Rapid, efficient functional characterization and recovery of HIV-specific human CD8+ T cells using microengraving

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.1111205109</td>
</tr>
<tr>
<td>Publisher</td>
<td>National Academy of Sciences</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Jul 05 23:20:09 EDT 2017</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/74605</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Rapid, efficient functional characterization and recovery of HIV-specific human CD8+ T cells using microengraving

Navin Varadarajan1,a,2, Douglas S. Kwonb,c,2, Kenneth M. Lawb, Adebola O. Ogunniya2, Melis N. Anahtarb, James M. Richterd, Bruce D. Walkerb,e, and J. Christopher Lovea,b,3

1Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; 2The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Charlestown, MA 02129, Divisions of Infectious Diseases and Gastroenterology, Massachusetts General Hospital, Boston, MA 02116; and 3Howard Hughes Medical Institute, Chevy Chase, MD 20815

Edited by Herman N. Eisen, Massachusetts Institute of Technology, Cambridge, MA, and approved January 25, 2012 (received for review July 11, 2011)

The nature of certain clinical samples (tissue biopsies, fluids) or the subjects themselves (pediatric subjects, neonates) often constrain the number of cells available to evaluate the breadth of functional T-cell responses to infections or therapeutic interventions. The methods most commonly used to assess this functional diversity ex vivo and to recover specific cells to expand in vitro usually require more than 106 cells. Here we present a process to identify antigen-specific responses efficiently ex vivo from 104-106 single cells from blood or mucosal tissues using dense arrays of subnanoliter wells. The approach combines on-chip imaging cytometry with a technique for capturing secreted proteins—called “microengraving”—to enumerate antigen-specific responses by single T cells in a manner comparable to conventional assays such as ELISpot and intracellular cytokine staining. Unlike those assays, however, the individual cells identified can be recovered readily by micromanipulation for further characterization in vitro. Applying this method to assess HIV-specific T-cell responses demonstrates that it is possible to establish clonal CD8+ T-cell lines that represent the most abundant specificities present in circulation using 100- to 1,000-fold fewer cells than traditional approaches require and without extensive genotypic analysis a priori. This rapid (~24 h), efficient, and inexpensive process should improve the comparative study of human T-cell immunology across ages and anatomic compartments.

T-cell cloning | single-cell analysis | nanowells | microarrays | soft lithography

CD8+ T cells are a critical component of the adaptive immune system and provide immunological surveillance in peripheral tissues. Clonal variants use unique T-cell receptors (TCRs) to recognize intracellular pathogens or malignant transformed cells through cognate interactions with disease-specific peptides presented in class I major histocompatibility complexes (pMHC) on the surface of potential targets. The repertoire of human CD8+ T cells within an individual is estimated to consist of ~106~109 different specificities (1). However, only a fraction of these clonal variants recognize and respond to any particular antigen. For example, in chronic HIV infection, HIV Gag-specific CD8+ T cells comprise 0.2–9% of all circulating CD8+ T cells, but in most instances their abundance is less than 2% (2). Characterizing the breadth of epitopes recognized by antigen-specific CD8+ T cells, even ones that represent subdominant populations, is important for understanding immune-mediated control of intracellular infections and for designing and evaluating clinical interventions such as vaccines.

Determining both the breadth of the antigen-specific T-cell response (the range of unique epitopes targeted) and the nature of their functional responses (cytokine secretion, ability to inhibit viral replication, and other functions) is a challenging task. In some cases, the diversity of T-cell epitopes is small: For example, T-cell responses to melanoma usually are well defined (e.g., HLA-A*02-restricted MART-1) (3). However, variations in genotypes among the population broaden the immunodominant epitopes induced by most natural infections or by vaccines. The breadth of the CD8+ T-cell response routinely is determined by ELISpot, using first pools of peptides and then individual peptides to confirm specificities (4). Such analysis requires substantial numbers of cells (~106–107) and typically measures only a single functional response (secretion of IFN-γ). Significantly, cells identified in these assays cannot be retrieved, and secondary procedures are needed to establish clonal lines with which other biologically relevant functions, such as the ability to inhibit viral replication, can be determined.

The isolation of antigen-specific CD8+ T cells now is commonly performed ex vivo by flow-cytometric sorting using fluorescently labeled recombinant multimers of HLA–peptide complexes to label cells of interest (5). This process minimally requires determining the haplotype of HLAs for a subject. Additionally, the dominant epitopes usually are verified by ELISpot to focus the subsequent analysis with multimeric reagents, which are expensive to produce recombinantly (~$1,000 or more for each one) and have limited varieties of HLA types/epitopes available. Exchanging peptides in the pMHC complexes and using combinatorial sets of labels have improved the scalability and sensitivity of this approach to characterize defined subsets of rare antigen-specific T cells (6, 7), although serial screens for each epitope of interest often are necessary and therefore increase the number of cells required. In aggregate, the total process has a remarkably poor yield (~10–100 unique clones from 106–107 cells per patient), is labor intensive, and is expensive.

Many clinical studies would benefit from alternative strategies for T-cell cloning that are sample efficient. Quantities of blood from infant and pediatric subjects often are limited, restricting detailed analyses of repertoires. Tissue biopsies also typically yield less than 106 cells, with certain samples, such as cytobrushes or cerebrospinal fluids, containing only ~104–105 cells (8, 9). Microscale assays that use microtiter plates or spotted arrays of proteins/peptides have provided alternative means to enumerate antigen-specific T cells from limited numbers of cells but have not enabled routine cloning of identified cells (10–12). More efficient processes for recovering T cells for additional characterization would improve knowledge about the phenotypic and functional diversity of T-cell responses across anatomical sites and patient populations.

We previously demonstrated that dense, elastomeric arrays of “nanowells,” microfabricated wells (~103 per array) with sub-nanoliter volumes (125 pL), are useful for generating printed microarrays of cytokines released by polyclonally activated human
T cells (13). This method—called “microengraving”—is based on intaglio printing: A glass slide is temporarily sealed to the array of nanowells to capture analytes secreted by confined cells in both a multiplexed and quantitative manner. This information can guide the recovery of T cells for clonal expansion (14). We also have shown that these arrays of nanowells can enable the concurrent measurement of both cytokine secretion and cytolytic activity to monitor ex vivo cytotoxic T lymphocytes (CTLs) (15).

Here we describe and validate a bioanalytical process that integrates data from both microengraving and on-chip cytometry to identify and recover antigen-specific CD8$^+$ T cells ex vivo from human subjects on the basis of the cytokines secreted following antigen-independent activation. We demonstrate that the process enumerates cells activated by antigen akin to conventional methods such as ELISpot and intracellular staining (ICS) and allows the detection of HIV-specific CD8$^+$ T cells across a wide range of epitope specificities using samples of limited size ($\sim 10^5$–10^6 cells) from blood or tissue. The identified T cells can be retrieved and expanded in vitro for subsequent mapping of fine specificities and detailed functional characterization. The results indicate that this process is highly efficient, with a 100- to 1,000-fold reduction in cells required ex vivo, and should facilitate detailed clonotypic analyses of CD8$^+$ T cells in many areas of human immunology where the numbers of cells are intrinsically small, including tissue biopsies and pediatric samples.

Results

Design of Integrated Single-Cell Analysis to Detect Antigen-Specific CD8$^+$ T-Cells ex Vivo. To establish an efficient method for combined functional characterization ex vivo (cytokine secretion) and in vitro (epitope mapping and inhibition of viral replication), we designed a bioanalytical process to characterize and retrieve antigen-specific CD8$^+$ T cells that also minimizes the total number of cells interrogated. The approach uses an array of nanowells to isolate mononuclear cells after incubation with overlapping pools of peptides (OLPs) or whole antigens (Fig. 1A). The containing cells then is used for multiplexed microengraving to identify antigen-dependent activation of CD8$^+$ T cells. Because analysis by microengraving maintains cell viability, the array of cells can be used to enumerate viable CD8$^+$ T cells, and antigen-specific CD8$^+$ T cells can be recovered by micromanipulation.

Validation of Process forEnumerating T Cells Activated ex Vivo. We first tested the ability of our integrated process to determine multifunctional profiles for CD8$^+$ T cells activated ex vivo in a parallelized manner. Previously frozen peripheral blood mononuclear cells (PBMCs) were thawed and then stimulated for 5 h with *Staphylococcus* enterotoxin B (SEB), a superantigen that stimulates T cells in a Vβ-specific manner. Using unsorted PBMCs minimizes manipulations and allows T cells to average over heterogeneities among antigen-presenting cells (APCs). It also obviates the need for haplotypeing a priori to determine suitable HLA-matched APCs. An aliquot of $\sim 200,000$ cells in 300 µL then was transferred to the array of nanowells and allowed to settle via gravity for 10 min. The array of cells was rinsed with serum-free medium, placed in contact with a glass slide coated with capture antibodies specific for cytokines commonly associated with CD8$^+$ cytotoxic T-cell responses (TNF, IFN-γ and IL-2), and incubated for 2 h at 37 °C. After incubation, the glass slide was separated from the array of nanowells, washed, and stained with fluorescent antibodies to detect captured cytokines. The cells were then labeled in situ with a viability dye (Calcein AM) and with a fluorescently labeled antibody against CD8. Wells containing single live CD8$^+$ cells were identified by imaging cytometry (Fig. S1) and were matched to the data from those wells corresponding to the cytokines captured by microengraving (Fig. 1B). Each experiment/array therefore generated a composite dataset that typically comprised phenotypic profiles for 10,000–30,000 individual live CD8$^+$ cells within a mixed population of mononuclear cells.

We next evaluated our process with clinical samples from subjects chronically infected with HIV-1. There is substantial evidence that HIV-specific CD8$^+$ T-cell responses are essential to the containment of infection in vivo (16). The induction of HIV-specific CTLs is temporally associated with a decline in plasma viremia following acute infection (17, 18), and there are strong correlations between protection from progressive HIV infection and certain HLA class I alleles such as HLA B57, B51, and B27 (19, 20). ELISpot, ICS, and bulk cytolytic assays have shown that HIV-specific CD8$^+$ T cells can produce Tc1-associated cytokines such as IFN-γ, TNF, and IL-2 and eliminate target cells by direct cytolysis upon TCR-mediated recognition of their cognate antigen (21, 22).

We collected a group of HIV$^+$ subjects with varying viral loads (<50–100,000 RNA copies/mL) (Table S1). These subjects included individuals with spontaneously controlled HIV infection in the absence of antiretroviral therapy (“HIV controllers”), those with progressive infection who were not receiving antiretroviral therapy (“chronic progressors”), and individuals receiving anti-HIV drug therapy (“chronic treated”). We first confirmed that these individuals exhibited a range of frequencies of IFN-γ-producing CD8$^+$ T cells specific for the viral protein Gag by ELISpot assays performed against HLA-matched optimal epitopes. The protein Gag was chosen specifically because the breadth, magnitude, and functional capacity of CD8$^+$ T-cell responses toward Gag have been demonstrated to be a reason-
For three of these subjects, we stimulated PBMCs with SEB for 5 h and profiled the breadth of cytokines secreted by microengraving. A subset of individual CD8+ T cells from all three subjects (1–4%) showed a range of responses, including CD8+ T cells secreting multiple cytokines simultaneously (Fig. 1C). The relative distribution of functional responses measured was similar to that determined by ICS, with the most dominant populations producing IFN-γ alone, in combination with either TNF or IL-2 or in combination with IL-2 and TNF together (Fig. S2). Unlike IFN-γ or IL-2, TNF is synthesized initially as a membrane-bound protein that subsequently is cleaved into a soluble form (25). Therefore the higher frequency of cells producing TNF identified by ICS relative to microengraving [regardless of other cytokines those cells may express concurrently, (e.g., more IFN-γ and TNF production by ICS vs. microengraving)], likely results from the simultaneous detection of both membrane-bound and secreted forms (26). Overall, these results indicate that our process using microengraving to evaluate multifunctional cytokine responses by activated CD8+ T cells is similar to ICS.

Comparison of Methods for Enumerating Antigen-Dependent CD8+ T Cells ex Vivo. We next confirmed that our method could detect the activation of CD8+ T cells in an antigen-dependent manner. PBMCs from three HIV-positive individuals were thawed and rested overnight, and their responses were tested against a pool of 66 OLPs (8–10 amino acids each) encompassing the entire Gag protein, an irrelevant melanoma-derived peptide (ELAGIGILTV, EV9) as a negative control, or SEB as a positive control. After incubation with either peptide or SEB for 5 h, the cells were distributed onto an array of nanowells that then was used for microengraving to detect secreted IFN-γ from single, viable CD8+ cells. The data confirmed the ability of our approach to detect antigen-dependent responses consistently for both technical and biological replicates (Fig. 2A and B); the frequency of antigen-specific responses ranged from 0.06–0.3%. Using the frequencies of IFN-γ responses measured with the irrelevant peptide, we estimate that the lowest limit of detection possible for the assay is 0.004%, or 1 in 25,000 wells, roughly the same order of magnitude as the number of wells scored. This projected theoretical limit is consistent with a previous estimate we determined for single peptides and antigen-specific activation of CD4 T-cell clones (27) and with that reported for another cell-based microarray for enumerating T cells (12).

We next quantitatively determined the relationships between our microengraving-based process and the two most common techniques used to assess the magnitude of HIV-specific CD8+ T-cell responses—ELISpot and ICS/flow cytometry. Because cells producing IFN-γ were the most abundant population in our polyclonal comparison with ICS, and ELISpot has been well qualified for IFN-γ, we measured the antigen-induced production of IFN-γ from PBMCs isolated from 14 HIV+ individuals. We initially characterized the frequencies of CD4 vs. CD8 T cells in the PBMCs of these patients using flow cytometry (Fig. S3 and Table S1). The frequency of IFN-γ–secreting cells identified by microengraving ranged from 0.04–0.26% when scoring single CD8+ T cells stimulated with a pool of Gag OLPs for 5 h. These results showed a significant correlation with comparable measures obtained by ICS (P ≤ 0.0001, r = 0.87) (Fig. 2C) and ELISpot (P = 0.01, r = 0.69) (Fig. S4). Results obtained by ICS and ELISpot also correlated with each other (P = 0.01, r = 0.90).

Because the microengraving process can accommodate 106 or fewer cells, we then verified that our method could quantify the frequency of HIV Gag-specific CD8+ T-cell responses from both the peripheral blood and intestinal mucosal compartments of two chronically infected subjects (Fig. 2D). These data showed distinct frequencies of HIV-specific responses in each region. Together, these data demonstrate that our microengraving-based process allows the direct ex vivo enumeration of antigen-specific CD8+ T cells from both peripheral and mucosal compartments.

Rapid and Efficient Cloning of HIV-Specific CD8+ T Cells. Labeling antigen-specific T cells with recombinant peptide–MHC complexes is useful for recovering T cells with known specificities and relatively high avidities, but it requires a priori knowledge about the haplotype and frequencies of responses of the individual. Antigenic stimulation of cells and analysis by ICS allows the identification of antigen-specific CD8+ T cells ex vivo, but the method renders the cells nonviable. This outcome precludes...
further analysis of cells of interest to assess their ability to proliferate in vitro, their ability to inhibit viral replication, or their functional ability to lyse infected cells. Because microengraving is a nondestructive process, and cells have known spatial addresses within the array of wells used, we expected that microengraving would allow the efficient recovery of activated antigen-specific cells by micromanipulation for clonal expansion (Fig. S5) (14, 28).

We identified an HIV controller, CTR0278, who had a detectable Gag-specific IFN-γ response in the peripheral blood but whose CD8+ T cells isolated ex vivo, interestingly, failed to reduce viral replication of an HIV laboratory strain (JRCSF) in vitro. To enable a comparison of the breadth and specificity of Gag-specific cells recovered using our microengraving-based method, we first determined the relative breadth of the HIV-specific CD8+ T cells by ELISpot (Fig. S3). The most abundant Gag-specific responses were directed toward epitopes contained within p17 and p24. We then used microengraving to identify and recover CD8+ T cells secreting IFN-γ from this subject. PBMCs were incubated with pooled OLPs from Gag for 5 h, and the profiles for cytokine secretion were measured using microengraving. In one representative experiment, cells that secreted IFN-γ were enumerated (33 positive events out of 9,925 live CD8+ T cells, 0.33%), and their addresses were determined for subsequent recovery by automated micromanipulation. Experiments with other donors yielded similar numbers of events.

From three independent experiments, we retrieved IFN-γ+ CD8+ T cells from 108 wells and then cultivated those single cells in RPMI with irradiated feeder cells, IL-2, and an anti-CD3 antibody to allow efficient clonal expansion. Of these single cells, 93% (100/108) successfully expanded to generate cell lines comprising at least 10⁶ cells, sufficient numbers to run in vitro assays. We then mapped the HIV epitope specificities for 12 of these clonal cell lines by ELISpot. Each of these clones elicited a response to a single Gag OLP or to two adjacent ones contained within the original pool and subsequently also responded to an HLA-matched optimal peptide contained within the mapped OLP(s) (Table S2). Although the small number of characterized clonal cell lines precludes quantitative comparisons between frequencies of responses in PBMCs and the clonal lines established, the clones covered all five optimal responses identified by ELISpot from PBMCs including one (Cw8-RV9) that was near the lower limit of detection for those assays (~60 spot-forming units per 10⁶ cells) (Fig. 3B). This result confirms that the microengraving-based method enumerates a broad range of responses and suggests that extended depth of analysis or expanded recovery may identify other clonotypic variants below the limit of detection of ELISpot.

The clonal lines also were tested to determine their capacity to inhibit viral replication in vitro (Fig. 4). Although the complete pool of CD8+ T cells isolated ex vivo failed to inhibit viral replication, individual isolated clonal lines showed varying degrees of viral inhibition. A clone specific for HLA-A2-FK10 was unable to inhibit viral replication, despite induction of IFN-γ by the cognate peptide in ELISpot assays, whereas a clone specific for HLA-A2-SL9 exhibited a 3-log reduction in a p24 ELISA-based viral-inhibition assay. Clones with specificities against HLA-B14-DA9 and against HLA-Cw8-RV9 showed intermediate levels of inhibition. Thus, although bulk CD8+ T cells failed to inhibit viral replication significantly, lines with single epitope specificities derived from the bulk population showed significant antiviral activity, further underscoring the importance of broadly profiling the diversity of T-cell responses from patients.

Discussion

We have demonstrated a rapid, inexpensive, and efficient process for combining ex vivo and in vitro functional characterization of HIV-specific CD8+ T cells. The time required for executing the process and isolating cells on the basis of phenotype is less than 24 h. The cost per assay is comparable to that for performing a single 96-well plate ELISpot, and the assay can accommodate small samples (10,000–100,000 cells or fewer) easily. The microengraving-based method used has a sensitivity and specificity similar to ELISpot for evaluating antigen-specific responsiveness but also measures multifunctional responses without rendering cells nonviable.

The enumeration of IFN-γ+ CD8+ T cells following antigenic stimulation as determined by microengraving correlated well with responses determined by both ICS and ELISpot. The magnitude of the responses, however, was more similar to that measured by ELISpot; ICS estimated approximately 10-fold more events. Both ELISpot and microengraving measure proteins secreted in a paracrine manner by viable cells, whereas ICS measures total protein synthesized by rendering cells nonviable. Indeed, previous reports comparing the magnitude of virus-specific responses (to HIV/cytomegalovirus/simian immunodeficiency virus) measured...
by ELISPOT and ICS in both humans and macaques have demonstrated that the magnitude of responses determined via ELISPOT is consistently lower than that of responses determined via ICS—findings that agree with those observed here for both ELISPOT and microengraving (29–31). The limited window of measurement afforded in microengraving relative to integrated ICS also may affect the lower number of events enumerated (32).

The ability to recover and expand by microengraving individual identified HIV-specific cells that may have functional significance in vivo despite poor detection in bulk assays should help refine our understanding of effective T-cell-mediated immune responses in one or more anatomical compartments (33). HIV-specific CD8+ T cells are important for the control of viremia, but the critical functions performed by these cells that contribute to control remain unknown (34, 35). More complex functions, such as proliferation or simultaneous expression of multiple cytokines, may better identify effective CD8+ cytotoxic T lymphocytes (36, 37). The ability of CTLs to recognize and kill virus-infected cells may be critical for mediating control in vivo, and it may be crucial to evaluate these functions comprehensively in vitro (38). We show that functional characterization of individual clones by in vitro viral-inhibition assays can identify functionality linked to single epitopes not detected by similar bulk assays. It also should allow a straightforward approach to investigate the role of TCR use in functional CTL activity based on the TCR sequences of identified clones.

One significant advantage afforded by the enhanced efficiency of the microengraving-based approach for recovering antigen-specific T cells should be its application in monitoring responses when clinical samples simply have sparse numbers of cells, such as mucosal tissues, pediatric blood samples, or genital secretions. The microengraving-based approach also allows a less biased assessment of immune targeting than other currently available approaches. It does not require a priori knowledge of haplotypes and accommodates diverse sources of antigen, including whole proteins or even pathogens. In this way, broad coverage of the T-cell response can be assessed in an initial screen. The method shifts the burden of establishing epitope specificity to the expanded clones, but for small samples, detailed analysis to determine specificity may be determined more effectively when more cells are available after expansion. In our screen of the T-cell response from an HIV controller, we recovered representative clones for each of the most abundant specificities determined by ELISPOT from only a small pool of those generated. Increasing the number of clones sampled and subsequent analyses of those clones should enable broad coverage of the T-cell response. The ability to establish clonal lines also should allow additional characterization, such as the determination of clonotypes and proliferative capacity (39).

In conclusion, this bioanalytical process establishes a rapid and efficient approach for cloning primary antigen-specific T cells and will provide opportunities to characterize HIV-specific responses, among others. In particular, we expect that it will be useful when the number of cells available is insufficient for extensive analysis by standard techniques or when it is critical to assess antigenic coverage broadly with minimal bias. The application of this technique should inform studies of HIV pathogenesis as well as aid the assessment of potential HIV vaccine candidates and has broad relevance to other areas of immunology.

Materials and Methods

Patient Samples. HIV-infected individuals were enrolled at Massachusetts General Hospital in accordance with institutional review board-approved protocols. PBMCs were isolated from blood by Ficoll (Sigma) density purification in accordance with the manufacturer’s instructions. Fresh or frozen PBMCs were used subsequently for the described experiments. Mucosal biopsies from the small bowel and colon were obtained by endoscopy, and a matching blood sample was obtained the same day. Biopsy samples were disaggregated with collagenase, as described previously (40).

Fabrication of Nanowell Arrays. Arrays of 1-mm-thick polydimethylsiloxane nanowell (50 μm) were manufactured by replica molding using a custom-built mold, adhered directly to a 3 in × 1 in glass slide, and sterilized in an oxygen plasma before use (41).

Activation and Deposition of Cells. Experiments were performed with frozen PBMCs that were thawed and rested overnight (12–16 h) or with fresh mononuclear cells from blood and intestinal biopsies. An aliquot of 1 × 10^6 cells in 500 μL of RPMI (10% FBS) was stimulated with SEB or with a pool of 66 OLPs (8–10 amino acids each; 2 μg/mL) encompassing the entire Gag protein (or ELAGIGILTV as a control) along with the costimulatory antibodies.
anti-CD28 and anti-CD45rd for 5 h. Stimulated cells were counted and adjusted to a density of 1 x 10^6 cells/mL. A 300-μL aliquot of the cells was deposited onto a sterile glass slide of nanowells. The cells settled via sedimentation for 10 min and were then examined by microscopy to estimate the frequency of loading (approximately one cell per well). Excess cells were removed by rinsing the array gently with medium and subsequent aspiration.

Microengraving and On-Chip Cytometry. The cell-loaded array was washed with serum-free medium containing 5 ng/mL of IgG (to facilitate registration of the nanowell array to the printed microarray). A polysine-functionalized glass was preincubated for 1 h with capture antibodies against IFN-γ, TNF-α, IL-2, and Ig (25 μg/mL each). The slide was blocked with 3% milk/PBS-Tween (0.05%, PBST), washed twice with PBST, and dried. The nanowell array was held in contact with the glass slide under compression in a hybridization chamber (Agilent) and incubated (37 °C, 5% CO2) for 2 h. After incubation, the glass slide was separated from the nanowell array, washed, and labeled with the appropriate fluorescent antibodies, as described previously (41). The printed microarrays were imaged using a Genepix 4200AL (MDS Corp.). The array of cells subsequently was labeled in situ with Calcein violet live cell fluorescence on an automated microscope (Zeiss). The data from microengraving and the on-chip cytometry were matched on a per-well basis for individual viable D8 cells.

Retrieval and Expansion of T Cells. CD8+IFN-γ+ T cells were retrieved using an automated micromanipulator (CellCeptor; AVISO GmbH) (28). Retrieved cells were incubated in a well of a 384-well plate with 200 μL of R10 supplemented with 100 U/ml of IL-2 (R10/100) containing irradiated (2,500 CGy) HLA-mismatched PBMCs (10^6/mL) from an HIV+ donor (42). Cells were stimulated with anti-CD3 antibody (clone 12F6), and irradiated feeder cells were added every 2 wk over the course of approximately 2 mo. During this time, cells were expanded to larger volumes until there were sufficient cells available for functional assays (at least 10^6 cells).

Additional Methods. Additional descriptions of methods, including fabrication of nanowells, functionalization of glass, intracellular staining, ELISPOT, and viral-inhibition assays, are available in SI Materials and Methods.

ACKNOWLEDGMENTS. This research was supported by the Charles A. Dana Foundation, the W. M. Keck Foundation, and the Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University. N.V. received support from National Institute of Allergy and Infectious Diseases/National Institutes of Health Grant U54-AI057156. D.S.K. is supported by a National Institutes of Health Mentored Clinical Scientist Development Award (K08) and the Burroughs Wellcome Fund. A.O.O. was supported in part by National Institutes of Health Biotechnology Training Fellowship NIGMS ST32GM008334 and by a United Negro College Fund–Mekel Graduate Science Research Dissertation Fellowship. J.C.L. is a Latham Family Career Development Professor.

Additional descriptions of methods, including fabrication of nanowells, functionalization of glass, intracellular staining, ELISPOT, and viral-inhibition assays, are available in SI Materials and Methods.

Acknowledgments. This research was supported by the Charles A. Dana Foundation, the W. M. Keck Foundation, and the Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University. N.V. received support from National Institute of Allergy and Infectious Diseases/National Institutes of Health Grant U54-AI057156. D.S.K. is supported by a National Institutes of Health Mentored Clinical Scientist Development Award (K08) and the Burroughs Wellcome Fund. A.O.O. was supported in part by National Institutes of Health Biotechnology Training Fellowship NIGMS ST32GM008334 and by a United Negro College Fund–Mekel Graduate Science Research Dissertation Fellowship. J.C.L. is a Latham Family Career Development Professor.