Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1021/ja203756x</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society (ACS)</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Dec 30 22:13:41 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/74559</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR

Marvin J. Bayro,† Galia T. Debelouchina,† Matthew T. Eddy,† Neil R. Birkett,†,‡,§ Catherine E. MacPhee,† Melanie Rosay,‖ Werner E. Maas,‖ Christopher M. Dobson,‖ and Robert G. Griffin*,†

†Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
‡Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
‖Bruker BioSpin Corporation, Billerica, Massachusetts 01821, United States

ABSTRACT: We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two being based on the analysis of long-range 13C–15N correlation spectra and a third based on the identification of intermolecular interactions in 13C–15N spectra. We show, in studies of fibrils formed by the 86-residue SH3 domain of PI3 kinase (PI3-SH3), that efficient 13C–13C correlation spectra display a resonance degeneracy that establishes a parallel, in-register alignment of the proteins in the amyloid fibrils. In addition, this degeneracy can be used to yield intermolecular constraints. The 13C–13C experiments are corroborated by 15N–13C correlation spectra obtained from a mixed [15N,12C]/[14N,13C] sample which directly quantifies interstrand distances. Furthermore, when the spectra are recorded with signal enhancement provided by dynamic nuclear polarization (DNP) at 100 K, we demonstrate a dramatic increase (from 23 to 52) in the number of intermolecular 13C and 15N constraints present in the spectra. The increase in the information content is due to the enhanced signal intensities and to the fact that dynamic processes, leading to spectral intensity losses, are quenched at low temperatures. Thus, acquisition of low temperature spectra addresses a problem that is frequently encountered in MAS spectra of proteins. In total, the experiments provide 111 intermolecular 13C–13C and 15N–13C constraints that establish that the PI3-SH3 protein strands are aligned in a parallel, in-register arrangement within the amyloid fibril.

INTRODUCTION

Amyloid fibrils are high molecular weight aggregates formed by peptides and proteins with a characteristic cross-β structure in which β-sheets run parallel to the fibril axis.1–3 A wide range of debilitating pathologies, including neurodegenerative disorders such as Alzheimer’s disease and other conditions such as type 2 diabetes, involve amyloid fibrils and/or their precursor aggregates.4 In addition, nonpathological and functional amyloid assemblies have been recognized,5 and the observation of fibril formation by peptides and proteins unrelated to disease indicates that the amyloid fold is a generally accessible state of polypeptide chains.3,4,6 There is therefore a very significant interest in deciphering the molecular architecture of amyloid fibrils and their precursors, from both the biomedical and the fundamental biophysical perspectives.

The structures of proteins in amyloid fibrils differ conceptually from those of natively folded monomers. While the tertiary structure of monomers is the result of intramolecular forces, the structure in fibrils is typically determined by intermolecular interactions that give rise to the core β-sheet assembly.7 In principle, the β-sheets in amyloid fibrils can be formed by parallel or antiparallel β-strands, or a combination of both, and with residues in or out of register between neighboring molecules.8,9 The overall topology of amyloid fibrils is then defined by the relative positions and orientations of the β-sheets that compose the core of the fibril.

Despite the complexity of the molecular design of these structures, magic-angle spinning nuclear magnetic resonance (MAS NMR) studies have resulted in the elucidation of structural information relating to amyloid fibrils at the secondary structure level via resonance assignment and chemical shift analysis10–16 and precise distance and torsion angle measurements.17 In addition, approximate distance constraints have been used to propose models for various systems.18–22 In the case of amyloid fibrils formed by peptides amenable to solid-phase synthesis, the tertiary structure can be probed by the incorporation of 13C or 15N labels at specific residues. A possible motif is a parallel, in-register arrangement of the β-sheets, which can be tested by incorporation of a single 13C label in all the molecules and the measurement of 13C–13C dipolar couplings.8 These measurements are typically performed for various residues along the sequence using separate samples and in one-dimensional (1D) fashion. Several studies have utilized this and similar approaches, such as inserting pairs of 13C/15C or 13C/14N nuclei, to derive...
models of the interstrand structure of fibrils formed by
peptides.8,23–27

However, specific labeling in biosynthetically produced pro-
teins relies on incorporating singly 13C-labeled amino acids in the
growth medium, resulting in the labeling of all positions of a
given amino acid type throughout the sequence and thus
compromising the resolution. Although such an approach can
reveal structural information,20,21 methods that yield data for
multiple resolved sites are more general and advantageous in
structural studies of protein fibrils. An example of a multiple-site
approach is that involving the preparation of fibrils with a mixture
of $[^{13}$C, 14N] and $[^{12}$C, 15N] labeled molecules and obtaining
15N–13C constraints between adjacent molecules in 2D hetero-
nuclear correlation spectra. This mixed-sample approach has
been previously applied to protein fibrils,22 and is enhanced by
sparse 13C labeling.24,29 Nevertheless, such heteronuclear experi-
ments typically suffer from inherently low sensitivity, which is
aggravated by spin dilution and the long internuclear distances
involved. As a result, they have not been widely applicable.

Here we describe three experimental approaches directed
toward the determination of the intermolecular tertiary structure
of amyloid fibrils via MAS NMR spectroscopy and demonstrate
their application to fibrils formed by the SH3 domain of PI3
kinase (PI3-SH3), an 86-residue protein that has been thor-
oughly characterized as a model for fibril formation.30–33 We
show that the examination of long-range 13C–13C correlation
spectra of samples prepared with alternating 13C–12C labeling34,35
leads to the detection of indirect and direct intermolecular
constraints for multiple sites along the polypeptide chain. These
homonuclear approaches are validated with heteronuclear ex-
periments in a mixed 15N/13C sample. In addition, we demon-
strate that dynamic nuclear polarization (DNP)-enhanced MAS
NMR experiments performed at 100 K yield spectra with
excellent signal-to-noise ratios and sufficient resolution to ob-
serve intermolecular heteronuclear correlations in mixed sam-
plings, confirming a parallel, in-register structure in PI3-SH3
amyloid fibrils. Importantly, this study illustrates a situation
where a cryoprotected sample enables spectra to be recorded
at low temperatures, and validates a powerful, versatile approach
for the investigation of supramolecular interactions in protein
assemblies and complexes.

Results and Discussion

13C–13C Correlations between β-Strands. Homonuclear
13C–13C correlations between distant nuclei may in principle
yield the information necessary to identify intermolecular inter-
actions, provided that such correlations can be measured with
sufficient sensitivity and resolution. The band-selective radio
frequency-driven recoupling (BASE RFDR) scheme, in combi-
nation with alternating 13C–12C labeling (achieved through the
use of $[2-^{13}$C] glycerol in the growth medium), efficiently gen-
erates cross-peaks in correlation spectra between aliphatic 13C
nuclei such as 13Ca(i)–13Ca(i ± 1) and 13Ca(i)–13Cβ(i ±
1).36 Multiple factors contribute to the efficiency of this approach,
including (1) the robust character of RFDR-type pulse sequences
with respect to experimental imperfections,37,38 (2) the absence of
heteronuclear interference because the low 13C power levels avoid
depolarization processes, (3) the favorable recoupling effect of
finite pulses, (4) the narrow effective recoupling bandwidth,
restricted to the aliphatic region of the spectrum, that eliminates
unwanted 13Ca(i)–13C(i − 1) polarization transfer, and (5) the
attenuation of dipolar truncation effects afforded by sparse
13C labeling.39

To establish the validity of this approach, we recorded BASE
RFDR spectra of a microcrystalline sample of protein G B1
prepared with $[2-^{13}$C] glycerol (2-GB1). The spectra exhibit
cross-peaks with excellent signal intensities both between se-
quential residues and between residues distant in the sequence.
Indeed, with mixing times ≥ 20 ms, long-range cross-peaks
between many backbone 13C sites were observed, corresponding
to internuclear distances of up to 6.5 Å. As a representative
example, the strip plot of Figure 1a shows cross-peaks between
15N and 13C sites, i.e., within its own strand (T44, D46, and D47), to a strand
within the same molecule (T51 and F52), and to an adjacent strand in
a neighboring molecule (K13* and G14*). Asterisks denote residues in an
adjacent protein molecule in the crystal lattice. The spectrum in panel a
was recorded with $\tau_{max} = 24$ ms and a total experimental time of 7.5 h.

Figure 1. (a) Subsection of a BASE RFDR spectrum of microcrystalline
2-GB1 showing cross-peaks between Y45Ca and neighboring nuclei. (b)
Internuclear distances in the crystal structure of GB1 (PDB ID 2QMT)
corresponding to the cross-peaks observed between Y45Ca and other
13C sites, i.e., within its own strand (T44, D46, and D47), to a strand
within the same molecule (T51 and F52), and to an adjacent strand in
a neighboring molecule (K13* and G14*). Asterisks denote residues in an
adjacent protein molecule in the crystal lattice. The spectrum in panel a
was recorded with $\tau_{max} = 24$ ms and a total experimental time of 7.5 h.
Figure 2. Internuclear distances anticipated in parallel β-strands and resolvable $^{13}\text{C}a$-$^{13}\text{C}b$ correlations for a given residue in the middle of three different strands, h, i, k (left), and three identical in-register strands, i, i, i (right). Interstrand correlations in the parallel in-register case are degenerate with sequential correlations within the strand. Typical internuclear distances are indicated on the left. Dashed lines of different colors (except for black) indicate the potentially resolved cross-peaks in $^{13}\text{C}a$-$^{13}\text{C}b$ correlation spectra.

was found for 2-G$_{R1}$, are also observed for 2-PI3-SH3 amyloid fibrils with BASE RFDR experiments. Furthermore, generation of $(i \to i \pm 2)$ cross-peaks via dipolar recoupling suggests that the segments involved exhibit favorable dynamics, which could otherwise interfere with polarization transfer, 19 and that long-range correlations can be expected within a threshold of $\sim 6.5 \text{Å}$ in the vicinity of these residues with intensities approximately 3 times lower than those of sequential $(i \to i \pm 1) {^{13}\text{C}a} -{^{13}\text{C}a}$ cross-peaks. However, despite the detection of cross-peaks with excellent signal intensities between nuclei distant in space, no cross-peaks between $^{13}\text{C}a$ nuclei distant in sequence $(i \to i \pm 4$ or longer) can be identified for any of the multiple well-resolved sites in BASE RFDR spectra of 2-PI3-SH3 amyloid fibrils. This result is consistent with the degenerate backbone structure of a parallel, in-register intermolecular conformation discussed above. Indeed, as shown in 2-G$_{R1}$ spectra and illustrated in Figure 2, multiple interstrand contacts are expected for each $^{13}\text{C}a$ site in a β-sheet. In the case of the segments shown in Figure 3, M3-A5 and R11-Y14 adopt a β-strand conformation and are expected to give rise to correlations across the component β-sheets while F44-D46 is part of a loop or turn and thus will not necessarily interact with distant residues. Another important caveat to consider is the possibility that the absence of correlations may be due to low fractional populations of $^{13}\text{C}a$ labeling at a given site, but that possibility can be discounted by the analysis of multiple sites along the backbone, as we found in PI3-SH3. Together with the observation of $(i \to i \pm 2)$ correlations as local controls of efficient dipolar recoupling, the absence of correlations between backbone sites distant in sequence for β-strand segments implies a parallel, in-register β-sheet tertiary structure in PI3-SH3 amyloid fibrils.

Direct Determination of Parallel, In-Register Tertiary Structure. Alternating $^{13}\text{C}a$-$^{12}\text{C}a$ labeling results in an intercalating pattern in which certain residue types contain pairs of directly
bonded sites (e.g., Cα–Cβ) that are not labeled simultaneously in the same molecule, but they are each labeled independently in different molecules. Such mutually exclusive sites do not yield cross-peaks in one bond, intraresidue 13C–13C correlation spectra. Nevertheless, long-range 13C–13C correlation spectra of 2-P13-SH3 amyloid fibrils, recorded with extended mixing periods of BASE RFDR, proton-driven spin diffusion (PDSD), and other techniques, exhibit a number of 13Cα–13Cβ cross-peaks from residue types that are expected to contain mutually exclusive Cα–Cβ labeled sites. To identify the origin of these unexpected cross-peaks, we compared one-bond 13C–13C correlation spectra of a sample prepared with uniform 13C labeling (U-P13-SH3, Figure 4a) and 2-P13-SH3 (Figure 4b). These spectra demonstrate that many directly bonded 13Cα–13Cβ pairs in U-P13-SH3 are indeed not labeled concurrently in 2-P13-SH3, while others remain. Most signals that are absent in Figure 4b correspond to residues that undergo scrambling during synthesis, such as Glu, Gln, Asp, Asn, Met, and Thr. In particular, Asp and Asn one-bond 13Cα–13Cβ cross-peaks vanish completely in 2-P13-SH3, as highlighted by the dashed boxes in Figure 4a,b. On the other hand, multiple cross-peaks are observed in this region at long mixing times, as illustrated in Figure 4c (τPDSD max = 500 ms). Similar cross-peaks are observed in long-range BASE RFDR experiments. Among the emerging cross-peaks, 13Cα–13Cβ correlations can be identified for residues M3, D15, D25, T33, N35, D46, N59, N62, D70, and T74, and assigned to intermolecular contacts, since they are not observed with the short mixing time that enables the identification of one-bond contacts in 2-P13-SH3. Each of these residues in a given molecule must be in close proximity (<7 Å) to the same residue in an adjacent molecule within the fibril. Since multiple correlations are established throughout the PI3-SH3 sequence, these cross-peaks specify a parallel, in-register fibril arrangement. The mutually exclusive fractional labeling pattern produced in some residue types by alternating labeling enables the identification of interactions between adjacent molecules forming β-sheets in PI3-SH3 fibrils via 13C–13C correlation experiments with long mixing periods. It is essential to ensure that the 13Cα–13Cβ pairs of interest are not labeled concurrently in the same molecule in order to verify the long-range character of their correlations. Thus, the examination of 13C–13C spectra of 2-P13-SH3 with long and short mixing times leads to the direct observation of correlations between neighboring molecules and the identification of a parallel, in-register intermolecular structure within these amyloid fibrils. This direct method is conceptually similar to utilizing mixtures of differentially 13C labeled molecules, although additional control samples are employed in such an approach.

Heteronuclear Correlations Enhanced by Dynamic Nuclear Polarization. To corroborate the homonuclear correlation methodology described above and to obtain additional constraints on the tertiary structure of PI3-SH3 fibrils, we prepared a fibril sample from a mixture of [U-15N] monomers and [2-13C]glycerol-labeled monomers, referred to as mixed PI3-SH3, and performed 15N–13C correlation experiments on these labeling protocol results in the random incorporation of 15N and 13Cα labeled monomers into the fibrils. [2-13C]glycerol labeling enhances the spectral resolution and facilitates 15N–13C heteronuclear recoupling via z-filtered transferred echo double resonance (ZF-TEDOR). In mixed PI3-SH3 samples, polarization build-up reaches a maximum at a ZF-TEDOR mixing period of ~16 ms for 13C backbone sites, consistent with a 15N–13C internuclear distance of ~4.5 Å. We recorded 2D 15N–13C correlation spectra of mixed PI3-SH3 with a mixing period of 15.36 ms, illustrated in Figure 5a–c. This spectrum, recorded at room temperature (~300 K) and a 1H frequency of 750 MHz, required a period of 16 days of signal averaging to obtain adequate signal-to-noise. Because of the manner in which the labeling was performed, the cross-peaks in the spectrum are exclusively intermolecular in origin, and therefore constrain the alignment of proteins within the fibril with respect to one another. As shown in Figure 5g, illustrating the position of the β-strands determined in previous work, we were able to assign 23 15N–13Cα cross-peaks in the ZF-TEDOR spectra. These assignments, based on our previously published data, are consistent with a parallel, in-register arrangement of the strands. However, we note that of the 86 residues in the sequence, we observe only about 30 cross-peaks in the aliphatic region and that the intensities of many of these are weak due to relaxation processes. In particular, protein dynamics interfere with the decoupling, recoupling, and cross-polarization and lead to intensity losses in the spectra. Similar intensity losses are particularly apparent in the aromatic region of the spectrum recorded at 300 K (Figure 5b) that is entirely devoid of cross-peaks. While 2-fold flips of the aromatic rings at room temperature are known to attenuate cross-polarization intensities, the aromatic side-chains of PI3-SH3 are nevertheless present in 13C CP spectra.
However, relaxation attenuates them during the subsequent ZF-TEDOR mixing period of 15–20 ms. To address these intensity losses due to dynamics, we have performed low temperature (100 K) dynamic nuclear polarization (DNP) experiments at a ^{1}H frequency of 400 MHz (263 GHz for electrons). The DNP microwave irradiation produced a signal enhancement factor of ~ 30 in a mixed PI3-SH3 sample doped with the biradical polarizing agent TOTAPOL. This enhancement factor is similar to that observed for other amyloid fibrils and nanocrystals in this experimental configuration, and if the protein were ^{2}H labeled, this enhancement could be a factor of ~ 3–4 larger. A DNP-enhanced ZF-TEDOR spectrum of this sample, acquired in 32 h and shown in Figure 5d–f, reveals many additional intermolecular ^{15}N–^{13}C cross-peaks. Note that the low temperature in this cryoprotected fibril sample induces only moderate line broadening, and the effect is fully reversible; that is, the 300 K spectrum is unchanged before and after freezing. Importantly, low temperatures improve the overall long-range polarization transfer efficiency of ZF-TEDOR because they quench the dynamic processes that lead to short relaxation times. The temperature effect is most dramatically illustrated in the ^{13}C aromatic region (Figure 5b vs 5e) which is empty at 300 K, but is well populated with cross-peaks at 100 K. Similar effects are also observed in the carbonyl (Sa vs Sd) and aliphatic (Sb vs Sf) regions of the DNP spectrum, which reveal many additional cross-peaks. Thus, the low temperatures required for DNP enhancement provide not only an additional factor of 3 in Boltzmann polarization, but they also improve the detection efficiency of intermolecular correlations without significantly compromising spectral resolution. To date, a total of S_2 intermolecular ^{15}N–$^{13}C\alpha$ cross-peaks have been unambiguously assigned, as illustrated in Figure 5h.

While many more signals are observed in low-temperature DNP-enhanced spectra than in room-temperature spectra, it is also more difficult to assign peaks uniquely in the former. This is primarily due to three factors: (1) the broader lines resulting primarily from slight structural heterogeneity at low temperature, (2) also the lower external magnetic field used in our DNP experiments, and (3) the fact that many additional cross-peaks are present—an embarrassment of the riches! In particular, the average ^{13}C and ^{15}N line widths increase from 0.5 and 1.0 ppm, respectively, at 750 MHz and 300 K to 1.0–1.5 and 2.0–3.0 ppm, respectively, at 400 MHz and 100 K. In addition, the many additional cross-peaks at low temperature (some of which may arise from interactions between β-sheets) lead to resonance overlap and obscure the assignment process. Therefore, the S_2 uniquely assigned constraints are only a fraction of the observed and potentially assignable correlations in DNP-enhanced

Figure 5. (a–c) 750 MHz intermolecular ^{15}N–^{13}C correlations in PI3-SH3 fibrils recorded at 300 K with 16 days of acquisition. The three panels correspond to the ^{15}N–$^{13}C=O$, aromatic, and ^{15}N–$^{13}C\alpha$ regions of the spectra. (d–f) The identical spectral regions recorded at 100 K and 400 MHz with DNP enhancement in 32 h of signal averaging. The spectra were obtained with ZF-TEDOR recoupling ($\tau_{mix} = 16$ ms) from a mixed PI3-SH3, a sample fibrillized from a mixture of $[^{15}N]$ monomers and $[2-^{13}C]$ monomers. (g) Illustration of the 23 interstrand contacts established from ^{13}C–^{15}N cross-peaks in the 750 MHz spectra acquired at 300 K in panel a–c; (h) the S_2 interstrand contacts established from the 400 MHz DNP enhanced spectra recorded at 100 K shown in panels d–f.
spectra, and some of the constraints assigned at room temperature cannot be resolved at low temperature, even though the corresponding cross-peaks are likely present. Assignment of additional constraints from DNP-enhanced spectra could be achieved with higher-dimensional and higher field DNP experiments, selectively labeled samples, and further work at low temperatures. Finally, it should be noted that spectral resolution would be compromised more severely were it not for the exclusion of radicals dispersed in the solvent matrix away from protein molecules in this and other heterogeneous systems.

Despite limitations in resolution, the quenching of dynamic processes at low temperature results in a richer information content than at room temperature. Since PI3-SH3 does not contain highly flexible segments, CP spectra at 100 and 300 K present similar features, and since the DNP enhancement is virtually uniform, the enhancement factor is similar for different sites in the fibril. However, the heteronuclear 15N–13C mixing period is sensitive to dynamics on a different time scale than CP experiments, and leads to depolarization at room temperature but not at 100 K. Thus, while many interstrand cross-peaks are missing from ZF-TEDOR spectra at 300 K, they appear more uniformly in spectra at 100 K, as can be seen in Figure 5. In contrast, the intermolecular ZF-TEDOR signal intensities at room temperature vary drastically for different sites along the peptide chain depending on local dynamics. Finally, it is worth noting that frequently MAS spectra of proteins in membranes and fibrils are observed to exhibit reduced signal intensities when compared with spectra of microcrystalline samples such as Gb1.

It is not uncommon that regions of the peptide chain are not present in multidimensional spectra. A large part of the reason for this behavior is undoubtedly due to dynamic processes present at ambient temperatures. Thus, proper cryoprotection of the protein samples, which permits spectra to be recorded at low temperatures, should address this problem in many cases.

As Figure 5 shows, many of the cross-peaks observed in mixed PI3-SH3 can be assigned to 15N(i) – 13Cα(i) or 15N(i) – 13C(i – 1) backbone resonance pairs in which each nucleus belongs to neighboring molecules in the fibrils. Only a parallel, in-register supramolecular architecture, in which the closest interstrand 15N–13C contacts are 15N(i) – 13Cα(i) and 15N(i) – 13C(i – 1) pairs with internuclear distances of 4.3 to 5 Å, can generate the intermolecular correlation pattern observed for mixed PI3-SH3. Therefore, the mixed PI3-SH3 data corroborate the conclusions obtained through the analysis of long-range 13C–13C correlation spectra of 2-PI3-SH3 described in the previous sections and provide additional structural constraints. A graphical summary of all of the constraints obtained from both the 13C–13C and 15N–15N C correlations is shown in Figure 6a. In particular, we note that combining homonuclear experiments with heteronuclear MAS NMR experiments on mixed samples and with DNP enhancement yields a total of 111 intermolecular constraints spanning the length of the peptide chain.

Refined Model for PI3-SH3 Amyloid Protifilament. In a previous publication, we reported the chemical shift assignments for PI3-SH3 amyloid fibrils and were able to establish the position of the β-strands in the protein in its fibrillar form via a TALOS analysis of the shifts.52 This was illustrated in Figure 8 of our previous publication. At the time we described this model, we suggested that the β-strands were arranged in a parallel, in-register configuration, but this proposal was based solely on the fact that the length of the strands was consistent with the dimensions of the cross section of the fibril determined by cryoEM where peaks in the electron density profile are observed with a ~40 Å separation. The interstrand experiments reported here confirm the parallel in-register hypothesis, and therefore represent a refinement of this model as shown in Figure 6b. We have included in this illustration the interstrand 15N(i) – 13Cα(i) contacts derived from the spectra in Figure 5 and summarized graphically in Figure 6a. The position of the turn between β-sheets is consistent with chemical shift analysis and the dimensions of the fibril cross section; however, the detailed structure of this model of intramolecular interface of the β-sheets requires additional experimental verification and refinement.

CONCLUSIONS

We have described three spectroscopic methods able to identify the presence of a parallel, in-register β-sheet tertiary structure in amyloid fibrils, and have shown their applicability in a study of fibrils derived from PI3-SH3. First, using samples prepared with 2-13C glycerol labeling, we detected 13Cα – 13Cα contacts between adjacent β-strands and between neighboring molecules using the efficient BASE RFDR recoupling sequence. This approach was used to elucidate regions of high structural

Figure 6. (a) Summary of intermolecular constraints along the PI3-SH3 sequence obtained with the methods described in the text: Indirect CC ("*"), direct CC ("**"), mixed NC at room temperature ("--"), and mixed NC at 100 K with DNP ("++"). Filled bars indicate residues in a β-strand conformation while empty bars mark dynamic regions that have not been assigned in the spectra. (b) Superposition of all mixed NC at 100 K with DNP ("--") and 13C mixing ("/) and C0 ("C")

dx.doi.org/10.1021/ja203756x | J. Am. Chem. Soc. XXXX, XXX, 000–000
degeneracy in amyloid fibrils, which are consistent with a parallel, in-register intermolecular organization. In a second and complementary approach, comparison of short-range and long-range \(^{13}C-^{13}C\) correlations enabled the differentiation between intra- and inter-residue contacts due to mutually exclusive \(^{13}C-^{13}C\) and \(^{12}C-^{13}C\) pairs. Such pairs are often present in molecules produced with \(^{2,13}C\) glycerol labeling and allowed the direct observation of correlations between the strands forming parallel, in-register \(\beta\)-sheets in PI3-SH3 amyloid fibrils. The major advantage of these homonuclear strategies is that they rely on the analysis of robust experiments that can be recorded efficiently, and on labeling schemes commonly used in structure determination efforts. As a third, more general approach, we have shown that low-temperature DNP-enhanced heteronuclear correlation spectroscopy of a mixed \(^{15}N/^{13}C\) sample provides a large number of highly sensitive supramolecular constraints. Low-temperature DNP-enhanced spectroscopy thus constitutes the most powerful and possibly widely applicable approach for the structural characterization of intricate molecular assemblies such as amyloid fibrils and their oligomeric intermediates. It provides unprecedented enhancements in signal-to-noise ratios and the low temperatures quench the dynamics that otherwise would attenuate structurally important cross-peak intensities. This approach should be also widely applicable to studies of protein–protein interactions and limited only by the resolution available in the multidimensional spectra. It offers a solution to the observation of “missing resonances” frequently observed in MAS spectra of proteins in membranes and fibrils.

MATERIALS AND METHODS

Protein Samples

A sample of the \(\beta1\) domain of immunoglobulin protein G (G\(_{\beta1}\), 56 residues) in microcrystalline form was prepared using \(^{2,13}C\)glycerol and \(^{13}C\) bicarbonate as the sole sources of carbon and uniform \(^{15}N\) labeling (2-G\(_{\beta1}\)). Production, purification, and crystallization of G\(_{\beta1}\) were carried out following previously published protocols, and the precipitation step being performed so as to yield microcrystals in trigonal form. Approximately 20 mg of protein was packed in a 3.2 mm rotor. For homonuclear studies, two types of PI3-SH3 amyloid fibril samples were used, one labeled uniformly with \([U-^{13}C]\)glucose (U-PI3-SH3) and the other prepared with \(^{2,13}C\) glycerol and Na\(^{13}C\)O\(_3\) as the sources of carbon (2-PI3-SH3), while both were uniformly \(^{15}N\) labeled with \(^{15}NH_{4}\)Cl. For the mixed \(^{15}N/^{13}C\) PI3-SH3 sample, the \(^{15}N\) component was prepared with \(^{15}NH_{4}\)Cl and glucose at natural abundance, while the \(^{13}C\) component was prepared with \(^{2,13}C\)glycerol and Na\(^{13}C\)O\(_3\) as the sources of carbon. The fibrils were grown from a solution of monomeric protein by incubation at pH 2.0 and 25 °C for a period of 14 days as described previously, resulting in the generation of a gel-like solution containing fibrils that were subsequently centrifuged and dispersed in a \(d_2\)-glycerol/water solvent (60/40, w/w) to cryoprotect the samples. For the DNP experiments, TOTAPOL biradicals were added to the glyceral/water solvent at a concentration of 10 mM (20 mM electrons). After a final centrifugation step, approximately 8 mg aliquots of fibrils were packed into 3.2 mm rotors.

MAS NMR Spectroscopy

Homonuclear correlation experiments were performed in a spectrometer operating at 700 MHz \(^1H\) frequency (courtesy of Dr. David J. Ruben, Francis Bitter Magnet Laboratory, Cambridge, MA), corresponding to a 16.4 T magnetic field, using a triple resonance Varian/Chemagnetics (Palo Alto, CA) magic-angle spinning probe equipped with a 3.2 mm stator. Sample temperatures were maintained at 5 °C with a stream of \(N_2\) gas cooled. All experiments were acquired using \(^1H-^{13}C\) cross-polarization and TPPM, \(^1H\) decoupling was applied during the chemical shift evolution and detection periods. Two-dimensional BASE RFDR experiments consisted of 544 total t1 points acquired in 60 t2 increments with a 3.0 s recycle delay and were recorded with a mixing time \(t_{mix}\) of 24 ms, 12.5 kHz \(^{13}C\) \(\pi\) pulses, and 80 kHz \(^1H\) decoupling, at a spinning frequency \(\omega_s/2\pi = 12.5\) kHz, with a 32-step phase sequence in the low-power \(^13C\) pulses described previously. The total acquisition times were 7.5 h for 2-G\(_{\beta1}\) and 120 h for 2-PI3-SH3, corresponding to 16 and 256 scans per t1 point, respectively. Similar acquisition parameters were used to record PDSD spectra, with 16 scans per t1 point for the U-PI3-SH3 spectrum and 192 scans per t1 point for each 2-PI3-SH3 spectrum (with short and long mixing periods). Spectra were analyzed with the Sparky program (Goddard, T. D.; Kneller, D. G.; SPARKY 3.115, University of California, San Francisco, CA).

The room temperature ZF-TEDOR experiment was acquired on a 750 MHz spectrometer equipped with a 3.2 mm triple resonance \(^1H/^{13}C/^{15}N\) Bruker E\(^{6}\)ree probe (Billerica, MA). The sample temperature during spinning (\(\omega_s/2\pi = 12.5\) kHz) and pulsing was estimated to be \(\sim 300\) K. This 2D spectrum was acquired with 2880 scans per t1 point, 160 total t1 points, and a dwell time of 80 \(\mu\)s, with a total acquisition time of 16 days. TPPM decoupling (95 kHz) was used during mixing, evolution, and detection periods.

DNP Experiments

DNP-enhanced ZF-TEDOR experiments were performed on a Bruker spectrometer, operating at a \(^1H\) frequency of 400 MHz, equipped with a 263 GHz gyrocron source, a microwave transmission line, and a 3.2 mm low-temperature MAS probe (Bruker BioSpin, Billerica, MA). The temperature was regulated at 100 K, and the spinning frequency was set to 9 kHz. A 2.5 \(\mu\)s \(^1H\) pulse followed by a 800 \(\mu\)s spin-lock pulse were used for \(^{13}C\) cross-polarization, while 4.5 \(\mu\)s \(^{13}C\) \(\pi/2\) pulses, and 6.25 \(\mu\)s \(^{15}N\) \(\pi/2\) pulses were used during the mixing period. TPPM \(^1H\) decoupling (100 kHz) was used during mixing, evolution, and detection periods. A series of six 2D experiments were averaged together, each of which was recorded with 32 scans per t1 point, 160 total t1 points, 111 \(\mu\)s indirect dwell time, and a recycle delay of 3.8 s (\(\sim 5.4\) h per experiment).

ACKNOWLEDGMENT

We thank our colleagues L. Andreas, A.B. Barnes, B. Corzilius, E. Daviso, K. Frederick, V. Michailis, E. Markhasin, Qing Ni, T. C. Ong, M. Reese, A. A. Smith, D. J. Ruben, and C. J. Turner for their assistance and stimulating conversations during the course of this research. This research was supported by the National Institutes of Health through grants EB-003151, EB-002804 and EB-002026 and by the Wellcome Trust.

REFERENCES
