Estimation of system reliability using a semiparametric model

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/EnergyTech.2011.5948537</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>Version</td>
<td>Author’s final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Oct 24 03:36:11 EDT 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/75392</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike 3.0</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/3.0/</td>
</tr>
</tbody>
</table>
Estimation of System Reliability Using a Semiparametric Model

Leon Wu, Member, IEEE, Timothy Teräväinen, Gail Kaiser, Senior Member, IEEE,
Roger Anderson, Member, IEEE, Albert Boulanger, Cynthia Rudin

Abstract—An important problem in reliability engineering is to predict the failure rate, that is, the frequency with which an engineered system or component fails. This paper presents a new method of estimating failure rate using a semiparametric model with Gaussian process smoothing. The method is able to provide accurate estimation based on historical data and it does not make strong a priori assumptions of failure rate pattern (e.g., constant or monotonic). Our experiments of applying this method in power system failure data compared with other models show its efficacy and accuracy. This method can be used in estimating reliability for many other systems, such as software systems or components.

Index Terms—estimation theory, failure analysis, Gaussian processes, parametric statistics, power system reliability, prediction methods, reliability engineering, software reliability, statistical analysis, stochastic processes.

I. INTRODUCTION

Reliability is one of the most important requirements of the smart grid and other sustainable energy systems. By smart grid, we refer to an automated electric power system that monitors and controls grid activities, ensuring the two-way flow of electricity and information between power plants and consumers—and all points in between [1]. In the past ten years, the U.S. power grid has become less reliable and more failure-prone; according to two data sets, one from the U.S. Department of Energy and the other one from the North American Electric Reliability Corp., the number of power outages greater than 100 Megawatts or affecting more than 50,000 customers in the U.S. almost doubles every five years, resulting in about $49 billion outage costs per year [2].

How to accurately and effectively evaluate system reliability has been a long-time research challenge. One commonly used indicator for system reliability is failure rate, which is the frequency with which an engineered system or component fails. To estimate the failure rate, historical failure information and/or testing of a current sample of equipment are commonly used as the basis of the estimation. After these data have been collected, a failure distribution model, i.e., a cumulative distribution function that describes the probability of failure up to and including time t, is assumed (e.g., the exponential failure distribution or more generally, the Weibull distribution) and used to estimate the failure rate.

Our experimental results indicate that using an exponential or Weibull distribution prior may not be as effective for power grid failure modeling as a particular semiparametric model introduced in this work. This semiparametric model does not assume a constant or monotonic failure rate pattern as the other models do. We introduce Gaussian smoothing that further helps the semiparametric model to closely resemble the true failure rate. We applied this method to power network component failure data and compared its blind-test estimation results with the subsequent real failures. We also compared it with other models during these experiments. In all of these cases, the semiparametric model outperformed the other models.

The paper is organized as follows. In the following section, we will present some background information on reliability analysis. Then we will describe our new model in detail, followed by experimental results and analysis. We will further compare our approach with other models. We will conclude the paper after discussing related work.

II. BACKGROUND ON RELIABILITY ANALYSIS

The failure rate can be defined as the total number of failures within an item population, divided by the total time expended by that population, during a particular measurement interval under stated conditions [3]. We use $\lambda(t)$ to denote the failure rate at time t, and $R(t)$ to denote the reliability function (or survival function), which is the probability of no failure before time t. Then the failure rate is:

$$\lambda(t) = \frac{R(t) - R(t + \Delta t)}{\Delta t \cdot R(t)}.$$

As Δt tends to zero, the above λ becomes the instantaneous failure rate, which is also called hazard function (or hazard rate) $h(t)$:

$$h(t) = \lim_{\Delta t \to 0} \frac{R(t) - R(t + \Delta t)}{\Delta t \cdot R(t)}.$$

A failure distribution $F(t)$ is a cumulative failure distribution function that describes the probability of failure up to and including time t:

$$F(t) = 1 - R(t), t \geq 0.$$
For system with a continuous failure rate, \(F(t) \) is the integral of the failure density function \(f(t) \):

\[
F(t) = \int_0^t f(x) \, dx.
\]

Then the hazard function becomes

\[
h(t) = \frac{f(t)}{R(t)}.
\]

A. **Weibull and Exponential Failure Distribution**

For the Weibull failure distribution, the failure density function \(f(t) \) and cumulative failure distribution function \(F(t) \) are

\[
f(t; \lambda, k) = \begin{cases} \frac{k}{\lambda} \left(\frac{t}{\lambda} \right)^{k-1} e^{-\left(\frac{t}{\lambda} \right)^k}, & t \geq 0 \\ 0, & t < 0 \end{cases}
\]

\[
F(t; \lambda, k) = \begin{cases} 1 - e^{-\left(\frac{t}{\lambda} \right)^k}, & t \geq 0 \\ 0, & t < 0 \end{cases}
\]

where \(k > 0 \) is the shape parameter and \(\lambda > 0 \) is the scale parameter of the distribution. The hazard function when \(t \geq 0 \) can be derived as

\[
h(t; \lambda, k) = \frac{f(t; \lambda, k)}{R(t; \lambda, k)} = \frac{k}{\lambda} \left(\frac{t}{\lambda} \right)^{k-1}.
\]

A value of \(k < 1 \) indicates that the failure rate decreases over time. A value of \(k = 1 \) indicates that the failure rate is constant (i.e., \(k/\lambda \)) over time. In this case, the Weibull distribution becomes an exponential distribution. A value of \(k > 1 \) indicates that the failure rate increases with time.

III. Semiparametric Model with Gaussian Smoothing

We consider the semiparametric estimation of the longitudinal effect of a blip treatment (i.e., a single “all-or-nothing” treatment occurring at a precisely recorded time) on a system with recurring events (e.g., immediately-recoverable failures in a mechanical/electronic system). The estimator is the effect of the most recent blip treatment on the future arrival rate. The method assumes that the effect of treatment is to scale the underlying rate, and is thus an extension of Cox regression with internal covariates, using the Gaussian process to provide much-needed smoothing.

Although the method applies to any blip treatment, we focus on estimating the effect of an event (failure) on future failures. For example, an association of an event with an immediate increase in failure rate provides a finely-detailed explanation for “infant mortality” which can be compared with parametric models such as the Weibull.

A. Probability and Regression Model

We assume each of \(N \) units is under observation for some interval of time \([0, T]\). The method can be easily adapted to allow for units with missing observation periods (known in advance). Let \(\mathbb{T} \) denote the (finite) set of times at which an event occurs. The unit to fail at time \(t \) (if any) is denoted as \(i(t) \); ties are broken in preprocessing, if necessary, by randomly selecting tied units and shifting their failures by one second. For any unit \(j \) under observation at time \(t \) denote by \(\tau_{t,j} \) the time of the treatment (which is here the time of previous outage). It turns out to be important to remove “unobserved” units (i.e., those for which \(t - \tau_{t,j} \) is unknown due to left-truncation of the study); thus, the index-set of fully-observed units at time \(t \) is given by \(\mathbb{R}(t) \), and commonly called the “risk set.” Note that if the mechanism for observation is independent of the treatment and failure processes (i.e., if it is fixed in advance), this does not introduce bias [4]. We consider the non-parametric rate model as follows:

\[
\lambda(t; i) = \lambda_0(t) \psi(t - \tau_{t,i}) ;
\]

\[
\psi(t) = e^{\phi(t)} ,
\]

that is, 20 seconds after treatment the effect will be to make failure \(\psi(20) = e^{\phi(20)} \) times more likely.

The full likelihood is then [4]:

\[
l(\lambda_0, \psi) = \left(\prod_{i \in \mathbb{R}} \lambda_0(t(i)) \psi(t(i)) \right) \times e^{-f_0^t \sum_{i \in \mathbb{R}(t)} \lambda_0(t(i)) \psi(t(i))} dt.
\]

The estimation proceeds in two steps, detailed in Appendix B. The \(\lambda_0 \) term is first shown to be estimated as 0 at all times \(t \notin \mathbb{T} \). Thus, conditioning on the failure times, the \(\lambda_0 \) term is cancelled out (since it affects all units equally). This allows convenient estimation of \(\psi(t) = e^{\phi(t)} \). After the estimation of \(\psi(t) \), the \(\lambda_0 \) term may be estimated by a weighted non-parametric estimator (which uses the estimate of \(\psi \)). For simplicity, in this paper we fit the \(\lambda_0 \) as a constant (within each network) by using the method of moments (Appendix C).

Since only the time since last treatment is tracked, it is implicitly assumed that any prior treatments are immediately “forgotten” by the system upon administration of a new treatment.

The connection between the hazard \(\lambda \) and the distribution function is detailed in Appendix A.

The information reduction induced by the Cox framework should be very useful, especially in the Gaussian process setup which scales as \(O(p^3) \) in the number of predictors. To achieve further reduction of data for numerical stability and to expedite cross-validation, we “bin” values of \(t - \tau_{t,i} \) (which can be viewed as the predictors of \(\phi(t - \tau_{t,i}) \)) into percentiles.

B. Application

The method is applied to the failure rate of distribution power feeders in three boroughs of New York City (Manhattan, Queens, and Brooklyn). Distribution feeders are the power cables that feed intermediate voltage power in distribution grids. In New York City, underground distribution feeders, mostly 27KV or 13KV, are one of the most failure-prone electrical components in the power grid. The effect of infant mortality and the changing hazard rate are of interest for maintenance scheduling applications.

In our application, \(N = 81 \) and there are \(|\mathbb{T}| = T = 667 \) distinct failure times (i.e., 667 total failures are observed among the 81 units).
C. Preliminary Fit

The model predictions without smoothing are provided in Figure 1, which shows the failure rate versus time since treatment, and they are clearly overfitted to the data. Since events occur rarely, we have that some \((t - \tau_{t,i})\)-bins may be observed only once, associated with a failure, causing a direct estimate of \(\psi(t)\) to overestimate. Likewise, many bins will be associated only with the non-failed risk set, and \(\psi(t)\) will go to 0. This effect will be more pronounced with a large number of units and rare failures.

D. Gaussian Process

We apply a Gaussian process prior to the values \(\phi(t)\) with a radial basis function. After the standard marginalizing of the prior [5] onto \(t \in T\), the \(\phi(t)\) are normally distributed with mean 0 and covariance matrix \(K\) with

\[
K_{t,t'} = ae^{-(t-t')^2/b}.
\]

This marginal prior distribution will be referred to as \(\pi\). The parameters \(a, b\) are the marginal variance and so-called “characteristic time-scale” respectively. We use the parameter values \(a = 5, b = 1 \cdot 10^3\) based on good performance on the training data. Alternatively, cross-validation on a grid search on these parameters can be used to obtain approximate “point estimates” of \(a, b\).

Details of the fitting process are in Appendix D.

Figure 2 shows the smoothed fit using the Gaussian process prior. It is much better than the unsmoothed fit and Weibull distribution models on the same set of data and compared their results with the results from the semiparametric model.

A. Experimental Setup

Our experiments consist of three main groups of blind tests. In New York City, the distribution power feeder failures are seasonal. During summer heat waves, more feeder failures are likely to happen. The three groups are estimates of the failure rate for the summer, winter, and the whole year using the historical data for the first three years, i.e., from year 2006 through 2008. Then we compare these estimates with the actual failure rates measured for the years 2009–2010 using the failure data. We perform similar experiments on the exponential and Weibull models.

B. Results and Analysis

The results of fitting the model are summarized in Table I (giving the constants) and Figure 3 (giving the estimated failure rate multiplier \(\psi(t)\)) for each network.

<table>
<thead>
<tr>
<th>Network</th>
<th># of Units</th>
<th># of Failures</th>
<th>Exponential (\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queens: 01Q</td>
<td>26</td>
<td>327</td>
<td>75.2</td>
</tr>
<tr>
<td>Brooklyn: 01B</td>
<td>29</td>
<td>197</td>
<td>154.12</td>
</tr>
<tr>
<td>Manhattan: 02M</td>
<td>26</td>
<td>143</td>
<td>114.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network</th>
<th>Weibull (k)</th>
<th>Weibull (\lambda)</th>
<th>Semiparametric (\lambda_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queens: 01Q</td>
<td>0.48</td>
<td>42</td>
<td>71.0</td>
</tr>
<tr>
<td>Brooklyn: 01B</td>
<td>0.69</td>
<td>120.4</td>
<td>130.0</td>
</tr>
<tr>
<td>Manhattan: 02M</td>
<td>0.62</td>
<td>108.0</td>
<td>112.1</td>
</tr>
</tbody>
</table>

To analyze the fit of each model, we integrate (numerically for the semiparametric) to convert the hazard estimates to estimates of the cumulative distribution function (see Section 3 and Appendix A). The resulting model fits are then visually and numerically compared to the empirical distribution function of the data.
The comparison of the estimation results shows that the failure rate estimates using the semiparametric model are closer to the actual measured inter-arrival times, which means the semiparametric model with Gaussian smoothing is more accurate in estimating the failure rate.

V. RELATED WORK

Estimation of system reliability by modeling failure rate has been an active research area. Various estimation models have been proposed for different kinds of systems including power electrical components, semiconductor chips and boards, and software systems. The exponential, Bayesian, log-normal, and Weibull approaches were popular in prior research. In 1974, Littlewood and Verrall used a Bayesian reliability model to estimate stochastic monotone failure rates [3]. Ibrahim et al. formalized the field of Bayesian survival analysis in 2001 [7]. Rigdon and Basu described a way to estimate the intensity function of a Weibull process [8]. Mudholkar and Srivastava used the exponential Weibull family for analyzing the bathtub failure rate model [9]. In prior sections, we compared our approach with the exponential and Weibull models. Our approach differs from previous Bayesian models in making fewer assumptions on a continuous failure distribution.

Among the failure patterns, the bathtub model and infant mortality are perhaps the most well-studied [10], [9]. To model non-constant failure rates, Jones used a constant failure intensity assumption and exponential failure distribution-based method to do the estimation, and experimented with the method in reliability analysis of digital circuit devices [11]. Our approach does not assume a constant failure rate or a constant failure intensity. The semiparametric model we described is not a modified version of the exponential or Weibull models.

In 1984, Laprie described a mathematical model for the failure behavior of component-based software systems with physical and design faults [12]. Hierons and Wiper researched the estimation of software system failure rate using random and partition testing methods [13]. Kubal et al. proposed a way of estimating software system failure rate based on the failure rates of the underlying components using a Bayesian approach [14]. Although we directly applied our approach to distribution power feeder failures here, our approach can be directly applied to other areas, for instance, software reliability analysis.

VI. CONCLUSION

This paper presented a new method of estimating failure rate using a semiparametric model with Gaussian process smoothing. The method is able to provide accurate estimation based on historical data and it does not make strong a priori assumptions of the failure rate pattern (e.g., constant or monotonic). Our empirical studies of applying such an approach in power system failure data and a comparison of this approach with other existing models show its efficacy and accuracy. This method may also be used in estimating reliability for many other systems, such as software systems or components.
Taking the functional derivative of
and finally, from calculus,
no censoring and that
by definition, the maximum likelihood estimate of baseline
Likelihood Estimation) of failure rate estimation problem to event times. This result, derived more
formally [15], is also valid under random censoring, as shown
by Cox and given in [4].
Therefore:

\[
\frac{-\theta(1 - F(t))}{1 - F(t)} = \lambda(t),
\]

\[
-\frac{\partial \log(1 - F(t))}{\partial t} = \lambda(t),
\]

\[
-\log(1 - F(t)) = \int_0^t \lambda(u)du,
\]

\[
1 - F(t) = e^{-\int_0^t \lambda(u)du},
\]

\[
F(t) = 1 - e^{-\int_0^t \lambda(u)du}.
\]

APPENDIX B

MARGINALIZING TIMES WITHOUT FAILURE

We consider the contribution to the likelihood from the
observation of no failures between times \(t_{i-1}, t_i\), assuming
no censoring and that \(\phi(\cdot) < \infty\):

\[
L = e^{-\int_{t_{i-1}}^{t_i} \lambda_0(t) \sum_{j \in \mathcal{R}(t_i)} e^{\phi(1 - t_{i-1})} dt}.
\]

Taking the functional derivative of \(\lambda_0\) at time \(s \in (t_{i-1}, t_i)\):

\[
\frac{\partial L}{\partial \lambda_0(s)} = \left(e^{-\int_{t_{i-1}}^{t_i} \lambda_0(t) \sum_{j \in \mathcal{R}(t_i)} e^{\phi(1 - t_{i-1})} dt} \right) \times
\left(-\lambda_0(s) \sum_j e^{\phi(s - t_{j-1})} \right),
\]

which is negative for all positive values of \(\lambda_0(s)\). Since \(\lambda_0 \geq 0\)
by definition, the maximum likelihood estimate of baseline
hazard is \(\hat{\lambda}_0(s) = 0\), which gives the MLE (i.e., Maximum
Likelihood Estimation) of failure rate

\[
\hat{\lambda}_0(s) \sum_j e^{\phi(s - t_{j-1})} = 0.
\]

Substituting this into the likelihood, we see that it does not
depend on \(\phi\) when there are no failures, reducing the
estimation problem to event times. This result, derived more
formally [15], is also valid under random censoring, as shown
by Cox and given in [4].

Thus, since intervals without failures give no information
about \(\phi\), we can reduce the problem of estimating \(\phi\) to the
conditional probability of each observed unit failing at time \(t\),
given that some unit failed at time \(t\), which is:

\[
\prod_t \text{unit } i \text{ fails at } t/	ext{some unit fails at } t
\]

\[
= \prod_t \frac{\lambda_0(t) e^{\phi(t - t_{i-1})}}{\lambda_0(t) \sum_j e^{\phi(t - t_{j-1})}},
\]

which gives the “Cox likelihood” for \(\phi\) at those values \(t - t_{j-1}\),
which are observed.

After the estimate of \(\phi\) is obtained, we can derive an
estimate of \(\Lambda_0 = \int_0^\infty \lambda_0\) through the weighted
non-parametric Nelson-Aalen estimator [16]. This \(\Lambda_0\) is smoothed and used
directly in computing the test-penalty, or if desired \(\lambda_0\) may
be approximately estimated by differentiating the smoothed
version.

APPENDIX C

FITTING \(\lambda_0\)

For simplicity we take the baseline hazard \(\lambda_0\) to be constant
for each network. After estimating \(\psi\), the reliability function
is

\[
R(t) = e^{-\int_0^t h(u)du} = e^{-\lambda_0 \int_0^t \psi(u)du},
\]

from which the mean time to failure can be computed directly
by the so-called layered representation of the expectation
(which follows from integration by parts):

\[
\mathbb{E}_{\lambda_0}[T] = \int_0^\infty e^{-\lambda_0 \int_0^\infty \psi(u)du}dt.
\]

At this point, the \(\lambda_0\) is chosen by grid search over numeric
approximations of this integral, so that the mean time to failure
equals the empirical mean time to failure: \(\mathbb{E}_{\lambda_0}[T] = \bar{T}\).

APPENDIX D

FITTING THE GAUSSIAN PROCESS

The log-posterior probability is proportional to the sum of
the log of the Cox likelihood \((l)\) and the log of the
marginalized Gaussian process prior \((\pi)\):

\[
\frac{\partial L}{\partial \lambda_0(s)} = l + \pi = \sum_t \log \phi(t - t_{i-1}) -
\log \sum_{j \in \mathcal{R}(t_i)} e^{\phi(t - t_{j-1})} +
\left(-\frac{1}{2} \phi^2 K^{-1} \right).
\]

We apply the Newton-Raphson method to find the maximum
a-posteriori estimate. The gradient with respect to \(\phi\) is

\[
\nabla(l + \pi) = \sum_t \frac{-\psi(t - t_{i-1}) + \psi(t - t_{j-1})s_t}{s_t} + K^{-1} \phi,
\]

with Hessian

\[
(\nabla^2(l + \pi))_{i,j} = \psi(t - t_{i-1}) \psi(t - t_{j-1})/s_t^2 + K^{-1},
\]

where

\[
s_t = \sum_j \psi(t - t_{j-1}).
\]

the total hazard of observed units at time \(t\), and \(e_i(t)\) is the
unit basis vector indicating the failed unit at time \(t\), \(\delta_i(t)\).

The step-size is dynamically adjusted, and is stopped on a
relative improvement of the quasi-posterior probability by less
than 1.4e−08.
REFERENCES

Leon Wu (M’07) is a PhD Candidate at the Department of Computer Science and a senior research associate at the Center for Computational Learning Systems of Columbia University. He received his MS and MPhil in Computer Science from Columbia University and BSc in Physics from Sun Yat-sen University.

Timothy Teräväinen is a PhD student at the Department of Statistics of Columbia University. He received his MPhil in Statistics from Columbia University and his B.A. in Mathematics from New College of Florida.

Gail Kaiser (M’85–SM’90) is a Professor of Computer Science and the Director of the Programming Systems Laboratory in the Computer Science Department at Columbia University.

She was named an NSF Presidential Young Investigator in Software Engineering and Software Systems in 1988, and she has published over 150 refereed papers in a range of software areas. Her research interests include software testing, collaborative work, computer and network security, parallel and distributed systems, self-managing systems, Web technologies, information management, and software development environments and tools.

She has consulted or worked summers for courseware authoring, software process and networking startups, several defense contractors, the Software Engineering Institute, Bell Labs, IBM, Siemens, Sun and Telcordia. Her lab has been funded by NSF, NIH, DARPA, ONR, NASA, NYS Science & Tech, and numerous companies.

Prof. Kaiser served on the editorial board of IEEE Internet Computing for many years, was a founding associate editor of ACM Transactions on Software Engineering and Methodology, chaired an ACM SIGSOFT Symposium on Foundations of Software Engineering, vice chaired three of the IEEE International Conference on Distributed Computing Systems, and serves frequently on conference program committees. She also served on the Committee of Examiners for the Educational Testing Service’s Computer Science Advanced Test (the GRE CS test) for three years, and has chaired her department’s doctoral program since 1997.

Prof. Kaiser received her PhD and MS from CMU and her ScB from MIT.