtained from the mixed-p_T 2PC method with those from the EP method in the 0%-10% centrality interval. The layout of this figure is similar to that of Fig. 15, except that the $v_n(p_T^a)$ are calculated using Eq. (17) for four reference p_T^a ranges. Because only one particle is chosen from high p_T, the influence of autocorrelations from jets is expected to be less than when both particles are chosen from high p_T. Indeed, when p_T^a is below 3 GeV, the deviations from the EP method are less than 5%-10% out to much higher p_T, when statistical precision allows. This behavior suggests that as long as the reference p_T^a is low, the factorization relation is valid and hence the v_n can be measured to high p_T via the 2PC method. It is also noticed that in central events, the agreement for v_2 is generally worse than that for the higher-order v_n. The differences for v_2 between the two methods reach >20% for $p_T^2 > 4$ GeV and 3 < $p_T^2 < 4$ GeV, while the differences for the higher-order v_n are small and show no visible dependence on p_T^2 for $p_T^2 < 4$ GeV. Comparisons for several other centrality intervals are included in Fig. 28 in the Appendix. Good agreement is always observed for v_2 to v_5 in noncentral events.

The agreement between the 2PC and EP methods implies that the structures of the two-particle correlation function at low p_T and large $|\Delta \eta|$ mainly reflect collective flow. This is verified explicitly by reconstructing the correlation...
function as

\[C(\Delta \phi) = b^{2\text{PC}} \left(1 + 2 v_{1,1}^{2\text{PC}} \cos \Delta \phi + 2 \sum_{n=2}^{6} v_{n}^{\text{EP,a}} v_{n}^{\text{EP,b}} \cos n \Delta \phi \right), \]

\[\text{Eq. (18)} \]

where \(b^{2\text{PC}} \) and \(v_{1,1}^{2\text{PC}} \) are the average of the correlation function and first harmonic coefficient from the 2PC analysis, and the remaining coefficients are calculated from the \(v_n \) measured by the FCaP_{NN} EP method. Figure 17 compares the measured correlation functions with those reconstructed using Eq. (18), and they are found to agree well. In general, the correlation functions are reproduced within 5\% of their maximum variations for \(p_T < 3 \) GeV, with slightly larger residual differences for \(3 < p_T < 4 \) GeV. The \(v_{1,1} \) term, not measured by the EP method, also plays a significant role, but it is not large enough to generate the near- and away-side structures in the correlation function.

Figure 17 also shows the separate contributions from odd harmonics \(v_3, v_5 \) and even harmonics \(v_2, v_4, v_6 \) measured by the FCaP_{NN} EP method. The motivation for doing this is that at \(\Delta \phi \sim \pi \), the even harmonics all give positive contributions while the odd harmonics all give negative contributions. Thus, the relative magnitudes of these two contributions control the away-side shape. Figure 17 shows that the double-hump structure can be explained by the interplay between the odd and even harmonics.

D. \(v_{1,1} \) from the two-particle correlation method and implications for the \(v_1 \) associated with the dipole asymmetry

The previous results show that the factorization properties of \(v_{1,1} \) are quite different from those of the higher-order coefficients. The main reason for this is that \(v_{1,1} \) is strongly influenced by global momentum conservation, while all higher-order coefficients conserve momentum owing to their multifold symmetries. One example of momentum

FIG. 16. (Color online) Comparison of \(v_2(p_T) \) and ratios between the mixed-\(p_T \) 2PC method obtained for four reference \(p_T \) ranges (0.5–1, 1–2, 2–3, 3–4 GeV) and the EP method (\(n=2 \) from top row to bottom row) for the 0%–10% centrality interval. The error bars indicate the statistical uncertainties only. The dashed lines in the ratio plots indicate a ±10% band to guide eye.

FIG. 17. (Color online) Measured correlation functions compared with those reconstructed from \(v_2 \) measured from the FCaP_{NN} method and \(v_{1,1} \) from the 2PC method in 0%–1% centrality interval for four \(p_T \) ranges. The contributions from \(n=1, n=3, 5, n=2, 4, 6 \) are shown separately. The error bars indicate the statistical uncertainties.
conservation effects comes from dijets in peripheral events, which tend to give a negative $v_{1,1}$ at large $|\Delta \eta|$ (see the cos $\Delta \phi$ component in the bottom-right panel of Fig. 9). The influence of global momentum conservation on the two-particle correlation has been studied extensively [12,51,52,67,68] and was shown to explicitly break the factorization relation Eq. (4) [51,52]:

$$v_{1,1}(p_T^a, p_T^b, \eta_a, \eta_b) \approx v_1(p_T^a, \eta_a) v_1(p_T^b, \eta_b) - \frac{p_T^a p_T^b}{M(p_T^a)} ,$$

(19)

where M and $\langle p_T^2 \rangle$ are the multiplicity and average squared transverse momentum for the whole event, respectively. The negative correction term is a leading-order approximation for momentum conservation. This approximation is expected to be valid when the correction term is much smaller than 1. The global momentum conservation effect is important in peripheral events and for high-p_T particles, but is diluted in central events owing to the large multiplicity.

The first term of Eq. (19) represents a contribution from v_1, whose dependence on pseudorapidity can be generally separated into a rapidity-odd component and a rapidity-even component. The rapidity-odd v_1 is thought to arise from the “sideward” deflection of the colliding ions [5] and changes sign going from negative η to positive η [53,54]. Because pairs with large $|\Delta \eta|$ separation typically select two particles from opposite hemispheres, the rapidity-odd v_1 contribution to $v_{1,1}$ is negative at large $|\Delta \eta|$. However, the rapidity-odd v_1 is found to be less than 0.005 for $|\eta| < 2$ at the LHC [69]. The corresponding contribution to $v_{1,1} (< 2.5 \times 10^{-3})$ is negligible compared to the typical $v_{1,1}$ values seen in the data (see below). The rapidity-even v_1 signal is believed to arise from the dipole asymmetry of the nuclear overlap owing to fluctuations in the initial geometry [11,68]. This spatial asymmetry results in a dipole anisotropy of the pressure gradient, which drives the v_1. If the rapidity-even v_1 depends weakly on η [68], similar to the higher-order v_n, its contribution to $v_{1,1}$ should be positive and vary weakly with $\Delta \eta$. In this case, Eq. (19) can be simplified to

$$v_{1,1}(p_T^a, p_T^b) \approx v_1(p_T^a) v_1(p_T^b) - \frac{p_T^a p_T^b}{M(p_T^a)} ,$$

(20)

A previous analysis of published RHIC data supports the existence of a significant rapidity-even v_1 at lower beam energy [12]. Here the properties of the $v_{1,1}$ data are examined in detail, with the goal of understanding the relative contributions of v_1 and global momentum conservation.

Figure 18 shows the $|\Delta \eta|$ dependence of the $v_{1,1}$ extracted from two-particle fixed-p_T correlations for several centrality intervals (see discussions around Fig. 2). The $v_{1,1}$ values for $|\Delta \eta| < 0.5$ are always positive, presumably owing to contributions from the near-side jet or other short-range correlations. The $v_{1,1}$ values at large $|\Delta \eta|$, however, have a more complex dependence on centrality and p_T. In peripheral events, the $v_{1,1}$ values are always negative at $|\Delta \eta| > 1$, and their absolute values increase up to $|\Delta \eta| \sim 1.6$ and then decrease for larger $|\Delta \eta|$. This trend is consistent with the gradual falloff of the away-side jet contribution at large $|\Delta \eta|$ seen in 2D correlation function, for example, the last panel of Fig. 8. In central and midcentral events, the $v_{1,1}$ values at $|\Delta \eta| > 1$ are negative for $p_T^a, p_T^b < 2$ GeV, but they become positive and relatively independent of $|\Delta \eta|$ at higher p_T, consistent with the contribution from a rapidity-even v_1 that varies weakly with η.

Given that the $|\Delta \eta|$ dependence of Fig. 18 is generally weak at large $|\Delta \eta|$, $v_{1,1}$ is integrated over $2 < |\Delta \eta| < 5$ to obtain one value for each p_T^a and p_T^b combination. The $v_{1,1}(p_T^a, p_T^b)$ functions are then shown in Fig. 19 for various centrality intervals. In peripheral events, the $v_{1,1}$ values are always negative and their absolute values increase nearly linearly with p_T^a and p_T^b, presumably dominated by autocorrelations from the away-side jet. In more central events, the absolute value of this negative $v_{1,1}$ component is smaller, reflecting a dilution of the momentum conservation term by the large event multiplicity. Furthermore, Fig. 19 clearly suggests that a positive $v_{1,1}$ component sets in for $2 \lesssim p_T \lesssim 6$ GeV. Its magnitude increases for more central events and eventually drives $v_{1,1}$ into the positive region. The $v_{1,1}$ values reach a
maximum at around 4 GeV, similar to those for the higher-order harmonic coefficients (see Fig. 4).

To validate the two-component model of Eq. (20) as a reasonable interpretation of the \(v_{1,1} \) data and to extract the \(v_1 \), a least-squares fit of the \(v_{1,1} \) data is performed for each centrality interval with the following form:

\[
\chi^2 = \sum_{a,b} \left\{ v_{1,1}(p_T^a, p_T^b) - \left[v^{1\text{st}}(p_T^a) v^{1\text{st}}(p_T^b) - c p_T^a p_T^b \right] \right\}^2 \left(\sigma_{a,b}^{\text{stat}} + \sigma_{a,b}^{\text{sys},pT^2} \right)^{-1},
\]

where \(\sigma_{a,b}^{\text{stat}} \) and \(\sigma_{a,b}^{\text{sys},pT^2} \) denote the statistical and point-to-point systematic uncertainties for \(v_{1,1}(p_T^a, p_T^b) \), respectively (see Sec. IV B). The \(v^{1\text{st}}(p_T) \) function is defined via a smooth interpolation of its values at \(m \) discrete \(p_T \) points, \(v^{1\text{st}}(p_T) \), and these together with the parameter \(c \) constitute a total of \(m+1 \) fit parameters. An interpolation procedure is used because the functional form of \(v^{1\text{st}}(p_T) \) is, \textit{a priori}, unknown, yet it is expected to vary smoothly with \(p_T \).

In the default setup, the \(v_{1,1} \) data used in the fit are restricted to \(p_T^a < 6 \text{ GeV} \) and \(p_T^b < 10 \text{ GeV} \), giving a total of 129 data points.

TABLE VII. Quality of the fit \(\chi^2/\text{DOF} \), fit parameter \(c \), and corresponding multiplicity scaled values \(c N_{\triangledown\eta}^{\Delta\eta=0} \) for various centrality intervals. The uncertainty of \(c N_{\triangledown\eta}^{\Delta\eta=0} \) is calculated as the quadrature sum of uncertainties from \(c \) and \(N_{\triangledown\eta}^{\Delta\eta=0} \) of Ref. [57]. The bottom row lists the 15 \(p_T \) interpolation points used in the default fit.

<table>
<thead>
<tr>
<th>Centrality</th>
<th>(\chi^2/\text{DOF})</th>
<th>(c \times 0.001 \text{ GeV}^{-2})</th>
<th>(c N_{\triangledown\eta}^{\Delta\eta=0}) (\times \text{GeV}^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%–5%</td>
<td>159/113</td>
<td>0.24 ± 0.02</td>
<td>0.39 ± 0.04</td>
</tr>
<tr>
<td>5%–10%</td>
<td>133/113</td>
<td>0.28 ± 0.02</td>
<td>0.37 ± 0.04</td>
</tr>
<tr>
<td>10%–20%</td>
<td>165/113</td>
<td>0.35 ± 0.03</td>
<td>0.36 ± 0.04</td>
</tr>
<tr>
<td>20%–30%</td>
<td>134/113</td>
<td>0.50 ± 0.04</td>
<td>0.34 ± 0.03</td>
</tr>
<tr>
<td>30%–40%</td>
<td>188/113</td>
<td>0.75 ± 0.05</td>
<td>0.33 ± 0.03</td>
</tr>
<tr>
<td>40%–50%</td>
<td>181/113</td>
<td>1.16 ± 0.09</td>
<td>0.32 ± 0.03</td>
</tr>
</tbody>
</table>

15 interpolation points used in the default fit:

- 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 2.0, 2.5
- 3.0, 3.5, 4.5, 5.5, 6.5, 7.5, 9.0 GeV
points for each centrality interval. A cubic-spline interpolation procedure is used, and the number of interpolation points is chosen to be \(m = 15 \) (listed in Table VII). To account for the \(p_T \)-correlated uncertainty \((\sigma_{\text{sys,corr}}^{a,b}) \), the least-squares minimization is repeated after varying all the \(v_{1,1} \) data points up or down by \(\sigma_{\text{sys,corr}}^{a,b} \). Because \(v_{1,1} \) is symmetric with respect to \(p_a^T \) and \(p_b^T \), data points for \(p_a^T < p_b^T \) are correlated with those for \(p_a^T > p_b^T \). The effect of this correlation is evaluated by repeating the fit using only \(v_{1,1} \) data for \(p_a^T \leq p_b^T \) or \(v_{1,1} \) data for \(p_a^T \geq p_b^T \). The variations from the default fit are included in the systematic uncertainties.

Figure 20 shows the fit to the \(v_{1,1} \) data from Fig. 19 for the 0%–5% and 40%–50% centrality intervals. The \(v_{1,1} \) data are plotted as a function of \(p_b^T \) for six intervals of \(p_a^T \). The seemingly complex patterns of the \(v_{1,1} \) data are well described by the two-component fit across broad ranges of \(p_a^T \) and \(p_b^T \), with the dot-dashed lines indicating the estimated contributions from the global momentum conservation. The typical \(\chi^2/\text{DOF} \) of the fit is between one and two depending on the centrality, as shown in Table VII. The deviations of the data from the fit, as shown in the bottom section of each panel, are less than \(10^{-4} \) for \(p_T < 5 \text{ GeV} \). Above that \(p_T \) and in more peripheral events the deviations increase, possibly reflecting the limitation of the leading-order approximation for the momentum conservation term in Eq. (20), or the two-component assumption in general. In this paper, the study is restricted to the 0%–50% most central events, for which the first term in Eq. (20) is comparable or larger than the second term and the statistical uncertainty of the fit is not too large.

The stability of the least-square minimization procedure is checked for three types of variations: (1) the interpolation

![Graph showing the fit to the \(v_{1,1} \) data for different \(p_T \) intervals.](image-url)
function is varied from cubic-spline interpolation to a linear interpolation, (2) the number of interpolation points is varied from 9 to 21, and (3) the p_T range of the fit is varied from p_T^2, $p_T^1 < 5$ GeV to p_T^2, $p_T^1 < 10$ GeV. The systematic uncertainties of the minimization procedure are calculated as the rms sum of these three variations. They are small in central events but become substantial in peripheral events and are important sources of uncertainties at intermediate p_T. The statistical uncertainty of the fit dominates at high p_T, while the fit uncertainty from $\sigma_{a,b}^{\text{sys,corr}}$ dominates at low p_T. The total absolute uncertainty of v_1^{fit} is $\delta v_1^{\text{fit}} = 0.001$–0.004 for $p_T < 3$ GeV and increases rapidly for higher p_T owing to the greater statistical uncertainty.

Figure 21 shows $v_1^{\text{fit}}(p_T)$ for various centrality intervals. A significant v_1^{fit} signal is observed for all cases. It reaches a maximum between 4 and 5 GeV and then falls at higher p_T. This falloff may indicate the onset of path-length-dependent jet energy loss, which correlates with the dipole asymmetry in the initial geometry similar to higher-order v_n. The magnitude of the v_1^{fit} is large: Its peak value is comparable to that for the v_1 shown in Fig. 4, and the peak value increases by about 20% over the measured centrality range. These results imply that the rapidity-even collective v_1 is an important component of the two-particle correlation at intermediate p_T. For example, the large positive $v_{1,1}$ harmonic seen in the bottom-right panel of Fig. 17 is mainly attributable to collective v_1: Its contribution to $v_{1,1}$ is about three times larger than the negative momentum conservation term estimated by the global fit (top panel of Fig. 20). $v_1^{\text{fit}}(p_T)$ is negative for $p_T < 1.0$ GeV, confirming a generic feature expected for collective v_1, as suggested by hydrodynamic model calculations [11,68]. This behavior, together with the fact that $v_{1,1}$ data show little $|\Delta \eta|$ dependence for $|\Delta \eta| > 2$ (Fig. 18), is consistent with a rapidity-even v_1 that is almost independent of η.

If the two-component ansatz of Eq. (20) is valid, the fit parameter c should be inversely proportional to multiplicity M and $\langle p_T^2 \rangle$ of the whole event. This ansatz is checked by calculating the product of c and the charged hadron multiplicity at midrapidity $\frac{dN}{d\eta}|_{\eta=0}$ from [57], with the assumption that $\frac{dN}{d\eta}|_{\eta=0}$ is proportional to M. The results are summarized in Table VII for each centrality interval. Because $\langle p_T^2 \rangle$ for the whole event is expected to vary weakly with centrality (the $\langle p_T \rangle$ for charged pions at midrapidity only varies by $\sim 5\%$ in the 0%–50% centrality interval at the LHC [70]), the product is also expected to vary weakly with centrality. Table VII shows that this is indeed the case, supporting the assumptions underlying Eq. (20).

VI. CONCLUSION

In summary, differential measurements of harmonic coefficients v_1–v_6 for the azimuthal distributions of charged particles are presented for lead-lead collisions at $\sqrt{s_{NN}} = 2.76$ TeV, based on an integrated luminosity of approximately 8 μb$^{-1}$ recorded by ATLAS. The v_n values are measured for $n = 2$–6 using an event plane method and are also derived for $n = 1$–6 from the $v_{n,n}$ measured in a two-particle correlation method.

In the event plane method, v_2–v_6 are extracted as a function of transverse momentum ($0.5 < p_T < 20$ GeV), pseudorapidity ($|\eta| < 2.5$), and centrality (0%–80%) by correlating tracks with the event plane determined at large rapidity. The v_n values exhibit a weak η dependence, slightly decreasing toward larger $|\eta|$. The v_n values show a similar p_T dependence, namely, increasing with p_T to a maximum around 3–4 GeV and then decreasing for higher p_T. The higher-order coefficients exhibit stronger p_T variations. They follow an approximate scaling relation, $v_n^{\text{fit}}(p_T) \propto v_2^{1/2}(p_T)$, except in the top 5% most central collisions. Furthermore, the coefficients v_3–v_6 show little dependence on centrality, consistent with an anisotropy

FIG. 21. v_1^{fit} vs p_T for various centrality intervals. The shaded bands indicate the total uncertainty. The uncertainty bands are reproduced on their own at the bottom of the figure for clarity.
primarily associated with fluctuations in the initial geometry. In contrast, \(v_2 \) varies strongly with centrality, reflecting an anisotropy mainly associated with a change in the average elliptic geometry with centrality.

In the two-particle azimuthal correlation method, harmonic coefficients for the distributions of the charged particle pairs in \(\Delta \phi, v_{n,n} = \langle \cos n \Delta \phi \rangle \) are extracted over a broad range of \(p_T \), relative pseudorapidity \(\langle |\Delta \eta| < 5 \rangle \) and centrality. For pairs of charged particles with a large pseudorapidity gap \(\langle |\Delta \eta| > 2 \rangle \) and one particle at \(p_T < 3 \) GeV, the \(v_{2,2-v_{0,6}} \) are found to factorize into the product of corresponding \(v_n \) harmonics, that is, \(v_{n,n}(p_T^2, p_T^2) \approx v_n(p_T^2) v_n(p_T^2) \), in central and midcentral events. This suggests that these values of \(v_{2,2-v_{0,6}} \) are consistent with the response of the created matter to fluctuations in the geometry of the initial state. This factorization does not describe the \(v_{2,2-v_{0,6}} \) data in more peripheral collisions or at higher \(p_T \), primarily owing to autocorrelations from dijets. The factorization relation is also found to fail for \(v_{1,1} \) over the entire \(p_T \) range. A detailed investigation of the \(v_{1,1}(|\Delta \eta|, p_T^2, p_T^2) \) data suggests that they are consistent with the combined contributions from a rapidity-even \(v_1 \) component, and a global momentum conservation component that increases linearly with the \(p_T^2 \times p_T^2 \) and is inversely proportional to the event multiplicity. Motivated by this observation, a two-component fit is used to extract \(v_1 \). The derived signal is negative at low \(p_T \), changes sign at \(p_T \approx 1.0 \) GeV, reaches a maximum at around 4–5 GeV and then decreases at higher \(p_T \). The magnitude of \(v_1 \) at the peak is comparable to that of \(v_2 \).

At low \(p_T \) where single-particle anisotropy is dominated by collective flow, the two-particle correlation functions are found to be well reproduced by combining the contributions of \(v_{2-v_{0,6}} \) from the event plane method and the \(v_{1,1} \) [Eq. (18)]. This implies that the main structures of the low \(p_T \) two-particle correlation for \(|\Delta \eta| > 2 \) largely reflect higher-order collective flow \((n \geq 2) \), together with a cos \(\Delta \phi \) term that contains contributions from both a rapidity-even \(v_1 \) and the global momentum conservation. Therefore, the low \(p_T \) correlation functions do not allow significant contributions from jet-induced medium responses. The fluctuations in the initial geometry together with the low viscosity of the created matter are potentially responsible for these \(v_{n,n} \) coefficients. A detailed comparison of the comprehensive \(v_n \) and \(v_{n,n} \) data presented in this paper with viscous hydrodynamic model calculations at low \(p_T \) [25, 26, 32, 34, 71, 72] and jet energy loss model calculations at high \(p_T \) [27, 29, 73, 74] may help elucidate the nature of these fluctuations and better constrain the transport properties of the medium.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia;MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; ARTEMIS and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNIiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.

APPENDIX: COMPREHENSIVE DATA PLOTS FROM TWO-PARTICLE CORRELATION

Section V B presents the results only from selected centrality or \(p_T \) intervals. One of the primary goals of this paper is the detailed study in a wide range of centrality and \(p_T \) of the \(v_{n,n} \) and \(v_n \), obtained from the 2PC in \(\Delta \phi \) with a large pseudorapidity gap. For completeness, the \(v_n \) coefficients for several fixed-\(p_T \) correlations and for centrality intervals other than that shown in Fig. 13 are presented in Figs. 22–27.

One important study of the factorization properties of \(v_{2-v_{0,6}} \) is the comparison between the EP method and mixed-\(p_T \) 2PC method. This comparison is shown in Fig. 16 for the 0%–10% centrality interval. Figure 28 extends this comparison to several centrality intervals. Good consistency is observed for \(v_{2-v_{0,6}} \) in noncentral collisions.

Figures 29–31 present the full set of the \(\Delta \phi \) correlation functions with \(2 < |\Delta \eta| < 5 \) for one central, one midcentral, and one peripheral centrality interval. These correlation functions are the inputs for the \(v_{n,n} \) and \(v_n \) spectra. They provide the complete picture of how the structures of the correlation functions are influenced, as a function of \(p_T^2 \) and \(p_T^6 \), by the anisotropies related to the initial geometry and autocorrelations from the away-side jets, as well as how these influences map onto the strength and sign of the \(v_{n,n} \) coefficients. Note that the correlation functions are symmetric with respect to \(p_T^2 \) and \(p_T^6 \). For example, the correlation for \(1 < p_T^2 < 2 \) GeV and \(2 < p_T^6 < 3 \) GeV (denoted as [1–2, 2–3] GeV) is the same as that for \(2 < p_T^2 < 3 \) GeV and \(1 < p_T^6 < 2 \) GeV (denoted as [2–3, 1–2] GeV).

Figures 32–36 show the dependence of \(v_{2-v_{0,6}} \) on \(p_T^2 \) and \(p_T^6 \). Together with Fig. 19, they provide a concise summary of \(v_{n,n} \) spectra for all the 1D correlation functions such as those in Figs. 29–31 for \(2 < |\Delta \eta| < 5 \). Because the sum of the \(v_{1,1} \)–\(v_{6,6} \) components almost exhaust the shape of the correlation functions, these data provide almost equivalent information as the correlation functions themselves over broad ranges of \(p_T^2 \) and \(p_T^6 \).
FIG. 22. v_n vs n for $n \geq 2$ in the 0%–5% centrality interval for four fixed-p_T correlations (0.5–1, 1–2, 2–3, and 3–4 GeV from left to right). The error bars and shaded bands indicate the statistical and total systematic uncertainties, respectively.

FIG. 23. v_n vs n for $n \geq 2$ in the 5%–10% centrality interval for four fixed-p_T correlations (0.5–1, 1–2, 2–3, and 3–4 GeV from left to right). The error bars and shaded bands indicate the statistical and total systematic uncertainties, respectively.

FIG. 24. v_n vs n for $n \geq 2$ in 10%–20% centrality interval for four fixed-p_T correlations (0.5–1, 1–2, 2–3, and 3–4 GeV from left to right). The error bars and shaded bands indicate the statistical and total systematic uncertainties, respectively.
FIG. 25. v_n vs n for $n \geq 2$ in the 20%–30% centrality interval for four fixed-p_T correlations (0.5–1, 1–2, 2–3, and 3–4 GeV from left to right). The error bars and shaded bands indicate the statistical and total systematic uncertainties, respectively.

FIG. 26. v_n vs n for $n \geq 2$ in the 30%–40% centrality interval for four fixed-p_T correlations (0.5–1, 1–2, 2–3, and 3–4 GeV from left to right). The error bars and shaded bands indicate the statistical and total systematic uncertainties, respectively.

FIG. 27. v_n vs n for $n \geq 2$ in the 40%–50% centrality interval for four fixed-p_T correlations (0.5–1, 1–2, 2–3, and 3–4 GeV from left to right). The error bars and shaded bands indicate the statistical and total systematic uncertainties, respectively.
FIG. 28. (Color online) Comparison of v_n as a function of p_T (v_2–v_5 from top to bottom) between mixed-p_T 2PC method and the EP method for the 0%–5% (left panels), 20%–30% (middle panels), and 40%–50% (right panels) centrality intervals. The error bars indicate the statistical uncertainties only. The dashed lines in the ratio plots indicate a ±10% band to guide the eye.
FIG. 29. (Color online) $\Delta \phi$ correlation functions for various combinations of p_T^a and p_T^b for the 0%–1% centrality interval. The superimposed solid lines (dashed lines) indicate the contributions from individual $v_{n,n}$ (sum of the first six components).
FIG. 30. (Color online) $\Delta\phi$ correlation functions for various combinations of p_T and p_T for the 20%–30% centrality interval. The superimposed solid lines (dashed lines) indicate the contributions from individual $v_{a,a}$ (sum of the first six components).
FIG. 31. (Color online) $\Delta\phi$ correlations for various combinations of p_{t}^{A} and p_{t}^{B} for the 70\%-80\% centrality interval. The superimposed solid lines (dashed lines) indicate the contributions from individual $v_{n,n}$ (sum of the first six components).
FIG. 32. (Color online) $v_{2,2}(p_T^e, p_T^a)$ for $2 < |\Delta\eta| < 5$ vs p_T^a for different p_T^e ranges. Each panel presents results in one centrality interval. The error bars and shaded bands represent statistical and systematic uncertainties, respectively. The data points for three highest p_T^a intervals have coarser binning in p_T^e, hence are connected by dashed lines to guide the eye. The data in some panels are rescaled to fit within the same vertical range.

FIG. 33. (Color online) $v_{3,3}(p_T^e, p_T^a)$ for $2 < |\Delta\eta| < 5$ vs p_T^a for different p_T^e ranges. Each panel presents results in one centrality interval. The error bars and shaded bands represent statistical and systematic uncertainties, respectively. The data points for three highest p_T^a intervals have coarser binning in p_T^e, hence are connected by dashed lines to guide the eye.
FIG. 34. (Color online) \(v_4, s(p_T^a, p_T^b)\) for \(2 < |\Delta \eta| < 5\) vs \(p_T^b\) for different \(p_T^a\) ranges. Each panel presents results in one centrality interval. The error bars and shaded bands represent statistical and systematic uncertainties, respectively. The data points for three highest \(p_T^a\) intervals have coarser binning in \(p_T^b\), hence are connected by dashed lines to guide the eye. The data in some panels are rescaled to fit within the same vertical range.

FIG. 35. (Color online) \(v_5, s(p_T^a, p_T^b)\) for \(2 < |\Delta \eta| < 5\) vs \(p_T^b\) for different \(p_T^a\) ranges. Each panel presents results in one centrality interval. The error bars and shaded bands represent statistical and systematic uncertainties, respectively. The data points for three highest \(p_T^a\) intervals have coarser binning in \(p_T^b\), hence are connected by dashed lines to guide the eye.
FIG. 36. (Color online) v_6,p_T^2 for $2<|\Delta n|<5$ vs p_T^2 for different p_T^2 ranges. Each panel presents results in one centrality interval. The error bars and shaded bands represent statistical and systematic uncertainties, respectively. The data points for three highest p_T intervals have coarser binning in p_T, hence are connected by dashed lines to guide the eye.

MEASUREMENT OF THE AZIMUTHAL ANISOTROPY FOR...
MEASUREMENT OF THE AZIMUTHAL ANISOTROPY FOR...
MEASUREMENT OF THE AZIMUTHAL ANISOTROPY FOR ...

PHYSICAL REVIEW C 86, 014907 (2012)
MEASUREMENT OF THE AZIMUTHAL ANISOTROPY FOR ...

PHYSICAL REVIEW C 86, 014907 (2012)

(Atlas Collaboration)

1 University at Albany, Albany, New York, USA
2 Department of Physics, University of Alberta, Edmonton, Alberta, Canada
3 Department of Physics, Istanbul Technical University, Istanbul, Turkey
4 Department of Physics, Dumlupinar University, Kütahya, Turkey
5 Department of Physics, Gaziantep University, Gaziantep, Turkey
6 Department of Physics, Bologna, Italy
7 Department of Physics, TOBB University of Economics and Technology, Ankara, Turkey
8 Department of Physics, Chung-Ang University, Seoul, South Korea
9 Department of Physics, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, University of Belgrade, Belgrade, Serbia
11 Institute of Physics, University of Belgrade, Belgrade, Serbia
12 Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Department, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 Department of Physics, Bogazici University, Istanbul, Turkey
19 Division of Physics, Dogus University, Istanbul, Turkey
20 Department of Physics, Engineering, Gaziantep University, Gaziantep, Turkey
21 Department of Physics, Istanbul Technical University, Istanbul, Turkey
22 INFN Sezione di Bologna, Italy
23 Dipartimento di Fisica, Università di Bologna, Bologna, Italy
24 Physikalisches Institut, University of Bonn, Bonn, Germany
25 Department of Physics, Boston University, Boston, Massachusetts, USA