Measurements of the Top-Quark Mass and the \(\text{tt} \) Cross Section in the Hadronic +jets Decay Channel at \(s=1.96\text{TeV} \)

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Aaltonen, T. et al. “Measurements of the Top-Quark Mass and the (\text{tt}) (\overline{\text{t}}) Cross Section in the Hadronic +jets Decay Channel at (\sqrt{s}=1.96\text{TeV}).” Physical Review Letters 109.19 (2012). © 2012 American Physical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.109.192001</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Mar 12 01:48:33 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/75745</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Measurements of the Top-Quark Mass and the $t\bar{t}$ Cross Section in the Hadronic $\tau + jets$ Decay Channel at $\sqrt{s} = 1.96$ TeV

PRL 109, 192001 (2012)

192001-2
We present the first direct measurement of the top-quark mass using $t\bar{t}$ events decaying in the hadronic $\tau + \text{jets}$ decay channel. Using data corresponding to an integrated luminosity of 2.2 fb$^{-1}$ collected by the CDF II detector in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV at the Fermilab Tevatron, we measure the $t\bar{t}$ cross section, $\sigma_{t\bar{t}}$, and the top-quark mass, M_{top}. We extract M_{top} from a likelihood based on per-event probabilities calculated with leading-order signal and background matrix elements. We measure $\sigma_{t\bar{t}} = 8.8 \pm 3.3(\text{stat}) \pm 2.2(\text{syst})$ pb and $M_{\text{top}} = 172.7 \pm 9.3(\text{stat}) \pm 3.7(\text{syst})$ GeV/c^2.

DOI: 10.1103/PhysRevLett.109.192001 PACS numbers: 14.65.Ha, 13.35.Dx

The mass of the top quark, M_{top}, and the top-quark pair production cross section, $\sigma_{t\bar{t}}$, have been extensively studied at both the Fermilab Tevatron and the Large Hadron Collider at CERN [1–3]. However, final states of the top-quark decay that include a tau lepton (τ) are relatively unexplored due to the difficulty of identifying the tau and rejecting quantum chromodynamic (QCD) processes that can mimic its hadronic decay mode. The top quark and the tau belong to the heaviest third generation in the SM and a unitary quark-mixing matrix, the top quark decays almost exclusively to a W boson and a b quark. We select pair-produced top-quark events in which one of the W bosons decays into a pair of light quarks and the other decays to a tau and a neutrino. This decay channel represents 15.2% of the $t\bar{t}$ branching ratio and results in a final state with a tau, a neutrino, two b quarks, and two light-flavor quarks (u, d, or s). Although the tau can decay leptonically to an electron (e) or muon (μ) and a pair of neutrinos, these events are difficult to differentiate from electrons or muons from W boson decays. As a result, we select events with the tau decaying to a neutrino and a narrow jet of hadrons, which are usually charged and neutral pions, that correspond to...
9.8% of all \(\bar{t}t \) decays. We use an artificial neural network (NN) to reduce the QCD multijet background contribution. The additional neutrino produced in the tau decay complicates the tau reconstruction. To solve this, we adapt a missing mass calculator method [7] to the \(\tau + \text{jets} \) topology to infer a unique solution for the neutrino four-momentum with sufficient precision to reasonably reconstruct the tau. We use a binned likelihood fit based on the predicted and observed number of events to measure \(\sigma_{\bar{t}t} \). Then, to extract \(M_{\text{top}} \), we use a likelihood function built from signal and background probabilities calculated with the predicted differential cross sections for \(\bar{t}t \) and \(W + \text{four-parton production} \), respectively.

The data used in this measurement are selected using a multijet online selection (trigger) that requires at least four calorimeter energy clusters with transverse energy [8] \((E_T) \) greater than 15 GeV each and a total sum \(E_T \) of all clusters greater than 175 GeV [9]. Jets are reconstructed by a cone algorithm that clusters energies in calorimeter towers within a fixed cone size of \(\Delta R = 0.4 \) [10], where \(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} \) [8]. In the offline analysis, events are required to have exactly four jets with \(E_T > 20 \) GeV, missing transverse energy \((\cancel{E_T}) \) greater than 20 GeV, and a single hadronically decaying tau selected as described below. Jet energies are corrected for nonlinearity of the detector response and multiple \(p\bar{p} \) interactions within the bunch crossing [11]. One of the four jets must be identified as having originated from a \(b \) quark (\(b \)-tagged) using a secondary vertex finding algorithm [12]. Hadronically decaying taus appear as narrow jets with an odd number of tracks and low neutral pion multiplicity. We select taus using a two-cones algorithm [13]. The inner cone defining the signal region has a size set to the lesser of 10° (0.17 rad) and \(5 \text{ GeV}/E_3 \), where \(E_3 \) is the energy of the calorimeter energy cluster associated with the tau candidate. The second cone with a size of 30° defines an isolation region outside of the signal cone. A tau must have one or three tracks in the signal region and no tracks in the isolation region. We require the \(E_T \) of the tau energy cluster to exceed 20 GeV and the \(E_T \) of the visible tau to exceed 25 GeV, where visible refers to the combination of the track and neutral pion information. We require that the calorimeter energy in the isolation region be less than 10% of the visible tau energy. Finally, we veto events with an identified electron or muon.

The dominant background for this analysis is high jet multiplicity QCD events with a jet misidentified as a tau. To reduce this background, we develop a NN to distinguish between \(\bar{t}t \rightarrow \tau + \text{jets} \) and QCD multijet events. The NN is trained using QCD multijet events, obtained from data by selecting events with a tau candidate with at least one track in the isolation region and passing all other selection requirements, and \(\bar{t}t \) events generated using the PYTHIA Monte Carlo generator [14] coupled with a GEANT [15] based CDF II detector simulation [16]. To properly account for tau polarization effects, the tau decays are modeled by the TAUOLA package [17]. The NN uses eight variables that exploit the topological differences between QCD multijet and \(\bar{t}t \) events including \(E_T \) and the sum of the \(E_T \) of various combinations of the tau and jets [4]. After training the NN, we find good separation between QCD multijet and \(\bar{t}t \) events. Optimal signal significance, defined as the number of expected signal events divided by the square root of the total number of observed events, is achieved by removing events associated to a NN value below 0.85. We initially select 162 events of which 41 events survive the 0.85 NN requirement.

Because of the difficulty in simulating QCD multijet events, \(b \) quark tagging algorithms, and the production of heavy flavor quarks in association with \(W \) bosons, we estimate the background contributions with a data-driven approach similar to that described in Ref. [12]. We use the NN output distribution to fit the contributions of the signal and background processes to the data. This is done both before and after applying \(b \)-tagging requirements. Since most of the selected data events return a NN value below 0.7, the fit is dominated by events outside of the signal region. We begin by calculating the contributions of the signal and each background process before the \(b \)-tagging requirement is applied. The \(\bar{t}t \) and electroweak background contributions are determined from simulation. Diboson, single top-quark, and \(Z + \text{jets} \) production are modeled using PYTHIA, MADEVENT [18], and ALPGEN [19], respectively, with PYTHIA used for parton showering and underlying event generation. Each of these processes’ contributions is set to its expectation based on its respective theoretical cross section [20,21], the total integrated luminosity of the data, and the acceptance determined from simulation. The \(\bar{t}t \) contribution is modeled with PYTHIA and is similarly normalized using the next-to-next-to-leading order SM \(\bar{t}t \) cross section prediction [22]. For all simulated events, a GEANT based simulation is used to model the CDF II detector response. With these contributions known, we determine the contributions from QCD multijet and \(W + \text{jets} \) events by fitting the shape of the NN output distribution for each component (with the previously calculated contributions fixed) to the data before applying the NN selection and \(b \)-tagging requirements. The QCD multijet sample is selected from data as previously described while the \(W + \text{jets} \) events are modeled with ALPGEN similarly to \(Z + \text{jets} \) events. We fit these distributions with a binned Poisson likelihood as seen in Fig. 1. The contribution of QCD multijet events in the signal region is calculated from this fit. All remaining events are assumed to come from \(W + \text{jets} \) production.

For each process except QCD multijet events, the contribution after applying the \(b \)-tagging requirement is calculated by applying \(b \)-tagging efficiencies measured in Ref. [12] to the initially calculated contribution. Incorrect tagging of light quarks and tagging of the \(b \) and \(c \) quarks
have inherently different uncertainties. To properly estimate uncertainties associated with the contribution of $W + \text{jets}$ events, this contribution is divided into $W + \text{light flavor}$ ($W + l\bar{f}$) and $W + \text{heavy flavor}$ ($Wb\bar{b}$, $Wc\bar{c}$, and $Wc\bar{c}$) parts with separately estimated uncertainties. To calculate the contribution from QCD multijet events, we apply the b-tagging requirement to the QCD multijet sample. We then combine $t\bar{t}$ and the other background processes into a single sample with the relative contributions fixed to their calculated values. The NN output distributions of these two samples are then fit to the data selected with the b-tagging requirement, and the contribution of QCD multijet events in the signal region is derived from the result. Each process’s contribution, assuming $\sigma_{t\bar{t}} = 7.4$ pb and $M_\text{top} = 172.5$ GeV/c^2, is given in Table I. Of the 41 selected events, we expect roughly 18 QCD multijet events and 18 $t\bar{t}$ events. From simulation studies, we estimate that 76.5 ± 0.5% of the selected $t\bar{t}$ events correspond to a hadronic $\tau + \text{jets}$ final state. The other major contributions to the $t\bar{t}$ events are all-hadronic $t\bar{t}$ decays ($12.3 \pm 0.4\%$) and $t\bar{t} \rightarrow e + \text{jets}$ ($5.3 \pm 0.3\%$).

We measure $\sigma_{t\bar{t}}$ using a likelihood function based on a Poisson probability distribution comparing the number of observed (N_o) and predicted (N_p) events for a given $\sigma_{t\bar{t}}$ written as $L = e^{-N_p}N_p^{N_o}/(N_o!)$. We consider the negative logarithm of this function over values of $\sigma_{t\bar{t}}$ from 5 to 15 pb where N_p is recalculated at each point with the fraction of QCD multijet events kept constant to the value calculated for $\sigma_{t\bar{t}} = 7.4$ pb. The result is fit with a 2nd order polynomial which is minimized to extract the central value and statistical uncertainty. The cross section value determined by the fit is $\sigma_{t\bar{t}} = 8.8 \pm 3.3(\text{stat})$ pb.

The dominant sources of systematic uncertainty include the acceptance, selection efficiencies, background estimate, and luminosity. For acceptance effects, we consider uncertainties on the jet energy scale (JES) [11] (0.6 pb), parton showering models (0.5 pb), parton distribution functions (PDF) (0.5 pb), initial and final state radiation (ISR, FSR) (0.5 pb), and color reconnection [23] (0.4 pb). We consider systematic uncertainties on the efficiency measurements from the b-tagging (0.4 pb), tau identification (0.2 pb), and trigger efficiency (0.1 pb) scale factors. The background systematics come from the $W + \text{heavy flavor}$ scale factor uncertainty [12] (0.1 pb) and the QCD multijet contribution, which is the dominant systematic uncertainty. We measure this uncertainty (1.8 pb) by comparing the NN output distribution shapes of the QCD multijet events and data dominated by QCD multijet events which are selected by removing the E_T requirement. Finally, the uncertainty on the integrated luminosity is 6% [24] (0.5 pb). Combing all these sources in quadrature results in the total systematic uncertainty of 2.2 pb, a 25% uncertainty. We measure $\sigma_{t\bar{t}}$ assuming $M_\text{top} = 172.5$ GeV/c^2 to be $8.8 \pm 3.3(\text{stat}) \pm 2.2(\text{syst})$ pb, which is consistent with the next-to-next-to-leading order SM prediction of $7.45^{+0.72}_{-0.65}$ pb [22].

We calculate M_top from a likelihood function based on probabilities corresponding to the signal and background hypothesis for each event. These probabilities are calculated from the differential cross section for $t\bar{t}$ and $W + \text{four-parton}$ production, respectively. The method uses a similar approach to the previous measurement in the $e + \mu + \text{jets}$ decay channels [25]. The signal probability is based on a $t\bar{t}$ leading-order matrix element which assumes $q\bar{q}$ production [26] and is calculated over 31 input mass values ranging from 145 to 205 GeV/c^2. Since it does not depend on M_top, the background probability is calculated once for each event using a $W + \text{four-parton}$ matrix element from the VECBOS [27] generator.

The tau decay adds an extra complication by introducing a second neutrino in the event. We reconstruct this additional neutrino by adapting a method developed for the reconstruction of a resonance decaying to $\tau\tau$ [7] to the

\[P = \frac{1}{\sigma} \int d\sigma(\tilde{y}) f(\tilde{q}_1)f(\tilde{q}_2)W(\tilde{x}, \tilde{y}) d\tilde{q}_1 d\tilde{q}_2, \]

where \(d\sigma \) is the differential cross section, \(f \) is the parton distribution function (PDF) for a quark with momentum fraction of the incident proton \(\tilde{q} \), \(\tilde{x} \) refers to observed quantities, \(\tilde{y} \) refers to parton level quantities, and \(W(\tilde{x}, \tilde{y}) \) is the transfer function used to map \(\tilde{x} \) to \(\tilde{y} \) based on simulation studies. The event probability is a sum of the signal and background probabilities weighted by the signal and background fractions, respectively. To improve the statistical uncertainty on the \(M_{\text{top}} \) measurement, the likelihood function includes a Gaussian constraint on the background fraction set to 0.5 ± 0.1 from Table I. We evaluate the likelihood function for each of the 31 input top-quark masses and fit the result with a second-order polynomial to derive \(M_{\text{top}} \) and its statistical uncertainty. We compare the measurement on 21 simulated \(\bar{t}t \) samples covering a mass range of 155 to 195 GeV/c². The likelihood function and fit for the data before applying the calibration functions can be seen in Fig. 2.

FIG. 2. Negative log of the top-quark mass likelihood as a function of \(M_{\text{top}} \) for all data events. The calibration functions have not yet been applied.

The largest systematic uncertainty comes from the JES and is calculated to be 3.4 GeV/c². We also consider systematic uncertainties from the differences in parton showering models (0.5 GeV/c²), color reconnection (0.5 GeV/c²), ISR and FSR (0.3 GeV/c²), PDF’s (0.1 GeV/c²), and the uncertainty on the fraction of \(\bar{t}t \) pairs produced from \(gg \) fusion (0.2 GeV/c²). The background fraction uncertainty is measured by shifting each background source within its uncertainty from Table I (0.5 GeV/c²). We consider uncertainties from different \(b \)-jet fragmentation models and semileptonic branching ratios for jets from \(b \) quarks as well as shifts in the energy scale of these jets (0.4 GeV/c²). We also account for shifts from the tau energy scale (0.2 GeV/c²). The pileup systematic uncertainty (1.0 GeV/c²) accounts for a known mismodeling in the luminosity profile of the simulation. Uncertainty due to local nonlinearity of the method and any assumptions used is estimated by shifting the calibration function within its uncertainty (0.2 GeV/c²). We take the remaining 0.14 GeV/c² uncertainty on the fit of the mass residual (defined as the true mass subtracted from the measured mass) across all 21 mass points as an uncertainty on the limited size of the simulation sample. We find \(M_{\text{top}} \) to be 172.7 ± 9.3(stat) ± 3.7(syst) GeV/c² in agreement with the most recent Tevatron combination of 173.18 ± 0.94 GeV/c² [3].

Using data corresponding to an integrated luminosity of 2.2 fb⁻¹, we have made the first direct measurement of the top-quark mass in \(\bar{t}t \) events identified as decaying to a hadronic \(\tau + \) jets topology. Assuming a top-quark mass of 172.5 GeV/c², we find the \(\bar{t}t \) pair production cross section to be 8.8 ± 3.3(stat) ± 2.2(syst + lumi) pb. This value is consistent with the next-to-next-to-leading-order SM prediction [22] and recent measurements [28], including the DØ measurement in the same decay channel [6]. We measure the top-quark mass to be 172.7 ± 9.3(stat) ± 3.7(syst) GeV/c² in agreement with the Summer 2011.
Tevatron top-quark mass combination of \(173.18 \pm 0.94 \text{ GeV/c}^2 \) [3]. These measurements demonstrate that we can do complex analyses with tau leptons even in a high jet multiplicity environment at hadron colliders. This is particularly interesting at the LHC where new physics, e.g., SUSY, could preferentially lead to final states with tau leptons.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council of the United Kingdom; the Academy of Finland; and the Australian Research Council (ARC).

With visitor from Kinki University, Higashi-Osaka City, Japan 577-8502.

With visitor from Kansas State University, Manhattan, KS 66506, USA.

With visitor from Ewha Womans University, Seoul, 120-750, Korea.

With visitor from University of Manchester, Manchester M13 9PL, United Kingdom.

With visitor from Queen Mary, University of London, London, E1 4NS, United Kingdom.

With visitor from University of Melbourne, Victoria 3010, Australia.

With visitor from Muons, Inc., Batavia, IL 60510, USA.

With visitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.

With visitor from National Research Nuclear University, Moscow, Russia.

With visitor from Northwestern University, Evanston, IL 60208, USA.

With visitor from University of Notre Dame, Notre Dame, IN 46556, USA.

With visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.

CNRS-IN2P3, Paris, F-75205 France.

Texas Tech University, Lubbock, TX 79609, USA.

Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chili.

Yarmouk University, Irbid 211-63, Jordan.

3 T. Aaltonen et al. (CDF Collaboration, D0 Collaboration), Phys. Rev. D (to be published).

6 V.M. Abazov et al. (D0 Collaboration), 82, 071102 (2010).

8 CDF uses a \((z, \phi, \theta)\) coordinate system with the \(z\)-axis in the direction of the proton beam; \(\phi\) and \(\theta\) are the azimuthal and polar angle, respectively. The pseudorapidity is defined as \(\eta = -\ln(\tan(\theta/2))\), and the transverse momentum and energy as \(p_T = p \sin \theta\) and \(E_T = E \sin \theta\), respectively. Missing transverse energy \((\not{E}_T)\) is defined as \(\not{E}_T = -\sum \vec{E}_T \hat{n}_i\) where \(\hat{n}_i\) is a unit vector in the transverse plane that points from the beam line to the \(i\)th calorimeter tower.

