Currency Choice and Exchange Rate Pass-Through

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1257/aer.100.1.304</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Economic Association</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/75396</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Currency Choice and Exchange Rate Pass-Through

By Gita Gopinath, Oleg Itskhoki, and Roberto Rigobon*

We show, using novel data on currency and prices for US imports, that even conditional on a price change, there is a large difference in the exchange rate pass-through of the average good priced in dollars (25 percent) versus nondollars (95 percent). We document this to be the case across countries and within disaggregated sectors. This finding contradicts the assumption in an important class of models that the currency of pricing is exogenous. We present a model of endogenous currency choice in a dynamic price setting environment and show that the predictions of the model are strongly supported by the data. (JEL E31, F14, F31)

In the open economy macroeconomics literature with nominal rigidities, the currency in which goods are priced has important implications for optimal monetary and exchange rate policy and for exchange rate pass-through. In a large class of models used to evaluate optimal policy, prices are set exogenously either in the producer currency or in the local currency.1 In these models, in the short run when prices are rigid, pass-through into import prices of goods priced in the producer’s currency is 100 percent; it is 0 percent for goods priced in the local currency. When prices adjust, however, there is no difference in pass-through. With firms thus exogenously assigned to currencies, there can be sizable departures from allocative efficiency. A fundamental question, then, is whether it is indeed the case that when prices adjust, pass-through is unrelated to the currency of pricing. In this paper, we address this question both empirically and theoretically.

We show, using novel data on currency and prices for US imports, that even conditional on a price change, there is a large difference in the pass-through of the average good priced in dollars (25 percent) versus nondollars (95 percent). We document this to be the case across countries and within disaggregated sectors. We then present a model of endogenous currency choice in a dynamic price setting environment and show that these findings are consistent with the predictions of the model. As firms mimic the short-run flexible price benchmark by choosing currency optimally, the deviations from allocative efficiency are less severe.

* Gopinath: Department of Economics, Harvard University, 1875 Cambridge Street, Cambridge, MA 02138, and National Bureau of Economic Research (e-mail: gopinath@harvard.edu); Itskhoki: Department of Economics, Princeton University, 306 Fisher Hall, Princeton, NJ 08544 (e-mail: itskhoki@princeton.edu); Rigobon: Sloan School of Management, Massachusetts Institute of Technology, E52-442, 50 Memorial Drive, Cambridge, MA 02142 (e-mail: rigobon@mit.edu). We wish to thank the international price program of the Bureau of Labor Statistics (BLS) for access to unpublished micro data. We owe a huge debt of gratitude to our project coordinator, Rozi Ulics, for her invaluable help on this project. The views expressed here do not necessarily reflect the views of the BLS. We thank Mark Aguiar, Pol Antrás, Ariel Burstein, Linda Goldberg, Emi Nakamura, Andy Neumeyer, Ken Rogoff, Daryl Slusher, the editor, three anonymous referees, and seminar participants at numerous venues for their comments. We thank Igor Barenboim, Loukas Karabarbounis, and Kelly Shue for excellent research assistance. A previous version of this paper was circulated under the title “Pass-through at the Dock: Pricing to Currency and to Market?” This research is supported by National Science Foundation grant SES 0617256.

In the empirical work, we evaluate pass-through in several ways. First, we construct the average monthly price change of import prices from each country into the United States, for goods priced in dollars and in nondollars separately. We then estimate pass-through from the exchange rate shock into prices over time. We find that there is a large difference in pass-through into US import prices of the average good priced in dollars versus the average good priced in nondollars at all horizons up to 24 months. One month after the shock, pass-through is nearly zero for goods priced in dollars and nearly complete for goods priced in nondollars, consistent with the substantial amount of nominal price stickiness in the data. More interestingly, 24 months after the shock, pass-through is only 0.17 for dollar priced goods and 0.98 for nondollar priced goods. The difference in pass-through, therefore, declines from one on impact to around 0.8 at 24 months.

Second, at the good level we evaluate exchange rate pass-through conditional on a price change. We document that, even conditioning on a price change, there is a large difference in the pass-through of the average good priced in dollars (25 percent) versus nondollars (95 percent). This significant difference is shown to be present for individual countries and within sectors, as detailed as the ten-digit level, that have a mix of dollar and nondollar pricers. We show that similar patterns also hold for exports from the United States, even though only a negligible fraction of exports is priced in nondollars. Specifically, exports priced in the producer currency (dollars) exhibit 84 percent pass-through conditional on adjustment, while exports priced in local currency (nondollars) pass-through only 25 percent conditional on a price change.

We also estimate the difference across dollar and nondollar priced goods in pass-through after multiple rounds of price adjustment. We find that, while there remains a significant difference in pass-through, this gap is considerably smaller than that conditional on the first instance of price adjustment. This arises because dollar priced goods pass-through 49 percent after multiple adjustments, which is twice as high as after the first adjustment.

There are other important differences between dollar and nondollar pricers. At the one- to two-digit harmonized code level, sectors that would be classified as producing more homogenous goods (following the James E. Rauch 1999 classification) are dollar-priced sectors. Sectors such as “Animal or Vegetable Fats and Oils,” “Wood and Articles of Wood,” and “Mineral Products” are dominated by dollar pricers. On the other hand, there is a greater share of nondollar pricers in the “Footwear,” “Textiles and Textile Articles,” and “Machinery and Mechanical Appliances” sectors that are classified as differentiated. We also document that nondollar pricers adjust prices less frequently than dollar pricers.

In the empirical section we present new facts that need to be matched by models of open economy macroeconomics. We next examine how these facts compare with the predictions of standard open economy models. Is the evidence consistent with a model where firms choose which currency to price in? While there exist several important papers in the theoretical literature on currency choice, our paper is most closely related to Engel (2006), who presented an important equivalence result between pass-through and the currency of pricing. The two main departures we make from the existing literature are: we consider a multiperiod dynamic (as opposed to a static) price-setting environment; and we provide conditions under which a sufficient statistic for currency choice can be empirically estimated using observable prices.

Currency choice is effectively a zero-one indexing decision of the firm’s price to exchange rate shocks. If prices adjust every period, currency choice is irrelevant. When prices are sticky, however, the firm can choose its currency to keep its preset price closer to its desired price (the price it would set if it could adjust flexibly). We show that a sufficient statistic for currency choice

is the average desired pass-through over the period of nonadjustment. This medium-run pass-through is determined by both the dynamic path of desired pass-through and the duration of nonadjustment. This result does not rely on the particular details of the economic environment or the specific source of incomplete pass-through, that is, whether it is driven by variable markups, imported inputs, or decreasing returns to scale in production.

Intuitively, if a firm desires low exchange rate pass-through before it has a chance to adjust prices, the firm is better off choosing local currency pricing that results in 0 percent pass-through prior to adjustment. Conversely, if desired pass-through is high, the firm should choose producer currency pricing that results in complete (100 percent) pass-through prior to adjustment.

An important insight the model delivers is that currency choice cannot be predicted solely by long-run pass-through (LRPT) or desired pass-through on impact of the exchange rate shock. As a result, a firm with a high flexible price (long-run) pass-through can well choose local currency pricing if real rigidities lead to a low desired pass-through in the medium run. In addition, we develop conditions under which medium-run pass-through can be measured using actual prices chosen by firms. This is equal to the exchange rate pass-through conditional on the first price adjustment as estimated in the empirical section.

We also study numerically a currency choice model with two sources of incomplete LRPT—demand-driven variable markups and imported inputs in production. We show that a firm is more likely to select into producer currency pricing the lower the elasticity of its markup and the lower the share of imported inputs in its production cost. In addition, we show that the main results of the analytical section hold up well to several extensions, and the empirical estimate of pass-through conditional on first price adjustment robustly approximates medium-run pass-through.

The predictions of the theoretical model find strong support in the empirical evidence, as we document that pass-through conditional on adjusting prices is significantly greater for nondollar as compared to dollar pricers. Further, as theory predicts, LRPT is a less relevant statistic to evaluate currency choice with pass-through after multiple rounds of price adjustment exceeding 0.5 for some dollar pricers. Consistent with theory, nondollar pricers adjust less frequently than dollar pricers. We also observe an important sorting of goods, with dollar pricers being predominant in the homogenous sector and nondollar pricers in the differentiated goods sector, which is consistent with endogenous currency choice.

The debate on whether currency choice is exogenous or endogenous is important, as it can significantly alter our understanding of exchange rate determination and optimal exchange rate policy. It is well understood (following Andrew S. Caplin and Daniel F. Spulber 1987) that the same median frequency of price adjustment can lead to differing outcomes for policy, depending on whether frequency is chosen endogenously or exogenously. A similar reasoning applies to the currency in which prices are set. With exogenous currency choice, one obtains stark results, such as the optimality of floating under producer currency pricing (PCP) that ensures expenditure switching, and of pegging under local currency pricing (LCP) that ensures consumption risk-sharing (Devereux and Engel 2007). This stark difference arises because firms are forced to price in one or the other currency irrespective of their flexible-price desired pass-through. Once they are allowed to choose currency optimally, they will choose it to fit their desired pass-through patterns, enhancing the effective amount of price flexibility and reducing the welfare gap between floating exchange rates and pegs.

There are other important considerations that arise with endogenous currency choice in a general equilibrium environment, as pointed out in Devereux, Engel, and Storgaard (2004) and Bacchetta and van Wincoop (2005). In such an environment, exchange rate volatility affects currency choice, which in turn effects exchange rate volatility generating the possibility for multiple equilibria. Consequently, a country that follows more stable monetary policies will experience greater price stability as more of the exporters to that country set prices in the country’s currency.
The paper proceeds as follows. Section I presents empirical evidence. Section II develops the theory and provides numerical simulations. Section III interprets the empirical findings through the lens of the proposed theory of currency choice, evaluates alternative interpretations, and concludes. All proofs are relegated to the Mathematical Appendix.

I. Pass-Through and Currency in the Data

In this section we present empirical evidence on pass-through across dollar and nondollar priced goods. It follows mechanically that during the period when prices do not adjust, exchange rate pass-through into the dollar price is 0 percent for the goods priced in dollars and 100 percent for the goods priced in nondollars. The question we ask is what is the difference in pass-through once prices of these goods change.

To address this question, we present two main types of regression results. First, we present estimates from a standard aggregate pass-through regression using average monthly price changes, with the difference that we construct separate series for dollar and nondollar priced goods. We show that the difference in pass-through into US import prices of the average good priced in dollars versus the average good priced in nondollars is large even at a two-year horizon. Second, we present micro-level regressions where we condition on the price having changed. We show that, even conditional on a price change, there is a large difference in the pass-through of the average good priced in dollars (25 percent) versus nondollars (95 percent). We present both country-wise and sector-wise evidence that supports these results.

The data used for the analysis are described next.

A. Data

We use unpublished micro data on import prices collected by the Bureau of Labor Statistics (BLS) for the period 1994–2005. These data are collected on a monthly basis and contain information on import prices of a very detailed good over time, with information on the country of origin and the currency of pricing. Details regarding the underlying database are reported in Gopinath and Rigobon (2008).

In the price survey, the BLS asks firms to report on the currency of denomination of the price. Gopinath and Rigobon (2008) document that prices are rigid, with a median duration of 11 months, in the currency in which they are reported as being priced in. This fact suggests that the currency information is meaningful, and that it is not the case, for instance, that firms price in nondollars and simply convert the prices into dollars to report to the BLS. This would imply that dollar prices would then show a high frequency of adjustment, which is not the case.

Around 90 percent of US imports in the BLS sample are reported as priced in dollars. This fraction varies, however, by country of origin. The fraction of imports in the exporter currency is, for example, 40 percent from Germany, 21 percent from Japan, 13 percent from France, and 4 percent from Canada. From all developing countries, the share in the exporter’s currency is close to zero. As is well known, a significant fraction of trade (40 percent of the BLS sample) takes place within the firm. Since we will test theories of prices that are driven mainly by market forces, we exclude intrafirm prices from our analysis.3

In our empirical analysis, we include countries that have a nonnegligible share of their exports to the United States priced in both dollar and nondollar currency. This includes Germany, Switzerland, Italy, Japan, the United Kingdom, Belgium, France, Sweden, Spain, Austria, the

3 For empirical evidence on the differences between intrafirm and arm’s-length transactions, using this dataset, see Gopinath and Rigobon (2008) and Brent Neiman (2009).
Table 1—Number of Goods and Fraction Nondollar Priced

<table>
<thead>
<tr>
<th>Country</th>
<th>N</th>
<th>Frac_{Nd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>1,521</td>
<td>0.40</td>
</tr>
<tr>
<td>Switzerland</td>
<td>285</td>
<td>0.39</td>
</tr>
<tr>
<td>Italy</td>
<td>1,596</td>
<td>0.22</td>
</tr>
<tr>
<td>Japan</td>
<td>3,151</td>
<td>0.21</td>
</tr>
<tr>
<td>UK</td>
<td>930</td>
<td>0.20</td>
</tr>
<tr>
<td>Belgium</td>
<td>138</td>
<td>0.17</td>
</tr>
<tr>
<td>France</td>
<td>723</td>
<td>0.13</td>
</tr>
<tr>
<td>Sweden</td>
<td>254</td>
<td>0.10</td>
</tr>
<tr>
<td>Spain</td>
<td>358</td>
<td>0.13</td>
</tr>
<tr>
<td>Austria</td>
<td>130</td>
<td>0.08</td>
</tr>
<tr>
<td>Netherlands</td>
<td>220</td>
<td>0.11</td>
</tr>
<tr>
<td>Canada</td>
<td>2,536</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Netherlands, and Canada. Table 1 lists the total number of goods (second column) for each country and the fraction invoiced in the exporter’s currency (third column).

B. Aggregate Evidence

For each country, we construct two separate monthly average price change series—one including only those goods that are priced in dollars and the other using only goods priced in the exporter’s currency. For most countries, for exports to the United States, these are the only two types of pricing. Some goods are priced in a third currency, but such instances are rare. The average price change was calculated using equal weights, since we were not provided with BLS weights at the level of goods.

We estimate the following standard pass-through regression,

\[
\Delta p_{k,t} = a_k + \sum_{j=0}^n \beta_j \Delta e_{k,t-j} + \sum_{j=0}^n \gamma_j \pi_{k,t-j} + \sum_{j=0}^3 \delta_j \Delta y_{t-j} + \epsilon_{k,t},
\]

where \(k \) indexes the country, \(\Delta p \) is the average monthly log price change in dollars, \(e \) is the bilateral nominal exchange rate (dollars per unit of foreign currency), \(\pi \) is the monthly foreign country inflation using the consumer price index, \(\Delta y \) is average GDP growth in the United States, and \(n \) is the number of lags, which varies from 1 to 24. Since the data are monthly, we include up to 24 lags for the nominal exchange rate and foreign inflation and 3 lags for GDP growth. We estimate specification (1) for the full sample of goods and for the two subsamples of dollar and nondollar priced goods.

The statistic of interest is the sum of the coefficients on the nominal exchange rate: \(\beta(n) \equiv \sum_{j=0}^n \beta_j \). These coefficients reflect the impact that the current change in the exchange rate has on the price of imports over time. The objective is to compare these estimates across currencies as we increase the number of lags included in the specification from 1 to 24. Figure 1 depicts the pass-through coefficients, \(\beta(n) \), from estimating a pooled regression of all countries (with country fixed effects) against the number of lags, \(n \), on the x-axis. The line in the middle depicts the average pass-through for all goods. This measure of pass-through increases from 0.21 with one lag to

4 We used the following two criteria for selection: (i) a country should have at least ten items priced in nondollars, and (ii) at least 5 percent of all items imported from a country should be priced in nondollars. We made an exception for Canada, which has only 4 percent of exports to the United States priced in Canadian dollars; this constitutes a large number of goods since Canada is an important trade partner.
0.30 with 24 lags. At the aggregate level, most of the pass-through takes place in the first two quarters and levels off soon after. This is consistent with the findings of José M. Campa and Goldberg (2005) and others who have estimated pass-through into the United States using the BLS price index.

From this aggregate measure alone, however, it is impossible to discern the role of currency. We now consider the same aggregate regression for dollar and nondollar subsamples separately. The top line depicts the pass-through for the nondollar priced goods. The bottom line is the pass-through for the dollar priced goods. The bands represent the 95 percent confidence interval around the point estimate for each lag specification. As Figure 1 demonstrates, the regression that uses only the contemporaneous and one-month lag of the exchange rate estimates a pass-through of close to zero for goods priced in dollars and close to one for goods priced in nondollars, consistent with the substantial nominal rigidity in the data. Further, we observe that the pass-through into the dollar priced goods is far more gradual than pass-through into the aggregate index. Pass-through decreases slightly for the nondollar index. We might expect to see the two pass-through numbers converge as we get past periods of nominal rigidity. A striking feature of the plot, however, is that the gap between pass-through of the dollar and nondollar index remains large and significant, even 24 months out. At 24 months the pass-through is 0.17 in the dollar subsample and 0.98 in the nondollar subsample.

In Figure 2, we replicate the aggregate regressions country by country. Notice that the aggregate level of pass-through varies substantially across countries. This can be seen from the middle line in the plots. For instance, for Germany, the pass-through is around 40 percent at all horizons; for Japan and United Kingdom, the numbers are smaller, as they increase from 23 percent to 32 percent; while for Sweden and France pass-through is always smaller than 20 percent. The difference between the pass-through of the dollar and nondollar price
series is again striking. The exception to this is Canada, where the two pass-through elasticities intersect. For all other countries, the differences remain large, even at long horizons, and for 9 out of the 12 countries the difference is significant even for the specification with 24 lags. The two exceptions, other than Canada, are Austria and the Netherlands, for which there is simply not enough data to statistically distinguish the two pass-through elasticities at the 24-month horizon. Notice that in all other countries the confidence intervals for the dollar and nondollar pass-through do not intersect.

An alternative empirical specification would be to use individual (good level) price changes for each country as the left-hand-side variable, without averaging across observations. So, instead of one monthly observation for a country, we have a panel of monthly price changes for a country. We perform this panel regression where the left-hand side is the monthly change in the price of a good. We also include fixed effects for each country and primary strata (BLS defined sector code, mostly two- to four-digit harmonized trade code) pair, and we cluster the standard errors at this level. The impulse responses from this estimation are almost identical to those presented in Figure 1, with slightly tighter standard errors.

Notes: Full sample (lines with diamonds), dollar subsample (lines with squares) and nondollar subsample (lines with circles). Dashed lines represent 95 percent confidence intervals.

Figure 2. Aggregate Exchange Rate Pass-through at Different Horizons by Currency from Specific Countries

5 Average pass-through for Canada increases from 12 percent in the short run to almost 45 percent at 24 months, although these numbers are highly imprecisely estimated. One must be cautious when interpreting the evidence for Canada since the Canadian exchange rate is more likely to be driven by the price of its main export—commodities—than the other way round (see Yu-chin Chen and Rogoff 2003).
To summarize, aggregate pass-through, even two years after an exchange rate shock, is strikingly different for dollar and nondollar priced goods, with nondollar pass-through being much higher than dollar pass-through. Consequently, the fraction of goods that are priced in different currencies has significant predictive power for measures of aggregate import pass-through, even at very distant horizons (see the working paper version of this article, Gopinath, Itskhoki, and Rigobon 2007).

Since prices change infrequently in this sample, with a median duration of 11 months, aggregate price indices are dominated by unchanging prices. Increasing the horizon of estimation to several months to arrive at the flexible price pass-through does not solve this issue, because around 30 percent of the goods in the BLS sample do not change price during their life, i.e., before they get replaced. Consequently, when estimating pass-through using the BLS index, such prices have an impact on measured pass-through even at long horizons. In the next section we estimate micro-level regressions that condition on a price change.

C. Micro-Level Evidence

At the good level, we estimate the following regression:

$$
\Delta \overline{p}_{i,t} = \left[\beta_D D_i + \beta_{ND} (1 - D_i) \right] \Delta c_{i,t} + Z'_{i,t} \gamma + \epsilon_{i,t},
$$

where i indexes the good; $\Delta \overline{p}_{i,t}$ is the change in the log dollar price of the good, conditional on price adjustment in the currency of pricing; $\Delta c_{i,t}$ is the cumulative change in the log of the bilateral nominal exchange rate over the duration for which the previous price was in effect; D_i is a dummy that takes the value of one if the good is priced in dollars and zero if the good is priced in nondollars; $Z_{i,t}$ includes controls for the cumulative change in the foreign consumer price level, the US consumer price level, the US GDP, and fixed effects for every BLS defined primary strata (mostly two- to four-digit harmonized codes) and country pair. The coefficients of interest are β_D and β_{ND}, which estimate pass-through conditional on price adjustment for dollar and nondollar pricers, respectively.

In the BLS database, the original reported price (in the currency of pricing) and the dollar converted price are both reported. We use the latter, conditional on the original reported price having changed.
The results from estimation of specification (2) are reported in Table 2. The point estimate for pass-through and the standard error for dollar and nondollar pricers are reported in columns 2–5. The difference in the pass-through and the t-statistic of the difference are reported in columns 6–7. The number of observations, number of goods, and R^2 are reported in the remaining columns. The first row reports the results from pooling all observations. The pass-through, conditional on a price change to the cumulative exchange rate change, is 0.24 for dollar priced goods and 0.92 for nondollar priced goods.\(^7\) The difference in these pass-through estimates is large and strongly significant.\(^8\) We estimate this specification for each country and obtain that there is a sizable difference in the point estimate of dollar and nondollar priced goods. This difference is statistically significant for 9 out of the 11 countries, the exceptions being Spain and Canada.

One might be interested in the subset of goods for which the firm has arguably more pricing power. Accordingly, in Table 3 we repeat the analysis for the subsample of differentiated goods, according to the Rauch (1999) classification.\(^9\) The average pass-through is 0.24 for dollar priced firms and 0.96 for nondollar priced firms, in line with the results for the full sample of goods. This difference is also observed at the country level, with the difference in the pass-through estimates significant for all countries except Spain and Canada.

Table 3—Pass-Through Conditional on Price Adjustment: Differentiated Goods

<table>
<thead>
<tr>
<th></th>
<th>Dollar</th>
<th>Nondollar</th>
<th>Difference</th>
<th>N_{obs}</th>
<th>N_{goods}</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β_D</td>
<td>s.e. (β_D)</td>
<td>β_{ND}</td>
<td>s.e. (β_{ND})</td>
<td>$\beta_{ND}-\beta_D$</td>
<td>t-stat</td>
</tr>
<tr>
<td>All countries</td>
<td>0.24</td>
<td>0.04</td>
<td>0.96</td>
<td>0.06</td>
<td>0.72</td>
<td>10.20</td>
</tr>
<tr>
<td>Germany</td>
<td>0.44</td>
<td>0.10</td>
<td>0.92</td>
<td>0.12</td>
<td>0.48</td>
<td>3.09</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.10</td>
<td>0.15</td>
<td>0.99</td>
<td>0.31</td>
<td>0.89</td>
<td>2.77</td>
</tr>
<tr>
<td>Italy</td>
<td>0.23</td>
<td>0.08</td>
<td>0.81</td>
<td>0.10</td>
<td>0.58</td>
<td>4.81</td>
</tr>
<tr>
<td>Japan</td>
<td>0.19</td>
<td>0.04</td>
<td>0.98</td>
<td>0.10</td>
<td>0.81</td>
<td>7.31</td>
</tr>
<tr>
<td>UK</td>
<td>0.32</td>
<td>0.19</td>
<td>0.89</td>
<td>0.16</td>
<td>0.56</td>
<td>2.14</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.01</td>
<td>0.07</td>
<td>0.98</td>
<td>0.14</td>
<td>0.98</td>
<td>6.05</td>
</tr>
<tr>
<td>France</td>
<td>0.29</td>
<td>0.12</td>
<td>1.17</td>
<td>0.14</td>
<td>0.88</td>
<td>4.89</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.44</td>
<td>0.15</td>
<td>1.43</td>
<td>0.11</td>
<td>0.99</td>
<td>6.01</td>
</tr>
<tr>
<td>Spain</td>
<td>0.53</td>
<td>0.11</td>
<td>0.73</td>
<td>0.15</td>
<td>0.20</td>
<td>0.92</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.17</td>
<td>0.22</td>
<td>1.19</td>
<td>0.03</td>
<td>1.01</td>
<td>4.33</td>
</tr>
<tr>
<td>Canada</td>
<td>−0.06</td>
<td>0.12</td>
<td>0.51</td>
<td>1.16</td>
<td>0.57</td>
<td>0.50</td>
</tr>
</tbody>
</table>

\(^7\) Since the first price adjustment is censored in the data, we also perform the analysis excluding this price change and find that the results are not sensitive to this assumption. It is also the case that there are months during the life of the good when there is no price information and a new price is preceded by a missing price. In this case the timing of the price change is less precisely estimated. As a sensitivity test, we exclude price changes that were preceded by a missing price and find that the results are very similar.

\(^8\) In an environment with endogenous frequency, conditioning on a price change to the cumulative exchange rate change, is 0.24 for dollar priced goods and 0.92 for nondollar priced goods.\(^7\) The difference in these pass-through estimates is large and strongly significant.\(^8\) We estimate this specification for each country and obtain that there is a sizable difference in the point estimate of dollar and nondollar priced goods. This difference is statistically significant for 9 out of the 11 countries, the exceptions being Spain and Canada.

\(^9\) Rauch (1999) classified goods on the basis of whether they were traded on an exchange (organized), had prices listed in trade publications (reference), or were brand name products (differentiated). Each good in our database is mapped to a ten-digit harmonized code. We use the concordance between the ten-digit harmonized code and the SITC2 (Rev 2) codes to classify the goods into the three categories. We were able to classify around 65 percent of the goods using this classification.
We next examine differential pass-through within those ten-digit classification codes that have a mix of dollar and nondollar prices. We find that dollar pricers have a pass-through of

10 This table can be compared to Table 8 in Gopinath and Rigobon (2008). The two differences are (i) the sample is smaller because we look at a subset of countries, and (ii) we separate goods based on their currency of pricing. We include fixed effects for each six-digit harmonized code and country pair, and the standard errors are clustered at this level.
30 percent, nondollar pricers have a pass-through of 95 percent, and the difference is highly statistically significant. Finally, in our dataset there are 125 items for which the currency of invoicing changed during the life of the good. However, not all of them have a price change within each regime. When we concentrate on that smaller subsample, and exclude the price change that exists when the shift in the currency of invoicing takes place, for the dollar invoiced items the pass-through is roughly 50 percent. The pass-through when the good is priced in the nondollar currency is 68 percentage points higher than when it was priced in dollars, and this difference is statistically significant.

Exports.—This far we have focused on US imports. In the case of US exports the fraction of goods priced in dollars is 97 percent and there is very little variation across countries, unlike for imports. For instance, for exports to the euro area this fraction is 96 percent. When we estimate pass-through conditional on price adjustment, as in equation \((2)\), we find that exchange rate pass-through into local currency prices of goods that are priced in dollars (producer currency pricing) is 0.84, while pass-through for goods priced in the importing country’s currency (local currency pricing) is 0.25 and the difference has a \(t\)-statistic of 3.9. These results are very similar to those observed for imports across pricing regimes. Given the small fraction that is nondollar pricers, we cannot, however, perform detailed sectoral and country comparisons, as was done for the case of imports.

D. Lifelong Pass-Through

When we condition on a price adjustment, we get past the period of strict nominal rigidity for the firm. However, if there are real rigidities that arise, say, from strategic complementarities in pricing, and if competitor firms adjust at different points in time, then it is well known that a single price adjustment will not measure the full pass-through that occurs when all firms have adjusted their price. In this subsection we estimate a measure of pass-through that incorporates multiple rounds of price adjustment and consequently allows for fuller adjustment to an exchange rate shock.

We estimate lifelong pass-through using price changes over the life of the good in the sample, and we measure its response to cumulative exchange rate movements over this period. Specifically, we estimate

\[
\Delta L\bar{p}_{i,T} = [\beta_L D_i + \beta_{ND} (1 - D_i)] \Delta L e_{i,T} + Z_{i,T}' \gamma + \epsilon_{i,t},
\]

Table 5—Lifelong Pass-Through: Dollar versus Nondollar pricers

<table>
<thead>
<tr>
<th></th>
<th>Dollar</th>
<th></th>
<th>Nondollar</th>
<th></th>
<th>Difference</th>
<th>(N_{goods})</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_D)</td>
<td>0.49</td>
<td>s.e. (0.06)</td>
<td>0.98</td>
<td>s.e. (0.06)</td>
<td>0.49</td>
<td>5.84</td>
<td>6,643</td>
</tr>
<tr>
<td>(\beta_{ND})</td>
<td>0.42</td>
<td>s.e. (0.09)</td>
<td>0.95</td>
<td>s.e. (0.08)</td>
<td>0.53</td>
<td>4.54</td>
<td>2,374</td>
</tr>
<tr>
<td>Manufactured goods</td>
<td>0.56</td>
<td>s.e. (0.09)</td>
<td>0.96</td>
<td>s.e. (0.12)</td>
<td>0.40</td>
<td>2.88</td>
<td>4,269</td>
</tr>
<tr>
<td>Euro area</td>
<td>0.50</td>
<td>s.e. (0.11)</td>
<td>0.99</td>
<td>s.e. (0.10)</td>
<td>0.48</td>
<td>2.99</td>
<td>1,264</td>
</tr>
<tr>
<td>Non-euro area</td>
<td>0.54</td>
<td>s.e. (0.15)</td>
<td>1.12</td>
<td>s.e. (0.20)</td>
<td>0.58</td>
<td>2.34</td>
<td>1,928</td>
</tr>
</tbody>
</table>

\(^{11}\) Fixed effects for each ten-digit classification code were included and standard errors are clustered at the country level.
where $\Delta L\bar{p}_{i,T}$ is the difference between the last observed new price of the good and the first price in the sample; and $\Delta L\bar{e}_{i,T}$ is the exchange rate change over the respective period. We have therefore one observation for each good that has at least one price adjustment during its life in the sample, and we estimate the exchange rate pass-through over the life of the good. The estimates of lifelong pass-through for dollar and nondollar priced goods are β_d^{LL} and β_{Nd}^{LL}, respectively.

The results from estimation of the lifelong specification (3) are reported in Table 5. Lifelong pass-through is 0.49 for dollar priced goods and 0.98 for nondollar priced goods, and the difference is statistically significant. The difference in lifelong pass-through is also large and significant in different subsamples, including differentiated goods and goods imported separately from euro and non-euro areas, in some cases exceeding 0.5. While for nondollar priced goods, lifelong pass-through is not very different from pass-through conditional on first adjustment, it is important to note that for dollar priced goods, pass-through is about twice as high over the life of the good compared to the first round of adjustment. This implies that it takes far longer than one price adjustment for these goods to attain long-run pass-through.

E. Frequency and Size of Price Adjustment

Finally, we report on differences in the frequency of price adjustment and the size of price adjustment, conditional on a price change across dollar and nondollar priced goods. As reported in Gopinath and Rigobon (2008), nondollar pricers have longer price durations than dollar pricers (14 versus 11 months). For the subsample of countries used in this paper, this difference remains. As Table 6 reports, the median frequency for dollar pricers (0.10) is higher than that for nondollar pricers (0.07). In terms of duration, this is a difference of around four months. This difference partly reflects the fact that nondollar pricers are in the differentiated sector where price durations are longer, as reported in Gopinath and Rigobon (2008). To see if this difference persists at a more disaggregated level, we restrict the sample to those six- (ten-) digit sectors that have a mix of dollar and nondollar goods. The median frequency for dollar pricers at the six-digit (ten-digit) level is 0.13 (0.11) and for the nondollar pricers is 0.08 (0.07). The standard deviation of the frequency measure is large across all specifications. The evidence at the disaggregated

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Dollar pricers</th>
<th>Nondollar pricers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Six-digit</td>
</tr>
<tr>
<td>Median</td>
<td>0.10</td>
<td>0.13</td>
</tr>
<tr>
<td>Mean</td>
<td>0.24</td>
<td>0.17</td>
</tr>
<tr>
<td>St. dev.</td>
<td>0.24</td>
<td>0.17</td>
</tr>
<tr>
<td>Size</td>
<td>Median</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>St. dev.</td>
<td>0.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absolute size</th>
<th>Dollar pricers</th>
<th>Nondollar pricers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Six-digit</td>
</tr>
<tr>
<td>Median</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Mean</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>St. dev.</td>
<td>0.12</td>
<td>0.09</td>
</tr>
</tbody>
</table>

See Gopinath and Itskhoki, forthcoming, for more on this measure of LRPT and how it closely approximates true flexible price pass-through in several standard models.
level is therefore consistent with the more aggregate level evidence that dollar pricers adjust prices more frequently than nondollar pricers.

We perform a similar comparison for the size of price adjustment in the reported currency of pricing, conditional on a price change. The median size of price change and the median absolute size of price change are quite similar across dollar and nondollar pricers. The median absolute size overall for the dollar pricers is 7 percent while it is 6 percent for the nondollar pricers. At the six-digit level, the difference in the medians is again one percentage point, while at the ten-digit level, the difference is two percentage points in favor of dollar pricers. There does not appear to be a systematic difference in the size of price adjustment across dollar and nondollar pricers. Since size is scale dependent, it is difficult to infer what the size measure implies about the responsiveness to shocks, as it depends also on the size of shocks. This is unlike pass-through, which is scale independent and measures the responsiveness to shocks.

II. Currency and Prices in a Dynamic Sticky Price Model

The evidence presented in the empirical section is new facts that need to be matched by models of open economy macroeconomics. How do these facts compare with the predictions of standard open economy models? Is the evidence consistent with a model where firms choose the currency to price in? To address these questions we develop a model of endogenous currency choice in a dynamic pricing environment with nominal rigidities.

While there exist several important papers in the theoretical literature on currency choice, our paper is most closely related to Engel (2006). The two main departures from the existing literature are (i) we consider a multiperiod dynamic setting as opposed to a static environment, and (ii) we provide conditions under which a sufficient statistic for currency choice can be empirically estimated using observable prices.

In Section IIA we consider a general model of currency choice in an environment with staggered price setting, as in Guillermo A. Calvo (1983). Using second-order approximations, we provide an analytical characterization of the currency choice rule. In Section IIB we numerically analyze a specific model of incomplete pass-through and evaluate the robustness of the analytical findings to various extensions.

A. Analytical Model of Currency Choice

We consider a partial equilibrium environment by focusing on the pricing and currency strategies of a single firm. For concreteness, consider a firm exporting its product into the United States. Denote by \(\Pi(p_t|s_t) \) its profit function from sales in the US market, where \(p_t \) is the log of the current local currency (dollar) price of the firm and \(s_t \) is a state vector that can include demand conditions, cost shocks, competitors’ prices, and the exchange rate.

Define the desired price of a firm as the price it would set if it could costlessly adjust its price in a given state. The desired price of the firm in local currency is

\[
\tilde{p}(s_t) = \arg \max_p \Pi(p|s_t).
\]

The log of the desired price in the producer currency is then \(\tilde{p}_t^* = \tilde{p}_t - e_t \), where the asterisk indicates that the variable is denominated in the producer currency and \(e_t \) is the log of the bilateral nominal exchange rate defined such that an increase in \(e_t \) corresponds to an appreciation of the exporters exchange rate. Throughout Section IIA we make the empirically relevant assumption that the nominal exchange rate follows a random walk; we relax this assumption in Section IIB.
Price Setting in Local and Producer Currency.—Now assume that the firm is allowed to adjust prices each period with an exogenous probability \((1 - \theta)\), as in Calvo (1983). Further, when the firm adjusts its price it can costlessly decide whether to fix the new price in the local currency or in the producer currency.

The value to the firm that sets its price in the local currency, \(V_L(p|s^t)\), is characterized by the following Bellman equation:

\[
V_L(p|s^t) = \Pi(p|s_t) + \delta \mathbb{E}_t V_L(p|s^{t+1}) + \delta(1 - \theta) \mathbb{E}_t V(s^{t+1}),
\]

where \(s_t = (s_0, s_1, \ldots, s_t)\) denotes the history of states \(s_{t-j}\), and \(\delta\) is the constant discount factor.\(^{13}\) The expectations are conditioned on information as of time \(t\) contained in \(s^t\) and on whether the firm adjusts its price in period \(t+1\) or not. If the firm does not adjust, it receives the continuation value \(V_L(p|s^{t+1})\), and if it does adjust, it receives \(V(s^{t+1})\). The optimal price set in the local currency can be expressed as

\[
\bar{p}_{L,t} \equiv \bar{p}_{L}(s^t) = \text{arg max}_p V_L(p|s^t).
\]

Similarly, the value to the firm of setting its price in the producer currency, \(V_p(p^*|s^t)\), is given by

\[
V_p(p^*|s^t) = \Pi(p^* + e_t|s_t) + \delta \mathbb{E}_t V_p(p^*|s^{t+1}) + \delta(1 - \theta) \mathbb{E}_t V(s^{t+1}),
\]

and the optimal price set in the producer currency is

\[
\bar{p}_{p,t}^* \equiv \bar{p}_{p}^*(s^t) = \text{arg max}_p V_p(p^*|s^t).
\]

During the duration of the producer-currency price, its local currency value moves one to one with the exchange rate and is denoted by \(p_{t+\ell} = \bar{p}_{p,t}^* + e_{t+\ell}\).

The value to the firm adjusting its price in period \(t\) which incorporates the optimal currency choice is then

\[
V(s^t) = \max \{V_L(\bar{p}_{L}(s^t)|s^t), V_p(\bar{p}_{p}^*(s^t)|s^t)\}.
\]

This maximization problem determines the currency choice of the firm when it adjusts prices in period \(t\).

We now show the following equivalence result for optimal price setting in the local and producer currency:

PROPOSITION 1: The first-order approximation to optimal price setting in local and producer currency is given respectively by

\[
\bar{p}_{L}(s^t) = (1 - \delta \theta) \sum_{\ell=0}^{\infty} (\delta \theta)^\ell \mathbb{E}_t [\bar{p}(s_{t+\ell})],
\]

\[
\bar{p}_{p}^*(s^t) = (1 - \delta \theta) \sum_{\ell=0}^{\infty} (\delta \theta)^\ell \mathbb{E}_t [\bar{p}(s_{t+\ell}) - e_{t+\ell}],
\]

\(^{13}\)The variable component of the discount factor can be incorporated into \(\Pi(p|s^t)\), which then should be interpreted as the profit in real discounted units. Since we later introduce first-order approximations to the pricing decisions, the potential variation in the stochastic discount factor does not affect the results.
which implies the following equivalence between optimal prices in the local and producer currency:

\[\bar{p}_L(s') = \bar{p}_P(s') + e_t. \]

The first-order approximations provide certainty-equivalent pricing rules. Proposition 1 shows that two otherwise identical firms, one pricing in local currency and the other in producer currency, will set the same price (in the common currency) conditional on adjustment. The firm sets its price in each currency as an expected weighted average of future desired prices in the currency of pricing. The only difference between the desired prices in each currency is the nominal exchange rate, and the expectation of this exchange rate for any future date is the current value of the exchange rate given that it follows a random walk.

Proposition 1 has an important corollary: if firms are assigned the currency of pricing exogenously, their pass-through conditional on even the first adjustment, should be identical, regardless of the currency of pricing.\(^{14}\)

Currency Choice.—Now consider the problem of currency choice. Define the difference between the value of local and producer currency pricing by

\[
\mathcal{L}(s') = V_L(\bar{p}_L(s') \mid s') - V_P(\bar{p}_P(s') \mid s')
\]

\[
= \sum_{\ell=0}^{\infty} (\delta \theta)^\ell \mathbb{E}_t \{ \Pi(\bar{p}_L(s') \mid s_{t+\ell}) - \Pi(\bar{p}_P(s') + e_{t+\ell} \mid s_{t+\ell}) \},
\]

where the final expression is obtained by iterating the value functions defined in (5) and (7). Whenever \(\mathcal{L}(s') > 0 \), the firm will choose LCP and it will choose PCP otherwise. When making the currency choice decision, a firm compares expected profits under the two invoicing arrangements during the period of price stickiness.

To shed more light on the currency choice decision, we use a second-order approximation to equation (10) and arrive at the following proposition:

PROPOSITION 2: The second-order approximation to the difference in value of LCP and PCP is:

\[
\mathcal{L}(s') = K(s') \sum_{\ell=0}^{\infty} (\delta \theta)^\ell \text{var}_t(e_{t+\ell}) \left[\frac{1}{2} - \frac{\text{cov}_t(\bar{p}(s_{t+\ell}), e_{t+\ell})}{\text{var}_t(e_{t+\ell})} \right],
\]

where \(K(s') \equiv -\partial^2 \Pi(\bar{p}(s') \mid s_t) / \partial p^2 > 0 \). Therefore, the firm chooses local currency pricing when

\[
\Psi \equiv (1 - \delta \theta)^2 \sum_{\ell=1}^{\infty} (\delta \theta)^{-\ell} \ell \frac{\text{cov}_t(\bar{p}(s_{t+\ell}), e_{t+\ell})}{\text{var}_t(e_{t+\ell})} < \frac{1}{2}
\]

and producer currency pricing otherwise.

\(^{14}\) This corollary relies on the fact that the price-setting rule in Proposition 1 is optimal independent of whether currency choice is exogenous or endogenous and on the assumption that the exchange rate follows a random walk (see Appendix).
Currency choice is effectively a zero-one indexing decision of the firm’s price to exchange rate shocks. If prices adjust every period, currency choice is irrelevant. However, when prices are sticky, the firm can choose its currency to keep its price closer to the desired price in periods when the firm does not adjust. Accordingly, as demonstrated in equation (12), currency choice is determined by a weighted average of exchange rate pass-through coefficients into desired prices, \(\text{cov}_t(\tilde{p}(s_{t+\ell}), e_{t+\ell})/\text{var}_t(e_{t+\ell}) \). The particular threshold value of ½ arises from the second-order approximation. This result generalizes the main insight of Engel (2006) in a dynamic pricing environment.

We refer to \(\Psi \) in (12) as medium-run pass-through (MRPT). The firm chooses local currency pricing when MRPT is low, and chooses producer currency pricing when MRPT is high. Intuitively, if a firm desires low exchange rate pass-through in the short run—before it has a chance to adjust prices—the firm is better off choosing local currency pricing that results in 0 percent pass-through in the short run. Conversely, if short-run desired pass-through is high, the firm should choose producer currency pricing that results in complete (100 percent) pass-through prior to price adjustment.

Note that the covariance terms in (12) are not conditional on any contemporaneous variables. That is, what matters for currency choice is the unconditional covariance of exchange rate shocks and desired prices, independent of whether this is a direct relationship or mediated through other contemporaneous variables such as the industry price level, costs, or demand.

An important insight follows by rewriting the MRPT as a weighted average of the desired price responses to exchange rate shocks:

\[
(13) \quad \Psi = (1 - \delta \theta) \sum_{j=0}^{\infty} (\delta \theta)^j \left[(1 - \delta \theta) \sum_{\ell=1}^{\infty} (\delta \theta)^{\ell-1} \tilde{\Psi}_{t+\ell}(s') \right],
\]

where

\[
\tilde{\Psi}_{t,\ell}(s') \equiv \frac{\text{cov}_\ell(\tilde{p}(s_{t+\ell}), \Delta e_{t+j})}{\text{var}_t(\Delta e_{t+j})}
\]

is the impulse response of the desired price in period \(t + \ell \) to the exchange rate shock in period \(t + j \), conditional on information available at time \(t \). The term in square brackets is a weighted average of the impulse response of the desired price in period \(\ell + j \) to an exchange rate shock in \(\ell \), where \(j \) is held fixed. For example, when \(j = 0 \) each term is the instantaneous response to an exchange rate shock, and when \(j = 1 \) each term is the response one period after the shock. As \(j \to \infty \), each term is the long-run response to the exchange rate shock. In general, therefore, MRPT and currency choice depend not just on the LRPT or desired pass-through on impact, but on the entire path of the desired pass-through responses weighted by the probability of price nonadjustment. We show below that this distinction can be quantitatively important.

15 Formally, if the firm adjusts prices every period, \(\theta = 0 \), and from (11), \(L \equiv 0 \).

16 In Engel (2006), firms adjust prices every period, but before observing the current state of the world. Under this timing assumption, the currency choice rule in (12) becomes:

\[
(1 - \delta \theta) \sum_{\ell=0}^{\infty} (\delta \theta)^\ell (1 + 1) \text{cov}_{t-1}(\tilde{p}(s_{t+\ell}), e_{t+j})/\text{var}_{t-1}(e_{t+j}) < 1/2,
\]

and if the firm adjusts prices every period (\(\theta = 0 \)), it reduces to \(\text{cov}_{t-1}(\tilde{p}(s_{t+j}), e_{t+j})/\text{var}_{t-1}(e_{t+j}) < 1/2 \), as in Engel (2006).

17 To obtain (13), we decompose

\[
\text{cov}_t(\tilde{p}(s_{t+j}), e_{t+j})/\text{var}(e_{t+j}) = \text{cov}_t(\tilde{p}(s_{t+\ell}), e_{t+j} + \Delta e_{t+1} + \ldots + \Delta e_{t+j})/\text{var}(e_{t+j}) = (1/\ell) \sum_{j=1}^{\ell} \tilde{\Psi}_{t,\ell} \text{cov}(s'),
\]

where the last step uses the random walk property that \(\text{var}(e_{t+j}) = \ell \text{ var}(\Delta e_{t+j}) \) for any \(\ell, j \geq 1 \).
Structural Model of Incomplete Pass-Through.—To provide further insights into the currency choice rule, we need to put more structure on the determinants of pass-through. We can express the log of the desired price in local currency as

\[\tilde{p}_t = \tilde{p}(e_t, P_t | z_t) = \mu(\tilde{p}_t - P_t | z_t) + mc^*(e_t | z_t) + \epsilon_t, \]

where \(P_t \) is the log of the sectoral price level, \(\mu \) is the log desired markup, \(mc^* \) is the log of the marginal cost in producer currency, and \(z_t \) denotes all other shocks that affect markups and costs, but is uncorrelated with the exchange rate and sectoral price level.\(^{18}\)

Denote by \(\phi_t \) the elasticity of the local currency marginal cost with respect to the exchange rate: \(\phi_t \equiv \partial(mc^*_t + e_t) / \partial e_t \). This elasticity can be less than one if it is the case that some fraction of a foreign exporter’s costs is set in dollars, in which case exchange rate movements only partially affect the dollar cost of the firm. For instance, \(\phi \) can represent the constant elasticity of output with respect to domestic inputs in a Cobb-Douglas production function.

Denote by \(\Gamma_t \) the elasticity of the markup with respect to the relative price of the firm: \(\Gamma_t \equiv -\partial \mu_t / \partial (p_t - P_t) \). The markup channel of incomplete pass-through is the classic pricing-to-market channel of Rudiger Dornbusch (1987) and Paul R. Krugman (1987). In general, \(\Gamma \) varies with the state \(s_t \). Consider specific instances when \(\Gamma \) can be treated as a constant. First, under constant price elasticity of residual demand (e.g., CES), \(\Gamma \) is a constant equal to zero. A more interesting case, however, is when \(\Gamma \) is a constant that differs from zero, that is, the markup varies but the elasticity of the markup is constant.\(^{19}\) To make further progress in studying the optimal currency choice, we assume that the elasticity of markup \(\Gamma \) is constant. We relax this assumption in the numerical explorations of the next section. With a constant elasticity of markup, we can prove:

PROPOSITION 3: Let \(\phi \) and \(\Gamma \) be constant and consider the first-order approximation to price setting. Then, the impulse response of desired prices, \(\tilde{\psi}_{t, \ell + j}(s^t) \), is independent of \(\ell \) and \(s^t \) and depends only on \(j \), the time elapsed after the exchange rate shock. Moreover, it can be written as

\[\tilde{\psi}_j = \frac{\phi}{1 + \Gamma} + \frac{\Gamma}{1 + \Gamma} \frac{\text{cov}(P_{t+j}, \Delta e_t)}{\text{var}(\Delta e_t)}. \]

Finally, the currency choice rule can be rewritten as

\[\overline{\psi} = (1 - \delta \theta) \sum_{j=0}^{\infty} (\delta \theta)^j \tilde{\psi}_j < 1/2. \]

The interpretation of (16) is exactly the same as that of (12), except that under the assumptions of Proposition 3, MRPT \((\overline{\psi}) \), and therefore currency choice, does not depend on the state, that is, currency choice effectively becomes a once-and-for-all decision.

\(^{18}\) The assumption that \(z_t \) is orthogonal to \(e_t \) and \(P_t \) is without loss of generality, since \(z_t \) can be thought of as the residual from the projection of all shocks on \((e_t, P_t) \). The assumption that the markup is a function of relative price only is somewhat restrictive, but can easily be relaxed: all the analysis carries on with \(\mu(\tilde{p}_t, P_t | z_t) \) specification.

\(^{19}\) If markup variability is demand driven, one can write a demand system that results in constant \(\Gamma \). Since \(\mu \equiv \ln [\sigma/(\sigma - 1)] \), where \(\sigma \) is the price elasticity of demand, we have \(\Gamma \equiv \epsilon / (\sigma - 1) \), where \(\epsilon \) is the price elasticity of \(\sigma \). Therefore, the appropriate demand system solves the following second-order differential equation:

\[\epsilon = \Gamma / (\sigma - 1), \quad \sigma = -\partial \ln q / \partial \ln p, \quad \epsilon = \partial \ln \sigma / \partial \ln p, \]

where \(\Gamma \) is an arbitrary constant measuring the elasticity of markup and \(q(p) \) is the demand schedule.
The impulse response \(j \) periods after the shock \(\tilde{\Psi} \) has two terms. The first term is increasing in the firm’s cost sensitivity to the exchange rate shock, and decreasing in the elasticity of the markup. It follows from (15) that the dynamic profile of the desired pass-through is shaped by the second term, that is, the impulse response of the sectoral price level to the exchange rate shock interacted with the elasticity of the markup. If, for example, strategic complementarities in price setting across firms are strong \((\Gamma > 0) \), most firms price in the local currency, and price changes across firms are not synchronized, then \(\tilde{\Psi} \) will have an increasing profile. As a result, the MRPT, \(\tilde{\Psi} \), will fall short of LRPT and the gap between the two will be increasing in the extent of the nominal price stickiness quantified by \(\theta \). Consequently, we can formulate the following corollary:

Corollary 4: Let the desired pass-through profile be increasing, \(\tilde{\Psi}_j \leq \tilde{\Psi}_{j+1} \). Then, the firm is more likely to choose producer currency pricing if it has (i) longer duration of prices (higher \(\theta \)), and/or (ii) everywhere a higher pass-through profile (higher \(\tilde{\Psi}_j \) for all \(j \)).

Estimation of MRPT.—The sufficient statistic for currency choice—MRPT—is a complex expression that depends on desired prices that are not observable. We show here that, under the assumptions of Proposition 3, there is a way to estimate this statistic without knowledge of the determinants of the desired pass-through profile.

Consider a micro-level regression of a change in the dollar price of the firm conditional on price adjustment in the currency of pricing on the most recent change in the exchange rate, for both LCP and PCP firms. Specifically, we want to evaluate the coefficient in the regression of

\[
\Delta \tilde{p}_t = \begin{cases}
\tilde{p}_{L,t} - \tilde{p}_{L,t-\tau}, & \text{for LCP,} \\
\tilde{p}_{P,t} + e_t - \tilde{p}_{P,t-\tau} - e_{t-\tau}, & \text{for PCP,}
\end{cases}
\]

on \(\Delta e_t \). Here, \(\tau \) denotes the most recent price duration and hence \(t - \tau \) is the previous instance of price adjustment. Denote the coefficient in this regression by \(\beta_{MR} \). We can prove the following result:

Proposition 5: Under the assumptions of Proposition 3, \(\beta_{MR} \) equals MRPT:

\[
\beta_{MR} = \frac{\text{cov}(\Delta \tilde{p}_t, \Delta e_t)}{\text{var}(\Delta e_t)} = (1 - \delta \theta) \sum_{t=0}^{\infty} (\delta \theta)^t \tilde{\Psi}_t = \bar{\Psi}.
\]

Therefore, a relevant statistic for currency choice can be estimated by using observed prices and conditioning on a price change, and regressing it on the exchange rate shock. The standard concern in pass-through regressions about omitted variables is not an issue here since what matters for currency choice is the unconditional correlation between exchange rates and prices.

Finally, note that \(\beta_{MR} \) is the counterpart to the coefficient in the empirical regression conditional on first price adjustment (2). The only difference is that, in the empirical specification, we regress \(\Delta \tilde{p}_t \) on the cumulative change in the exchange rate \((\Delta_e \equiv e_t - e_{t-\tau}) \), rather than on the one-period change \((\Delta e_t \equiv e_t - e_{t-1}) \). Empirically, regressing \(\Delta \tilde{p}_t \) on \(\Delta e_t \) results in very noisy estimates due to the uncertainty about the exact timing of price change within the month. In the numerical calibration of the next section, we show that the two regressions indeed result in very close estimates, and the empirical specification (2) provides a good approximation of \(\beta_{MR} \). Moreover, we show that this specification provides accurate estimates of MRPT, \(\bar{\Psi} \), even when the assumptions of Proposition 3 are not satisfied.
B. Numerical Simulation

In this section, we study numerically a standard model of incomplete pass-through, and we evaluate the currency choice rule. The purpose of this exercise is twofold. First, given a specific model, we relate both pass-through and the currency decision to primitives of the economic environment. Second, within a more specialized quantitative model, we are able to relax the assumptions imposed in the previous section to verify the robustness of the theoretical predictions. The overall conclusion is that the main results of the analytical section hold up well to several extensions, and the empirical estimate of pass-through conditional on first price adjustment robustly approximates MRPT.

Demand and Costs.—As in the theoretical section, we retain the partial equilibrium setup and consider the problem of a single firm facing exogenously given industry price level dynamics. We introduce two standard channels of incomplete exchange rate pass-through—variable markups and imported intermediate inputs. We then solve for the optimal pricing and currency decisions of the firm in an environment with nominal rigidities, and we consider both Calvo and menu cost pricing.

We adopt the Peter J. Klenow and Jonathan L. Willis (2006) specification of the Miles S. Kimball (1995) aggregator that results in a demand schedule with nonconstant elasticity. Specifically, the demand schedule for the firm is

\[q = q(p, P) = \left[1 - \varepsilon(p - P) \right]^{\sigma/\varepsilon}, \]

where \(p \) is the log of the firm’s own price and \(P \) is the log of the industry price level that aggregates the prices of the firm’s competitors. This demand specification is conveniently governed by two parameters, \(\sigma > 1 \) and \(\varepsilon > 0 \), resulting in the following nonconstant price elasticity of the desired markup:

\[\bar{\Gamma} = -\frac{\partial \mu}{\partial p} = \frac{\varepsilon}{\sigma - 1 + \varepsilon(p - P)}. \]

In the steady state, defined as the mean of the long-run stationary distribution, \(p = P \) and hence the steady-state markup elasticity is given by \(\Gamma = \varepsilon/\left(\sigma - 1\right) \).

The log of the firm’s marginal cost is given by

\[mc_t = \phi e_t - a_t, \]

where \(\phi \) is the sensitivity of cost to exchange rate shocks and \(a_t \) denotes the log of the idiosyncratic productivity shock. This marginal cost function can be derived from constant returns to scale production function that combines domestic and foreign inputs, where \(\phi \) measures the

20 In an earlier version of this paper (Gopinath, Itskhoki, and Rigobon 2007), we numerically solved for an industry equilibrium and endogenous sectoral price level dynamics. However, all the important insights can be obtained in this simpler environment, which provides the flexibility to introduce a number of extensions.

21 We view Kimball demand as a useful abstraction for modeling markup variability arising from strategic interactions between monopolistic competitors. See Jiawen Yang (1997) and Andrew Atkeson and Ariel Burstein (2008) for alternative models.

22 The elasticity and superelasticity (elasticity of elasticity) of this demand schedule are given by:

\[\bar{\sigma} = -\partial \ln q / \partial p = \sigma/\left(1 - \varepsilon(p - P)\right) \]

and

\[\bar{\varepsilon} = \partial \ln \bar{\sigma} / \partial p = \varepsilon/(1 - \varepsilon(p - P)) \]

The log desired markup is \(\mu = \ln(\bar{\sigma} / \bar{\sigma} - 1) \) and hence its elasticity is \(\bar{\Gamma} = \bar{\varepsilon} / (\bar{\sigma} - 1) \). A useful feature of this demand specification is that it converges to constant \(\sigma \)-elasticity demand (CES) with constant desired markup when \(\varepsilon \to 0 \).
elasticity of output with respect to domestic inputs. When \(\phi < 1 \), this limits the desired pass-through of the firm, even if the desired markup is constant. We label this the imported intermediate inputs channel of incomplete pass-through.

The firm faces exogenous stochastic processes \(\{a_t\}, \{e_t\}, \) and \(\{P_t\} \), and decides on the optimal currency of pricing and price setting in a given sticky price environment. Specifically, in the Calvo case, it faces an exogenous probability \((1 - \theta) \) in any given period of being able to adjust its price and currency of pricing. The decisions of the firm are governed by the Bellman equations system \((5), (7), (9)\) of the previous section. In the menu cost case, the firm faces a menu cost, \(\kappa \), that it needs to pay to adjust its price and currency choice. The Bellman equations system for this case is provided in the Appendix.

Calibration and Simulation Procedure.—Here we describe the calibration and put details of the simulation procedure in the Appendix. The parameter values are reported in Table 7. The model is calibrated to monthly data. We assume that both \(a_t \) and \(e_t \) follow persistent autoregressive processes. We set the autocorrelation of the nominal exchange rate process to 0.986, which corresponds to a four-year half-life. This allows us to verify the robustness of the theoretical results to the random walk assumption. The standard deviation of the exchange rate innovation is calibrated to the data for developed country bilateral nominal exchange rates of 2.5 percent per month.

The persistence of the idiosyncratic shock process is calibrated to 0.95 to match the evidence on autocorrelation of new prices in the data (see Gopinath and Itskhoki, forthcoming, for details). The standard deviation of the idiosyncratic shocks is set to 8 percent to match the average absolute size of price adjustment in the data of 7 percent. The Calvo probability of adjustment is set to match the median duration of prices in the sample of nine months, and the menu cost parameter, \(\kappa \), is chosen to match this duration in the menu cost environment. Specifically, in the baseline calibration, the menu cost is set to equal 5 percent of steady-state revenues conditional on price adjustment, which constitutes about one-half of a percent of revenues on annualized basis, well within the standard range of menu cost estimates in the literature.

The sectoral price level is assumed to follow

\[
(P_t - \bar{P}) = \alpha(P_{t-1} - \bar{P}) + (1 - \alpha) \bar{\phi} e_t, \quad \bar{P} \equiv \ln[\sigma/(\sigma - 1)].
\]

<table>
<thead>
<tr>
<th>Table 7—Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Discount factor</td>
</tr>
<tr>
<td>St.dev. of (e_t)</td>
</tr>
<tr>
<td>Persistence of (e_t)</td>
</tr>
<tr>
<td>St.dev. of (a_t)</td>
</tr>
<tr>
<td>Persistence of (a_t)</td>
</tr>
<tr>
<td>Inertia in (P_t)</td>
</tr>
<tr>
<td>Long-run response of (P_t)</td>
</tr>
<tr>
<td>Cost sensitivity</td>
</tr>
<tr>
<td>Calvo parameter</td>
</tr>
<tr>
<td>Menu cost</td>
</tr>
<tr>
<td>Demand elasticity</td>
</tr>
<tr>
<td>Demand super-elasticity</td>
</tr>
</tbody>
</table>
This sectoral price level process can be obtained from a linearized Calvo price setting industry
equilibrium model. The only source of shocks to the sectoral price level is the exchange rate. The
inertia in the price level is measured by \(\alpha \in (0, 1) \), while \(\phi \in (0, 1) \) is the long-run response of the
price level to the exchange rate shock. For our simulation, we set \(\alpha = 0.95 \), which corresponds to
a 13.5-month half-life for the sectoral price level. We also set \(\phi = 0.5 \), which implies a 50 percent
LRPT into the sectoral price level so that the exchange rate shock is neither purely aggregate for
the industry, nor purely idiosyncratic to the firm. Note that \(\phi \) can be interpreted as cost sensitiv-
ity to the exchange rate for the average competitor of the firm. Finally, since \(\sigma/\left(\sigma - 1\right) \) is the
steady-state markup, \(p = P \) in the steady state.

The cost and demand parameters are calibrated as follows. The steady-state elasticity of
demand is set to \(\sigma = 5 \), which corresponds to a steady-state markup of 25 percent, consistent
with empirical evidence and other calibrations in this literature (Klenow and Willis 2006). In the
simulations, we vary the steady-state superelasticity of demand, \(\epsilon \), and the firm’s cost sensitiv-
ity to the exchange rate, \(\phi \). Specifically, we vary \(\epsilon \) on \([0, 8]\) with a benchmark value of 3 and \(\phi \)
on \([0.5, 1]\) with a benchmark value of 0.75.\(^{23}\) This variation in \(\epsilon \) translates into the variation in
steady-state elasticity of markup, \(\Gamma \equiv \epsilon/\left(\sigma - 1\right) \), on \([0, 2]\). The pass-through of idiosyncratic cost
shocks into the desired price equals \(1/(1 + \Gamma) \), so that when, for example, \(\Gamma = 1 \), the pass-through
of idiosyncratic cost shocks is 0.5.\(^{24}\)

To solve the model, we iterate numerically the Bellman operator that yields value functions
and policy functions. From the value functions we directly compute the difference in the value
of LCP and PCP, as in (10), which determines currency choice exactly. From the policy function,
we compute MRPT, \(\Psi \), according to (12), which determines currency choice approximately, as
(12) relies on the second-order approximation to the value functions. We also compute MRPT
using formula (13) derived under the restrictive assumption of a constant markup elasticity. We
evaluate the error resulting from it and show that it is small. We compute the LRPT as the desired
pass-through given the long-run response of the price level equal to \(\phi \). Finally, using the policy
function, we simulate a time series of exchange rates and firm prices to estimate the micro-level
pass-through regression similar to (2), and we evaluate the properties of this MRPT estimator.
Further details are provided in the Appendix.

Simulation Results.—The results described correspond to Calvo pricing unless otherwise
stated. First, we examine how currency choice, MRPT, and LRPT respond to variation in the
markup elasticity \(\Gamma \) (driven by variation in \(\epsilon \)) and the cost sensitivity to the exchange rate \(\phi \). In
Figure 3 we set \(\phi = 0.75 \) and vary \(\Gamma \) on \([0, 2]\). We observe that both MRPT and LRPT are declin-
ing in \(\Gamma \) with the wedge between the two increasing in \(\Gamma \) as firms put more and more weight on
the sectoral price level in their own pricing decisions. The dashed vertical line separates the
regions of local and producer currency pricing computed based on the value function. Note that

\(^{23}\) Note that we always have \(\phi \geq \phi \), so that the cost of the foreign firm is indeed more sensitive to the exchange rate
than the cost of an average firm in the industry.

\(^{24}\) Note that in our calibration we need to assume neither very large menu costs, nor very volatile idiosyncratic
shocks, as opposed to Klenow and Willis (2006). There are a few differences between our calibration and theirs. First,
our baseline value for superelasticity of demand is \(\epsilon = 3 \) and we almost never need \(\epsilon \) greater than 5, as opposed to their
baseline value of 10. In addition, they assume a much less persistent idiosyncratic shock process and match the stan-
dard deviation of relative prices rather than the average absolute size of adjustment. The exercise in Klenow and Willis
(2006) has also a different purpose from ours. They calibrate the degree of markup variability to match the aggregate
amount of monetary nonneutrality, while we calibrate it to match the evidence on micro-level pass-through elasticity.
We find that variable markups constitute an important channel of pass-through incompleteness, However, this may
well be consistent with the finding in Klenow and Willis (2006) that variable markups alone cannot account for the full
extent of monetary nonneutrality observed in the data.
the threshold of $\frac{1}{2}$ for MRPT provides an accurate approximation for the currency choice rule. At the same time, LRPT stays above $\frac{1}{2}$ for all values of Γ.

Figure 4 carries out a similar exercise, but now holds $\Gamma = 0.75$ (i.e., $\varepsilon = 3$) constant and varies ϕ on $[0.5, 1]$. As ϕ increases, both MRPT and LRPT increase, with the gap between them staying roughly constant. The dashed vertical line again separates the regions of local and producer currency pricing. At $\phi = 0.77$, the firm is indifferent between the currency of pricing, and its MRPT is very close to $\frac{1}{2}$, while its LRPT is quite a bit higher, equal to 0.67.

The overall conclusions from Figures 3 and 4 are the following. First, pass-through is increasing in cost sensitivity to the exchange rate (ϕ) and decreasing in markup variability (Γ), making local currency pricing more appealing when ϕ is low and Γ is high. Second, comparing MRPT with the threshold of $\frac{1}{2}$ indeed provides an accurate criterion for currency choice, while LRPT may not be a very useful measure for this purpose.

This is further evident in Figures 5 and 6. In Figure 5 we solve for the combination of Γ’s and ϕ’s for which the firm is indifferent between local and producer currency pricing using the value function. We do this for both Calvo and the menu cost model, and plot the resulting relationship between ϕ and Γ. In both cases a firm chooses PCP if it has high ϕ or low Γ.

In Figure 6 we take the combinations of Γ and ϕ, for which the firm is indifferent between local and producer currency pricing based on the value function (depicted in Figure 5) and plot for these parameters the corresponding MRPT and LRPT as a function of Γ (solid lines). Note that MRPT remains very close to 0.5.

The theoretical MRPT was estimated using equation (12) without restricting $\tilde{\Gamma}$ to be constant. We now examine how the value of MRPT would differ if we computed it under the assumption of Proposition 3 that $\tilde{\Gamma}$ is constant at its steady-state value of Γ. This is also reported in Figure 6 as the dashed lines (MRPT’ and LRPT’) computed using (15). As is evident, the two lines are very close to the correct theoretical MRPT and LRPT, respectively (solid lines). This justifies...
our assumption in the theoretical section that a constant Γ is a useful approximation point for empirical work.

The results this far relate to theoretical estimates of MRPT constructed from desired prices. In Proposition 5 we pointed out that MRPT can be measured using actual price changes by estimating the price response conditional on first adjustment to the exchange rate shock. We now use the simulated data to estimate this regression in order to evaluate the quality of this estimator of MRPT. The results are reported in Figure 7, where we plot different measures of MRPT for a firm indifferent between LCP and PCP (according to the value function comparison as in Figure 5). The dashed line is the theoretical MRPT, while the other lines are coefficients from different specifications of the pass-through regression conditional on price adjustment. We compute the estimate from the regression both on a one-period exchange rate change ($\Delta e_t = e_t - e_{t-1}$), as suggested by Proposition 5, and on the cumulative exchange rate change ($\Delta e_t = e_t - e_{t-\tau}$, where τ is the price duration), as was done in the empirical work. Finally, we plot coefficients both corrected and uncorrected for mean reversion bias in the exchange rate.25 The overall conclusion that emerges from this figure is that all empirical specifications provide accurate approximations to the true theoretical MRPT, and the potential biases are not important quantitatively.26 In fact, 25 Mean reversion in the exchange rate leads firms to adjust by less in their currency of pricing. This leads PCP firms to have higher exchange rate pass-through relative to identical LCP firms, and the size of this bias is given by $\delta \theta (1 - \rho)/(1 - \delta \theta \rho)$, where ρ is the autocorrelation of the nominal exchange rate process. For empirically reasonable value of $\rho \in (0.98, 1)$, the wedge in the pass-through between PCP and LCP firms does not exceed 10 percentage points and is small relative to the documented empirical differences.26 This exercise was done for the data generated from the Calvo model. In the menu cost model there is, in addition, the selection bias discussed in footnote 8. Consistent with that discussion, we find that this reduces the estimated gap in MRPT between local and producer currency pricers in the model generated data. It turns out that this bias is small to
in our simulation the coefficient from regression (2), on cumulative exchange rate change and uncorrected for mean reversion bias, provides the most accurate approximation to the theoretical MRPT.

To summarize, the numerical simulation verifies the robustness of the theoretical results to relaxing a number of assumptions. First, we verify that the second-order approximation to the value function of Proposition 2 is accurate and MRPT indeed accurately predicts currency choice. Second, empirical estimates of pass-through conditional on price adjustment indeed approximate MRPT well, even in the environment with variable markup elasticity, where the assumption of Proposition 3 does not hold. Third, the results are robust to mean reversion in the exchange rate. Finally, the main results extend to the menu cost model of price stickiness.

III. Discussion: Linking Theory and Empirical Evidence

A main conclusion of the previous section is that, in an environment with endogenous currency choice, MRPT that can be approximated empirically by regression (2) should be lower for goods priced in the local currency as compared to goods priced in the producer currency. In the empirical section we documented this to be robustly the case across various subsamples of the data. Tables 2, 3, and 4 all strongly support the endogenous currency choice model’s prediction.

A second insight of the theoretical section is that currency choice is closely tied to MRPT and not to LRPT. LRPT could be above 0.5, but if MRPT is below 0.5 the firm chooses local currency pricing. In the lifelong regressions estimated in Section ID, the pass-through estimates are moderate when we use the specification with the cumulative exchange rate change. Specifically, with the selection bias, the pass-through estimate for the LCP firm is 10–15 percentage points higher than for the otherwise identical PCP firm.
almost twice as high as pass-through conditional on first adjustment, with some point estimates exceeding 0.5. This is consistent with an important role played by real rigidities in pricing that have effects significantly past the period of nominal rigidity.

A third insight, stated in Corollary 4, is that even when firms have the same desired pass-through profiles, they will choose different currencies to price in if the frequencies with which they adjust differ. Firms that adjust less frequently are more likely to price in the producer currency. This is consistent with what we observe in the data for goods within very narrow classifications. As reported in Section IE, even within ten-digit classifications that have a mix of dollar and nondollar pricers, nondollar pricers adjust prices less frequently than dollar pricers.

The standard international macro model assumes CES demand with constant markups and complete desired pass-through. In this environment, firms are exogenously specified to be local currency pricers or producer currency pricers. Therefore, pass-through differs in the short-run, but once firms adjust prices the pass-through is the same. In Proposition 1 we showed more generally that firms facing similar demand and cost conditions set the same price once they adjust.

27 Since nondollar pricers are relatively low-frequency adjusters and have higher MRPT, the implied relation between frequency and MRPT in a sample of both dollar and nondollar pricers is negative. This is what generates the negative relation between frequency and MRPT reported in Table 11 of Gopinath and Rigobon (2008). In Gopinath and Itskhoki, forthcoming, we report evidence of a positive relation between frequency and LRPT within the subsample of dollar-pricers only. To be clear, there is no conflict in the model’s ability to match both these sets of results. The currency choice decision depends on MRPT which, as discussed earlier, depends on the entire path of the desired pass-through responses weighted by the probability of price adjustment. LRPT, on the other hand, depends only on parameters that effect the curvature of the profit function and not, for instance, on the size of the menu cost. Consequently, as long as there is variation across firms in parameters that effect the curvature of the profit function, and in other determinants of frequency such as menu costs, it would be possible to match both sets of facts. For more discussion on this, see Gopinath and Itskhoki, forthcoming.
This implies that pass-through conditional on first adjustment should be the same. Clearly, the data strongly contradict this theoretical description of the relation between currency of pricing and pass-through.28

Let us consider departures from the theoretical specification that allow for exogenous currency choice, yet obtain different pass-through conditional on price adjustment. One possibility is that price setting is backward-looking in the sense that even when the firm adjusts its price, it keeps it close to the previous price in the currency of pricing. This generates differential pass-through conditional on adjusting prices. This particular explanation with exogenous currency choice requires that long-run pass-through is the same regardless of the currency of pricing. The evidence in Table 5 suggests that LRPT is significantly different for LCP and PCP firms. One could argue, however, that since goods are around for a limited period and get substituted often, we are not quite capturing the appropriate long run. The median good in this sample has a life of 3 to 4 years. This explanation therefore would imply that the effects of nominal and real rigidities remain well past this horizon.

A second piece of evidence against exogenous currency of pricing is that we observe sorting in the data. That is, there are sectors that are dominated by dollar pricers and by nondollar pricers. So there is the interesting question of why certain sectors such as “Animal or Vegetable Fats and Oils” are dominated by dollar pricers, while “Machinery and Mechanical Appliances” have a large share of nondollar pricers. Further, there are interesting differences even within narrow sectors that have a mix of dollar and nondollar pricers. Nondollar pricers tend to adjust prices

28 The result of the proposition is exact when the nominal exchange rate follows a random walk. If the exchange rate mean reverts, we pointed out that for empirically reasonable values of mean reversion the wedge in pass-through conditional on adjusting prices falls far short of the empirical wedge of 70 points.
less frequently than dollar pricers. These features are consistent with a model of endogenous currency choice, but are less obvious in an environment with exogenous currency choice.

A second possible hypothesis is that, for exogenous institutional reasons, sectors with identical long-run pass-through get sorted into local and producer currency pricing bins. If there are significant real rigidities in pricing that generate delayed price adjustments, a single firm in each sector will adjust its price by small amounts in the currency of pricing. In this case, firms in the sector dominated by producer currency pricers will have higher MRPT than firms in the sector dominated by local currency pricers, even if eventually LRPT is the same for all firms in both sectors. However, the fact that even within narrow ten-digit sectors there is a mix of dollar and nondollar pricers limits the generality of this explanation. It is hard to think of institutional reasons why, at this level of disaggregation, there is exogenous sorting of firms.

While several of our findings are consistent with an environment of endogenous currency choice, and these findings rule out certain models of currency and pass-through, there is more work to be done. The ideal test for whether endogenous currency choice is the overriding mechanism would be to relate firm-level characteristics shaping markup variability and cost sensitivity to the currency choice decision. This requires extensive firm-level information that can be hard to come by, as is well known in the pass-through literature. Using aggregated data, Bacchetta and van Wincoop (2005) and Goldberg and Tille (2008) present some evidence consistent with endogenous currency choice.

A strength of our analysis is that we provide a simple sufficient statistic for currency choice which summarizes complicated pieces of information. In this sense, it is less sensitive to details about difficult-to-measure elements of the pass-through environment. Further research on the underlying determinants will be clearly valuable, but beyond the scope of the current paper.

Mathematical Appendix

A. Proofs of Results for Section IIA

PROOF OF PROPOSITION 1:

From the Bellman equations (5) and (7) and using the envelope theorem, we have the first-order conditions for price setting by an LCP and PCP firm, respectively:

\[
\sum_{\ell=0}^{\infty} (\delta \theta)^\ell \mathbb{E}_t \Pi_p(\bar{p}_{L,t} | s_{t+\ell}) = 0,
\]

\[
\sum_{\ell=0}^{\infty} (\delta \theta)^\ell \mathbb{E}_t \Pi_p(\bar{p}_{P,t}^* + e_{t+\ell} | s_{t+\ell}) = 0,
\]

where the subscript denotes the respective partial derivative. Note that, with Calvo pricing, preset prices affect the value function only through profits in the states in which they are effective, which is determined exogenously; hence, these optimality conditions do not depend on whether currency choice is exogenous or endogenous.

First consider the LCP case. We take a first-order Taylor approximation to the marginal profit state by state around that state’s optimal price:

\[
\Pi_p(\bar{p}_{L,t} | s_{t+\ell}) = \Pi_{pp}(s_{t+\ell})[\bar{p}_{L,t} - \bar{p}_{t+\ell}] + \mathcal{O}(\bar{p}_{L,t} - \bar{p}_{t+\ell})^2
\]

\[
= \Pi_{pp}(s_t)[\bar{p}_{L,t} - \bar{p}_{t+\ell}] + \mathcal{O}(\bar{p}_{L,t} - \bar{p}_{t+\ell})^2 + \mathcal{O}(s_{t+\ell} - s_t)(\bar{p}_{L,t} - \bar{p}_{t+\ell}),
\]
where $\bar{p}_{t+\ell} \equiv \bar{p}(s_{t+\ell}), \bar{\Pi}_{pp}(s_{t+\ell}) \equiv \Pi_{pp}(\bar{p}_{t+\ell} | s_{t+\ell})$; $O(\cdot)$ denotes the same order of magnitude; and \(\| \cdot \|\) is some norm in a vector space. The derivation of this approximation uses the first-order optimality of the desired price $\bar{p}_{t+\ell}$, which implies $\Pi_p(\bar{p}_{t+\ell} | s_{t+\ell}) = 0$, and the fact that $\bar{\Pi}_{pp}(s_{t+\ell}) = \bar{\Pi}_{pp}(s_t) + O(\| s_{t+\ell} - s_t \|)$, which follows from the smoothness of the profit function and the desired price in the state of the economy (i.e., this requires concavity and continuous second derivatives of $\Pi(\cdot)$, which we assume hold).

We then combine this approximation with the first-order condition above, and obtain the following first-order approximation for the preset price:

$$\sum_{\ell=0}^{\infty} (\delta \theta)^\ell \mathbb{E}_t \{ \bar{p}_{L,t} - \bar{p}_{t+\ell} \} = 0 + \alpha^2,$$

where one can verify that

$$\alpha \equiv O_p \left(\sum_{\ell=0}^{\infty} (\delta \theta)^\ell \| s_{t+\ell} - s_t \| \right),$$

with $O_p(\cdot)$ denoting the same order of magnitude in the probabilistic sense. After rearranging, this delivers the first claim of the proposition for LCP firms. Analogous steps yield a similar result for PCP firms:

$$\sum_{\ell=0}^{\infty} (\delta \theta)^\ell \mathbb{E}_t \{ \bar{p}_{P,t}^* + e_{t+\ell} - \bar{p}_{t+\ell} \} = 0 + \alpha^2.$$

Subtracting the expression for PCP from that for LCP firms, multiplying through by $(1 - \delta \theta)$, and rearranging, we have

$$\bar{p}_{L,t} = \bar{p}_{P,t}^* + (1 - \delta \theta) \sum_{\ell=0}^{\infty} (\delta \theta)^\ell \mathbb{E}_t e_{t+\ell} + \alpha^2.$$

When exchange rate follows a random walk, $\mathbb{E}_t e_{t+\ell} = e$, and we have $\bar{p}_{P,t}^* + e_t - \bar{p}_{L,t} = \alpha^2$, which completes the proof of the proposition.\(^{29}\)

Finally, we assess the magnitude of the error of approximation α. Denote by $\sigma_s \equiv O_P(\| \Delta s_t \|)$ the magnitude of the standard deviation of the innovation to the state of the economy. Allowing for a unit root in $\{s_t\}$, we have $O_P(\| s_{t+\ell} - s_t \|) = \ell \sigma_s$. Therefore,

$$\alpha = \sigma_s \sum_{\ell=0}^{\infty} (\delta \theta)^\ell \ell = \sigma_s \delta \theta / (1 - \delta \theta)^2.$$

That is, even in an environment with an integrated state of the economy, the error of approximation still has the order of the standard deviation of the one-period innovation to the state vector, as long as the duration of prices is finite (more accurately, as long as $\delta \theta < 1$).

\(^{29}\) If exchange rate follows a first-order autoregressive process with autocorrelation ρ, we have $\mathbb{E}_t e_{t+\ell} = \rho^\ell e$, and, therefore,

$$\bar{p}_{P,t}^* + e_t - \bar{p}_{L,t} = \delta \theta (1 - \rho) / (1 - \delta \theta \rho) e + \alpha^2.$$

Mean reversion in the exchange rate introduces a wedge between PCP and LCP pricing proportional to $(1 - \rho)$. We discuss the magnitude of this wedge and its implications for the measurement of pass-through in Section IIB.
PROOF OF PROPOSITION 2:
Recall that the difference in the value to the firm of LCP and PCP is
\[L_t = \sum_{\ell=0}^{\infty} (\delta \theta)^\ell E_t \{ \Pi(L_t, s_{t+\ell}) - \Pi(P_{t+\ell}^*, e_{t+\ell} | s_{t+\ell}) \}. \]

We take a second-order Taylor expansion of the profit differential state by state around the respective desired price,
\[\Pi(L_t, s_{t+\ell}) - \Pi(P_{t+\ell}^*, e_{t+\ell} | s_{t+\ell}) = \frac{1}{2} \tilde{\Pi}_{pp}(s_t) \sum_{\ell=0}^{\infty} (\delta \theta)^\ell \{ (p_{L,t} - \tilde{p}_{t+\ell})^2 - (p_{P,t}^* + e_{t+\ell} - \tilde{p}_{t+\ell})^2 \} + \alpha^3, \]
where we use the same notation as in the proof of Proposition 1. Using, again, the fact that \(\tilde{\Pi}_{pp}(s_{t+\ell}) = \tilde{\Pi}_{pp}(s_t) + \alpha \), we can rewrite
\[L_t = \frac{1}{2} \tilde{\Pi}_{pp}(s_t) \sum_{\ell=0}^{\infty} (\delta \theta)^\ell \{ (p_{L,t} - \tilde{p}_{t+\ell})^2 - (p_{P,t}^* + e_{t+\ell} - \tilde{p}_{t+\ell})^2 \} + \alpha^3. \]

Expanding the expression inside the brackets, we obtain
\[(p_{L,t} - \tilde{p}_{t+\ell})^2 - (p_{P,t}^* + e_{t+\ell} - \tilde{p}_{t+\ell})^2 = (p_{L,t} - p_{P,t}^* - e_{t+\ell})(p_{L,t} + p_{P,t}^* + e_{t+\ell} - 2\tilde{p}_{t+\ell}) \]
\[= -(e_{t+\ell} - e_t + \alpha^2)(p_{L,t} + p_{P,t}^* + e_{t+\ell} - 2\tilde{p}_{t+\ell}), \]
where the second equality used the equivalence result of Proposition 1. Substituting this into the expression for \(L_t \), we have
\[L_t = -\frac{1}{2} \tilde{\Pi}_{pp}(s_t) \sum_{\ell=0}^{\infty} (\delta \theta)^\ell \text{cov}(e_{t+\ell}, e_{t+\ell} - 2\tilde{p}_{t+\ell}) + \alpha^3, \]
where we use the fact from Proposition 1 that
\[\sum_{\ell=0}^{\infty} (\delta \theta)^\ell \{ p_{L,t} + p_{P,t}^* + e_{t+\ell} - 2\tilde{p}_{t+\ell} \} = \alpha^2. \]

Expanding the covariance term immediately results in expression (11) of Proposition 2. Finally, by the random walk property of the exchange rate, we have \(\text{var}(e_{t+\ell}) = \ell \text{var}(\Delta e_{t+j}) \) for any \(\ell, j > 0 \). Therefore, \(L_t > 0 \) is approximately equivalent to (12).

PROOF OF PROPOSITION 3:
With constant elasticity of markup and constant marginal cost sensitivity to the exchange rate, the expression for the desired price is
\[\tilde{p}_t = -\Gamma(\tilde{p}_t - P_t) + \phi e_t + \xi_t, \]
where \(\xi_t \) combines a constant and all shocks to markups and marginal cost orthogonal to the exchange rate. This expression can be rewritten as

\[
\tilde{p}_t = \frac{\phi}{1 + \Gamma} e_t + \frac{\Gamma}{1 + \Gamma} P_t + \frac{\xi_t}{1 + \Gamma}
\]

and the impulse response of \(\tilde{p}_{t+\ell} \) to \(e_{t+j} \) for \(\ell > j \) and conditional on information as of period \(t \) is

\[
\Psi_{j,\ell}(s^t) = \frac{\phi}{1 + \Gamma} + \frac{\Gamma}{1 + \Gamma} \frac{\text{cov}(P_{t+j}, \Delta e_{t+j})}{\text{var}(\Delta e_{t+j})},
\]

as stated in the proposition. Assuming that the sectoral price level follows a linear process\(^{30}\)

\[
(P_t - \bar{P}) = \alpha(P_{t-1} - \bar{P}) + (1 - \alpha)\bar{\phi} e_t + \xi_{P,t},
\]

we have

\[
\frac{\text{cov}(P_{t+j}, \Delta e_{t+j})}{\text{var}(\Delta e_{t+j})} = (1 - \alpha^{\ell-j+1})\bar{\phi}.
\]

Therefore, indeed, \(\Psi_{j,\ell}(s^t) \) depends only on \(\ell - j \) and does not depend on \(s^t \). Moreover, the MRPT equals

\[
\Psi = \frac{\phi}{1 + \Gamma} + \frac{\Gamma}{1 + \Gamma} (1 - \theta)^j (1 - \alpha^{\ell+1}) = \frac{\phi}{1 + \Gamma} + \frac{\Gamma}{1 + \Gamma} \frac{1 - \alpha^{\ell+1}}{1 - \delta \theta \alpha},
\]

which is increasing in \(\theta \).

PROOF OF PROPOSITION 5:

First, we show that

\[
\frac{\text{cov}(\Delta \bar{p}_t, \Delta e_t)}{\text{var}(\Delta e_t)} = \frac{\text{cov}(\bar{p}_t, \Delta e_t)}{\text{var}(\Delta e_t)}.
\]

This follows from

\[
\text{cov}(\bar{p}_{t-k}, \Delta e_t) = \mathbb{E}\{\bar{p}_{t-k} \Delta e_t\} = \mathbb{E}\{\mathbb{E}_{t-k}\{\bar{p}_{t-k} \Delta e_t\}\} = 0, \quad k > 0,
\]

\(^{30}\)This process can be shown to be the sectoral equilibrium outcome in a linearized Calvo model with \(\alpha \) determined by the primitives of the model.
where we use the law of iterated expectations and the fact that $\mathbb{E}_{t-1} \Delta e_t = 0$. Next, it follows from Proposition 1, that

$$\text{cov}(\bar{p}_t, \Delta e_t) = (1 - \delta \theta) \sum_{\ell=0}^{\infty} (\delta \theta)\ell \frac{\text{cov}(\mathbb{E}_t \bar{p}_{t+\ell}, \Delta e_t)}{\text{var}(\Delta e_t)}.$$

Note that

$$\text{cov}(\mathbb{E}_t \bar{p}_{t+\ell}, \Delta e_t) = \mathbb{E}\{\Delta e_t \mathbb{E}_t \bar{p}_{t+\ell}\} = \mathbb{E}\{\mathbb{E}_t \{\bar{p}_{t+\ell} \Delta e_t\}\} = \text{cov}(\bar{p}_{t+\ell}, \Delta e_t),$$

again using the law of iterated expectations and the random walk property of the exchange rate. Proposition 5 follows immediately.

B. Details for the Numerical Simulation of Section II B

The profit of the firm in local currency is given by

$$\Pi(p_t | p_t, e_t, a_t) = \left[\exp(p_t) - \exp(\phi e_t - a_t)\right] q(p_t, p_t).$$

For the Calvo case, we iterate the Bellman operator defined by (5), (7), and (9) to solve for the value functions. For the menu cost case, the Bellman equations system is give by

$$V_L(p | s^t) = \Pi(p | s_t) + \delta \mathbb{E}_t \max\{V_L(p | s^{t+1}), V(s^{t+1}) - \kappa\},$$

$$V_P(p^* | s^t) = \Pi(p^* + e_t | s_t) + \delta \mathbb{E}_t \max\{V_P(p^* | s^{t+1}), V(s^{t+1}) - \kappa\},$$

$$V(s^t) = \max\{V_L(\bar{p}_L(s^t) | s^t), V_P(\bar{p}_P(s^t) | s^t)\},$$

where the policy functions are given by

$$\bar{p}_L(s^t) = \arg \max_p V_L(p | s^t),$$

$$\bar{p}_P(s^t) = \arg \max_{p^*} V_P(p^* | s^t).$$

Additionally, the policy function specifies in which states the firm adjusts its price and what currency it chooses.

In both cases, the state vector contains the previous price of the firm, the idiosyncratic productivity shock, the sectoral price level, and the nominal exchange rate: $s_t = (p_{t-1}, a_t, P_t, e_t)$. The expectations in the Bellman operators are with respect to (a_t, P_t, e_t). All three follow exogenous first-order processes with $\{a_t\}$ independent from $\{e_t, P_t\}$. We iterate the Bellman equations on a discrete grid.31

After obtaining the policy functions, we simulate in the given partial equilibrium environment the firm’s price for $T = 12,000$ periods, where the period is calibrated to be a month. Using the policy function and the simulated data, we study the currency choice and pass-through patterns.

31 The step of the grid for individual price p_t is no greater than 0.5 percent and for the sectoral price level, no greater than 0.2 percent. There are 15 points on the grid for the idiosyncratic shock and 31 for the nominal exchange rate.
for different values of primitive parameters. We determine currency choice by evaluating $L = V_L(\pi_L) - V_P(\pi_P)$.\footnote{There are currency switches over time but they are rare for most values of the parameters and would be absent altogether if there was a small fixed cost of currency switching.} For Figures 5 and 6, we find the set of parameter values $\{(\phi, \Gamma)\}$ for which $L = 0$ at an initial state, s_0, at which $p = P = \bar{P}$.

We calculate MRPT according to its definition (12) by simulating a path of desired prices, \tilde{p}_t, for 10,000 realizations of the exchange rate, sectoral price level, and idiosyncratic shocks, and estimate $\text{cov}_0(\tilde{p}_t, e_t) / \text{var}_0(e_t)$. We compute LRPT using the definition of desired price equation (4). Specifically, for multiple realizations of the shocks (e_t, a_t) and conditioning on the long-run response of the sectoral price level (equal to $\bar{\phi} e_t$), we compute \tilde{p}_t and evaluate the regression coefficient of desired prices on the exchange rate, which defines our LRPT measure.

In addition, we compute MRPT and LRPT under the restrictive assumption that markup elasticity is constant at its steady-state level Γ. As suggested by Proposition 3, these measures are

$$\text{MRPT}' = \frac{\phi}{1 + \Gamma} + \frac{\Gamma \bar{\phi}}{1 + \Gamma} \frac{1 - \alpha}{1 - \alpha \delta \theta} \quad \text{and} \quad \text{LRPT}' = \frac{\phi}{1 + \Gamma} + \frac{\Gamma \bar{\phi}}{1 + \Gamma},$$

Finally, we compute the regression-based estimates of MRPT. We have a simulated series of firm prices and exchange rates. Using these series, we estimate the micro-level pass-through regression conditional on price adjustment, equivalent to our empirical specification (2). We estimate both specifications, with the one-period exchange rate change ($\Delta e_t = e_t - e_{t-1}$) and the cumulative exchange rate change ($\Delta c e_t = e_t - e_{t-\tau}$, where τ is the previous price duration) as right-hand-side variables. In addition, we estimate the mean reversion bias corrected estimates given by

$$\hat{\Psi}_{L}^{b.c.} = \hat{\Psi}_{L} \frac{1 - \delta \theta \rho_e}{1 - \delta \theta} \quad \text{and} \quad \hat{\Psi}_{P}^{b.c.} = 1 - (1 - \hat{\Psi}_{P}) \frac{1 - \delta \theta \rho_e}{1 - \delta \theta},$$

where ρ_e is the autocorrelation of the exchange rate process. Note that, given the same underlying MRPT, the cumulative bias of PCP and LCP MRPT is

$$\hat{\Psi}_P - \hat{\Psi}_L = \frac{\delta \theta (1 - \rho_e)}{1 - \delta \theta \rho_e},$$

independent of the value of MRPT (see the proof of Proposition 1).

REFERENCES

This article has been cited by:

3. ERASMUS K. KERSTING. 2013. FISCAL STABILIZATION WITH PARTIAL EXCHANGE RATE PASS-THROUGH. *Economic Inquiry* **51**:1, 348-367. [CrossRef]

8. Jenny E. Ligthart, Sebastian E.V. Werner. 2012. Has the euro affected the choice of invoicing currency?. *Journal of International Money and Finance* **31**:6, 1551-1573. [CrossRef]

25. Peter J. Klenow, Benjamin A. Malin. Microeconomic Evidence on Price-Setting **3**, 231-284. [CrossRef]