Dual baseline search for muon antineutrino disappearance at 0.1eV2<m2<100eV2

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Cheng, G. et al. “Dual baseline search for muon antineutrino disappearance at 0.1eV2<m2<100eV2." Physical Review D 86.5 (2012). © 2012 American Physical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevD.86.052009</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Dec 28 00:11:46 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/75859</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Dual baseline search for muon antineutrino disappearance at $0.1 \text{ eV}^2 < \Delta m^2 < 100 \text{ eV}^2$

1University of Alabama, Tuscaloosa, Alabama 35487, USA
2Argonne National Laboratory, Argonne, Illinois 60439, USA
3Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
4University of Cincinnati, Cincinnati, Ohio 45221, USA
5Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
6University of Colorado, Boulder, Colorado 80309, USA
7Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
8University of Florida, Gainesville, Florida 32611, USA
9High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
10Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, D.F. 04510, México
11Indiana University, Bloomington, Indiana 47405, USA
12Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Gifu 506-1205, Japan
13Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan
14Kyoto University, Kyoto 606-8502, Japan
15Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
16Louisiana State University, Baton Rouge, Louisiana 70803, USA
17Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
18University of Michigan, Ann Arbor, Michigan 48109, USA
19University of Michigan, Ann Arbor, Michigan 48109, USA
20Purdue University Calumet, Hammond, Indiana 46323, USA

Corresponding author.
gcc2113@columbia.edu

Corresponding author.
whuelsn@fnal.gov

Present address: DSM/Irfu/SPP, CEA Saclay, F-91191 Gif-sur-Yvette, France.
Present address: The School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, United Kingdom.
Present address: Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Gifu 506-1205, Japan.
Present address: High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan.
Present address: TRIUMF, Vancouver, British Columbia, V6T 2A3, Canada.
Present address: Center for Neutrino Physics, Virginia Tech, Blacksburg, VA, USA.
Present address: Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
Present address: Yamagata University, Yamagata, 990-8560 Japan.
Present address: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Present address: Epic Systems, Inc.
Present address: Kitasato University, Tokyo, 108-8641 Japan.
Present address: Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800, USA.
Present address: Department of Physics, Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom.
Present address: Department of Physics, University of Tokyo, Tokyo 113-0033, Japan.
I. INTRODUCTION

Recently there has been increasing evidence in support of neutrino oscillations in the $\Delta m^2 \approx 1$ eV2 region. The LSND [1] experiment observed an excess of $\bar{\nu}_e$-like events in a $\bar{\nu}_\mu$ beam. MiniBooNE [2–4] has observed an excess of ν_e-like and $\bar{\nu}_e$-like events, in a ν_μ beam and $\bar{\nu}_\mu$ beam, respectively. Additional evidence for short baseline anomalies with $L/E \approx 1$, where L is the neutrino path length in km and E the neutrino energy in GeV, includes the deficit of events observed in reactor antineutrino experiments [5] and radioactive source neutrino measurements [6]. If these anomalies are due to neutrino oscillations in the $\Delta m^2 \approx 1$ eV2 range, then they could imply the existence of one or more new sterile neutrino species that do not participate in standard weak interactions but mix with the known neutrino flavors through additional mass eigenstates. Observation of ν_μ ($\bar{\nu}_\mu$) disappearance in conjunction with ν_e ($\bar{\nu}_e$) appearance in this Δm^2 range would be a smoking gun for the presence of these sterile neutrinos. Alternatively, constraining ν_μ ($\bar{\nu}_\mu$) disappearance can, along with global ν_e ($\bar{\nu}_e$) disappearance data, constrain the oscillation interpretation of the ν_e ($\bar{\nu}_e$) appearance signals in LSND and MiniBooNE [7].

Searches for ν_μ and $\bar{\nu}_\mu$ disappearance in MiniBooNE were performed in 2009 [8]. No evidence for disappearance was found. The search for ν_μ disappearance was recently repeated in MiniBooNE with the inclusion of data from the SciBooNE detector in a joint analysis [9]. Once again, the results were consistent with no ν_μ disappearance. The analysis presented here is an improved search for $\bar{\nu}_\mu$ disappearance using data from MiniBooNE and SciBooNE taken while the Booster Neutrino Beamline (BNB) operated in antineutrino mode.

The Monte Carlo (MC) predictions for both MiniBooNE and SciBooNE were updated to account for recent neutrino flux and cross section measurements made with both experiments. The data from both detectors were then simultaneously fit to a simple two-antineutrino oscillation model. Improved constraints on MC predictions, the inclusion of SciBooNE data, and a MiniBooNE antineutrino data set nearly 3 times larger than what was available for the original $\bar{\nu}_\mu$ disappearance analysis, have allowed a 90% confidence level upper limit on $\bar{\nu}_\mu$ disappearance that dramatically improves upon prior limits in the $\Delta m^2 = 0.1–100$ eV2 region.

DO: 10.1103/PhysRevD.86.052009 PACS numbers: 14.60.Lm, 14.60.Pq, 14.60.St

II. BEAM LINE AND EXPERIMENTAL APPARATUS

MiniBooNE and SciBooNE both use the BNB at Fermilab in Batavia, Illinois. The 8 GeV kinetic energy protons from the booster accelerator strike a 1.7 interaction length beryllium target, which is located inside a focusing horn. The horn is pulsed in time with the beam to produce a toroidal magnetic field that, depending on the polarity setting, will either focus π^-/K^- and defocus π^+/K^+ or vice versa. These mesons then pass through a 60 cm long

![FIG. 1 (color online). Schematic view of the BNB from the beryllium target and magnetic horn to the SciBooNE and MiniBooNE detectors.](image-url)
collimator and decay in flight along a 50 m long tunnel. A schematic view of the BNB from the beryllium target to both detectors is shown in Fig. 1.

The resulting neutrino beam will have an enhanced flux of either muon neutrinos (neutrino mode) or muon antineutrinos (antineutrino mode). In antineutrino mode beam running, the flux of antineutrinos in the beam will be referred to as the right-sign (RS) flux and the flux of neutrinos in the beam will be referred to as the wrong-sign (WS) flux. These two designations are used because antineutrinos are the signal in this analysis and neutrinos are an intrinsic background. Figure 2 shows the neutrino and antineutrino flux prediction in antineutrino mode at both the MiniBooNE and SciBooNE detectors. Details on the beam line and flux predictions are given in Ref. [10].

The MiniBooNE detector [11] is located 541 m downstream of the antineutrino production target and consists of a spherical 12.2 m diameter tank containing 800 tons of mineral oil (CH₂), beneath at least 3 m of earth overburden. The fiducial volume is a sphere 10 m in diameter, with a fiducial mass of 450 tons. The detector is instrumented with 1280 8-inch photomultiplier tubes (PMTs) in the active region, and 240 8-inch PMTs in an outer, veto region. Events are reconstructed based on timing and charge information mostly from Cherenkov radiation. A schematic of the MiniBooNE detector is shown in Fig. 3.

The SciBooNE detector [12] is located 100 m downstream of the target. SciBooNE is a discrete tracking detector comprised of three subdetectors (in order from upstream to downstream): a fully active and finely segmented scintillator tracker (SciBar), an electromagnetic calorimeter (EC), and a muon range detector (MRD). The SciBar subdetector [13] consists of 14336 extruded polystyrene (C₈H₈) strips arranged vertically and horizontally to construct a 3 × 3 × 1.7 m³ volume. Each scintillator strip is read out by a wavelength shifting fiber attached to a 64-channel multianode PMT (MA-PMT).
The 15 ton SciBar subdetector (10.6 ton fiducial volume) provides the primary interaction target. The EC subdetector is a two plane (vertical and horizontal) “spaghetti”-type calorimeter; 64 modules made of 1 mm scintillating fibers embedded in lead foil are bundled and read out at both ends by PMTs. The MRD subdetector, designed to measure muon momentum, is made from 12 iron plates, each 5 cm thick, sandwiched between 13 alternating horizontal and vertical scintillator planes of thickness 6 mm that are read out via 362 individual 2-inch PMTs. A schematic of the SciBooNE detector is shown in Fig. 4.

III. MONTE CARLO SIMULATION

Simulation of the neutrino and antineutrino flux, neutrino and antineutrino interactions in the detector, and detector response has been discussed in detail in previous publications for MiniBooNE [14,15] and SciBooNE [16]. Calculation of the neutrino and antineutrino flux at the detector is done with a GEANT4-based model [17] that is constrained by external measurements [10,18] and accounts for proton transport to the target. p-Be interactions in the target, meson production, focusing by the magnetic horn, meson propagation and decay, and neutrino and antineutrino propagation to the detectors.

Neutrino and antineutrino interactions in both detectors are simulated using the NUANCE [19] event generator. Bound nucleons are described by the relativistic Fermi gas (RFG) model [20]. The MiniBooNE detector response is simulated using GEANT3 [21], which takes the final-state particles emerging from a nucleus and propagates them through the detector. The GEANT3 code was modified to include a custom model for light propagation in the detector [22] and to use GCALOR [23] for pion absorption and charge exchange in the detector medium. SciBooNE uses GEANT4 [24] to simulate the interactions of hadronic particles with detector materials.

IV. EVENT SELECTION AND RECONSTRUCTION

MiniBooNE data from a total of 1.01×10^{21} protons on target (POT) operation in antineutrino mode, from July 2006 up through April 2012, are included in the analysis. Data from SciBooNE antineutrino mode operation from June 2007 through August 2008 are included, comprising a total of 1.53×10^{20} POT for the SciBooNE contribution.

MiniBooNE event selection and reconstruction is essentially identical to that used for a previous neutrino mode ν_μ cross section measurement [14]. Events with only a single μ^+ in the detector are selected. Event selection cuts are based on the beam timing, fiducial volume, observation of two correlated events (the muon and its decay electron), and the likelihood of the fit to the muon hypothesis. These cuts are designed to reject incoming particles (i.e. muons from cosmic rays or from neutrino and antineutrino interactions in the surrounding material), ensure that the event is contained within the detector, and ensure correct event classification as well as accurate muon energy estimation. The capture of μ^- resulting from initial ν_μ charged current quasielastic (CCQE) interaction events is simulated in the MC and these specific events are not selected. In antineutrino mode, a sizable fraction of the events (roughly 20%) are due to ν_μ interactions. MiniBooNE cannot distinguish between ν_μ and $\bar{\nu}_\mu$ events on an event-by-event basis, so μ^-s from ν_μ interactions are an irreducible background.

For SciBooNE, the event selection and reconstruction is nearly identical to the previous inclusive charged current measurement [16]. Two-dimensional SciBar tracks are reconstructed using a cellular automaton algorithm [25] from SciBar hits. Three-dimensional SciBar tracks are then reconstructed based on the timing and end point positions of the two-dimensional SciBar tracks. Two-dimensional tracks in the MRD are independently reconstructed using hits in the MRD that are clustered within a 50 ns timing window. Three-dimensional tracks in the MRD are reconstructed by matching the timing of the two-dimensional projections. If the downstream edge of a SciBar track lies in the last two layers of SciBar, a search for a matching track or hits in the MRD is performed. The upstream edge of the MRD track is required to be on either one of the first two layers of the MRD, and to be within 30 cm of the projected entry point of the SciBar track into the MRD (a more detailed description of the track reconstruction can be found in Ref. [12]).

To select μ^\pm events, the highest momentum track per event in the beam on-time window is required to have $p_\mu > 0.25$ GeV/c to reduce the number of neutral current (NC) events. The energy loss of the track in SciBar must be consistent with a muon hypothesis, and must originate within the 10.6 ton SciBar fiducial volume. These muon candidate tracks are further categorized as SciBar-stopped or MRD-stopped. SciBar-stopped events have the downstream end point of the muon candidate track contained in the SciBar fiducial volume. MRD-stopped events have the muon candidate track being a SciBar track matched to MRD hits or to an MRD track with a downstream end point that does not exit the back or sides of the MRD. Both SciBar-stopped and MRD-stopped events are used in the analysis. SciBooNE has no overburden so cosmic backgrounds must be subtracted. For cosmic background estimation, the same muon selection criteria are applied to a beam-off time window that is 5 times longer than the beam-on window. This event rate is scaled and subtracted from the beam-on data.

The selected events include $\bar{\nu}_\mu$ and ν_μ interactions on carbon and hydrogen in the detectors. The reconstructed antineutrino energy is based on the assumption that the interaction is always a $\bar{\nu}_\mu$ CCQE interaction with a proton at rest in carbon: $\bar{\nu}_\mu + p \rightarrow \mu^- + n$. Hence, it is a function of the measured energy and direction of the outgoing muon. The equation for reconstructed energy is

052009-4
\[E^{QE}_\nu = \frac{M_n^2 - (M_p - E_B)^2 - M_\mu^2 + 2(M_p - E_B)E_\mu}{2(M_p - E_B - E_\mu + P_\mu \cos \theta_\mu)}, \]

where \(M_n \) and \(M_p \) are the mass of the neutron and proton, \(M_\mu, E_\mu, P_\mu, \) and \(\theta_\mu \) are the mass, energy, momentum, and direction of the outgoing muon, and \(E_B \) is the binding energy (30 MeV for protons in carbon). Equation (1) is applied to all selected events in data and MC, even though a sizable fraction of the events are not CCQE [i.e. charged current single \(\pi \) (CC1 \(\pi \)), charged current multipion (CC multipion), or NC events misidentified as CCQE events]. The impact of the CCQE reconstruction assumption, which leads to reduced accuracy in reconstructed energy for non-CCQE events, is accounted for in MC, which also includes these selected non-CCQE events. MiniBooNE has an estimated resolution for reconstructed energy of 8.3% for CCQE events and 13.9% for all events. SciBooNE has an estimated reconstructed energy resolution of 9.6% for CCQE events and 24.6% for all events.

Figure 5 shows the predicted event distributions in MiniBooNE for reconstructed antineutrino and neutrino energy, for events on hydrogen and carbon nuclei. Figure 6 shows the predictions for MiniBooNE’s reconstructed antineutrino and neutrino energy distributions by interaction type: CCQE, CC1 \(\pi \), and all other interaction types (CC multipion and NC). Table I shows the MC predictions for the selected MiniBooNE events by neutrino and interaction type. \(\nu_e \) and \(\bar{\nu}_e \) contamination is negligible.

The following plots show several properties of the selected SciBooNE events, as predicted by simulation. Figure 7 shows the reconstructed antineutrino and neutrino energy distributions for events on hydrogen and carbon.
nuclei. Figure 8 shows the reconstructed antineutrino and neutrino energy distribution by interaction type: CCQE, CC1π, and other (CC multipion and NC). Table I shows the MC predictions for the selected SciBooNE events by neutrino and interaction type. The data set is estimated to contain an additional 811 events from cosmic ray muons. The difference in shape between the SciBooNE RS (WS) and MiniBooNE RS (WS) energy distributions is mainly due to different event selection criteria between MiniBooNE and SciBooNE. MiniBooNE selects for CCQE interaction events and SciBooNE selects for all CC interaction events so the SciBooNE sample has a larger percentage of non-CCQE interaction events. Since the antineutrino energy reconstruction is based on a CCQE interaction assumption, there are more SciBooNE events with a larger discrepancy between true antineutrino energy and reconstructed antineutrino energy than in MiniBooNE, leading to shape differences. Differences in selection efficiency, antineutrino flux at the detector locations, and background rejection between MiniBooNE and SciBooNE also contribute to the shape differences. Figure 9 shows the distribution of the combined antineutrino and neutrino propagation distances, from production.

<table>
<thead>
<tr>
<th>Interaction type</th>
<th>MiniBooNE</th>
<th>SciBooNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCQE</td>
<td>37428</td>
<td>9955</td>
</tr>
<tr>
<td></td>
<td>4619</td>
<td>1359</td>
</tr>
<tr>
<td>CC1π</td>
<td>8961</td>
<td>2593</td>
</tr>
<tr>
<td></td>
<td>1735</td>
<td>1006</td>
</tr>
<tr>
<td>CC multi-π or NC</td>
<td>2364</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>959</td>
<td>610</td>
</tr>
</tbody>
</table>

The difference in shape between the SciBooNE RS (WS) and MiniBooNE RS (WS) energy distributions is mainly due to different event selection criteria between MiniBooNE and SciBooNE. MiniBooNE selects for CCQE interaction events and SciBooNE selects for all CC interaction events so the SciBooNE sample has a larger percentage of non-CCQE interaction events. Since the antineutrino energy reconstruction is based on a CCQE interaction assumption, there are more SciBooNE events with a larger discrepancy between true antineutrino energy and reconstructed antineutrino energy than in MiniBooNE, leading to shape differences. Differences in selection efficiency, antineutrino flux at the detector locations, and background rejection between MiniBooNE and SciBooNE also contribute to the shape differences.
in the decay tunnel to interaction in SciBooNE or MiniBooNE.

V. SYSTEMATIC UNCERTAINTIES

Beam and cross section uncertainties are calculated for both MiniBooNE and SciBooNE using the multism method [26]. In this procedure, groups of correlated simulation parameters associated with beam production and cross section modeling uncertainties are sampled according to their covariance matrices. The parameters for each source of uncertainty (π⁺, K⁺, etc.) are sampled 1000 times to obtain sufficient statistics. Each MC event in MiniBooNE and SciBooNE is reweighted based on these varied parameters forming 1000 new MC predictions of the E^QE_p distribution in both detectors. Covariance matrices, in bins of E^QE_p, are then computed for each source of uncertainty by comparing these 1000 new MC predictions to the default MC prediction. The procedure takes care of the correlation of beam production and cross section uncertainties between MiniBooNE and SciBooNE. Cross section and nuclear model uncertainties for ν and $\bar{\nu}$ events are treated as uncorrelated due to the poor understanding of differences between ν and $\bar{\nu}$ interactions in nuclear modeling. Some detector specific uncertainties are calculated using the unisim method [26], where uncorrelated detector specific uncertainties are varied up or down by 1 standard deviation.

A. Beam uncertainties

Uncertainties in the delivery of the primary proton beam to the beryllium target, the primary beam optics, secondary hadron production in proton-beryllium interactions, hadronic interactions in the target and horn, and the horn magnetic field, are included in the beam multisims. Uncertainties in the magnetic field horn current, skin effect of the horn, and secondary nucleon and pion interactions in the Be target and Al horn are obtained from previous MiniBooNE analyses [10].

The normalization of the neutrino component in the antineutrino beam was adjusted based on direct measurements in MiniBooNE [15,27]. The beam fraction of ν_μ in the antineutrino beam was determined using three methods: a pure data sample of ν_μ events from CC1π interactions, differences in Michel electron rates between final state μ^- and μ^+ from ν_μ and $\bar{\nu}_\mu$ interactions, respectively, due to μ^- capture on carbon, and angular distribution differences between final state μ^- and μ^+ from ν_μ and $\bar{\nu}_\mu$ interactions, respectively. Averaging these three methods, the π^+ production in the beam MC was scaled by a factor of 0.78 and given a 12.8% normalization uncertainty. Uncertainties on the production of π^- from the initial p-Be interaction are calculated using spline fits to data from the HARP experiment [10]. An updated K^+ production simulation with reduced uncertainties for the initial p-Be interaction is used. This update is based on a new Feynman scaling fit [28] to recent SciBooNE measurements [29]. The K^0 production uncertainties for the initial p-Be interaction are from the Sanford-Wang parameterization covariance matrix [10]. K^- production is estimated using the MARS hadronic interaction package [30] due to the scarcity of production measurements in the relevant kinematic regions. K^- production cross section uncertainties from the initial p-Be interaction are given a conservative 100% normalization uncertainty.

B. Cross section uncertainties

CCQE cross sections on carbon are calculated assuming an RFG model with parameters M_A (axial mass) = 1.35 and κ (Pauli blocking factor) = 1.007. An additional correction, as a function of Q^2, is applied to background CC1π interaction events in MC [14]. The uncertainties in M_A and κ for CCQE events on carbon are based on the statistical uncertainties of the MiniBooNE neutrino mode measurement [14], to avoid double counting systematic uncertainties accounted for in this analysis as detailed in this section.

Since the purpose of the Q^2 correction in the MiniBooNE neutrino mode measurement [14] is to match...
the background CC1π interaction events in MC to a selected data sample comprising mainly of CC1π interaction events, there is no uncertainty placed on MA for νμ CC1π interaction events. However, for ϒM CC1π interaction events, the MA-resonant and coherent 1π uncertainties are not constrained by the MiniBooNE neutrino mode measurement and are not reduced. The values and uncertainties of MA for CC coherent π interactions, MA for multi-π interactions, Fermi surface momentum (pF), and NC axial vector isoscalar contribution (Δs) are identical to previous MiniBooNE and SciBooNE measurements [9,16]. The uncertainties for pion absorption, pion inelastic scattering, and pionless Δ decay in the target nucleus (± 25%, ± 30%, and ± 100%, respectively) are treated in the same way as in a previous measurement [9], however they are treated as uncorrelated between MiniBooNE and SciBooNE (unlike all other cross section uncertainties). Both the ν and ϒ MA values and their uncertainties for quasielastic interactions on hydrogen are based on the latest deuterium measurements [31].

Additional systematic uncertainties are added to account for limitations of the RFG model. Such limitations include the absence of processes such as meson exchange currents and multinucleon knockout events [32–35]. A 10% normalization uncertainty is assigned to both ν and ϒ CCQE interactions on carbon to cover the difference between data and prediction in the MiniBooNE νμ CCQE measurement. An additional 40% normalization uncertainty is placed on ϒ CCQE interactions on carbon to cover the discrepancy between the RFG model prediction for ϒ and recent nuclear models [32–35]. An additional 10% normalization uncertainty is added to non-CCQE ϒ interactions on carbon to account for the limitations of the RFG model for those type of events.

The full list of beam and cross section parameters for MC simulation and its associated systematic uncertainties are shown in Table II.

C. Detector uncertainties

Uncertainties associated with the MiniBooNE detector include light propagation, attenuation, and scattering in the detector as well as PMT response. The optical model for light propagation in the detector [22] uses 35 parameters for properties such as refractive index, attenuation length, scintillation strength, etc. These parameters are tuned to non-MiniBooNE measurements as well as MiniBooNE internal data. Over 100 separate MC data sets were created based on variations in these parameters. In a manner similar to the multisim method, these results were used to compute the optical model error matrix in bins of

<table>
<thead>
<tr>
<th>Beam</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>π⁺ production in antineutrino beam (from WS neutrino background)</td>
<td>12.8% normalization uncertainty [15]</td>
</tr>
<tr>
<td>π⁻ production from p-Be interaction</td>
<td>Spline fit to HARP data</td>
</tr>
<tr>
<td>K⁺ production from p-Be interaction</td>
<td>Table IX in Ref. [28]</td>
</tr>
<tr>
<td>K⁰ production from p-Be interaction</td>
<td>Table IX in Ref. [10]</td>
</tr>
<tr>
<td>Nucleon and pion interaction in Be/Al</td>
<td>100% normalization uncertainty</td>
</tr>
<tr>
<td>Horn current</td>
<td>Table XIII in Ref. [10]</td>
</tr>
<tr>
<td>Horn skin effect</td>
<td>±1 kA</td>
</tr>
<tr>
<td>Horn skin depth, ±1.4 mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross Sections</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCQE MA on carbon target</td>
<td>1.35 ± 0.07 GeV</td>
</tr>
<tr>
<td>κ</td>
<td>1.007 ± 0.005</td>
</tr>
<tr>
<td>CCQE MA on hydrogen target</td>
<td>1.014 ± 0.014 GeV</td>
</tr>
<tr>
<td>CC resonant π MA</td>
<td>1.1 ± 0.275 GeV</td>
</tr>
<tr>
<td>CC coherent π MA</td>
<td>1.03 ± 0.275 GeV</td>
</tr>
<tr>
<td>CC multi π MA</td>
<td>1.3 ± 0.52 GeV</td>
</tr>
<tr>
<td>EB</td>
<td>±9 MeV</td>
</tr>
<tr>
<td>pF</td>
<td>220 ± 30 MeV/c</td>
</tr>
<tr>
<td>Δs</td>
<td>0.0 ± 0.1</td>
</tr>
<tr>
<td>CCQE on carbon</td>
<td>±10% norm error</td>
</tr>
<tr>
<td>CCQE on carbon (ϒμ) only</td>
<td>±40% norm error</td>
</tr>
<tr>
<td>Non-CCQE on carbon (ϒμ) only</td>
<td>±10% norm error</td>
</tr>
<tr>
<td>π absorption in nucleus</td>
<td>25%</td>
</tr>
<tr>
<td>π inelastic scattering</td>
<td>30%</td>
</tr>
<tr>
<td>π-less Δ decay</td>
<td>100%</td>
</tr>
</tbody>
</table>

*This uncertainty is not applied to νμ CC1π events that are Q² corrected.
reconstructed antineutrino energy. To estimate the impact of uncertainties in PMT response, independent MC data sets based on variations in the discriminator threshold, or the PMT charge-time correlations, were created and compared to default MC. Based on comparisons with external data [36–38] and the output of GCALOR, an uncertainty of 35% is assigned to pion absorption and 50% is assigned to charge exchange in the detector medium. This is distinct from the uncertainty on pion absorption and charge exchange inside the nucleus.

Uncertainties associated with the SciBooNE detector include uncertainties in the muon energy loss in the scintillator and iron, light attenuation in the wavelength shifting fibers, and PMT response; see Ref. [16]. The crosstalk of the MA-PMT was measured to be 3.15% for adjacent channels with an absolute error of 0.4% [12]. The single photoelectron resolution of the MA-PMT is set to 50% in the simulation, and the absolute error is estimated to be ±20%. Birk’s constant for quenching in the SciBar scintillator was measured to be 0.0208 ± 0.0023 cm/MeV [12]. The conversion factors for analog-to-digital converter counts to photoelectrons were measured for all 14 336 MA-PMT channels in SciBar. The measurement uncertainty was at the 20% level. The threshold for hits to be used in SciBar track reconstruction is 2.5 photoelectrons; this threshold is varied by ±20% to evaluate the systematic error for SciBar track reconstruction. The time-to-digital converter dead time is set to 55 ns in the MC simulation, with the error estimated to be ±20 ns [39].

The reconstruction uncertainties consist of antineutrino energy reconstruction uncertainties and muon track misidentification uncertainties. For antineutrino energy reconstruction uncertainties, the densities of SciBar, EC, and MRD are varied independently within their measured uncertainties, the correlations between them are expressed in the total error matrix, M, a 42 × 42 covariance matrix in MiniBooNE and SciBooNE reconstructed antineutrino energy bins defined as

$$M_{ij} = \begin{pmatrix} M^{MB-SB}_{ij} & M^{SB-SB}_{ij} \\ M^{MB-SB}_{ij} & M^{SB-MB}_{ij} \end{pmatrix},$$

where

$$M^X_{i,j} = \hat{M}^X_{i,j,RS} N^X_{j,RS} + \hat{M}^X_{i,j,WS} N^X_{j,WS} + \hat{M}^X_{i,j,RS,WS} N^X_{j,RS,WS} + M^X_{i,j,stat}$$

D. Error matrix

All of the MiniBooNE uncertainties, the SciBooNE uncertainties, and the correlations between them are expressed in the total error matrix, M, a 42 × 42 covariance matrix in MiniBooNE and SciBooNE reconstructed antineutrino energy bins defined as

![Image of correlation coefficients](image_url)
are the bin to bin covariance elements of the full error matrix. X denotes the type of correlation with Y and Z denoting the type of bins (either MiniBooNE or SciBooNE) associated with X. For MiniBooNE to MiniBooNE correlations, X = MB − MB, Y = MB, Z = MB. For SciBooNE to SciBooNE correlations, X = SB − SB, Y = SB, Z = SB. For MiniBooNE to SciBooNE correlations, X = MB − SB, Y = MB, Z = SB. For SciBooNE to MiniBooNE correlations, X = SB − MB, Y = SB, Z = MB. \(N_i^{\text{RS}} \) (\(N_j^{\text{RS}} \)) and \(N_i^{\text{WS}} \) (\(N_j^{\text{WS}} \)) are the number of RS and WS events for bin type Y (bin type Z) in reconstructed antineutrino energy bin \(i \) (bin \(j \)), respectively. \(M_{i,j}^{X} \) are the elements of the RS to RS correlated fractional error matrix for correlation type \(X \) defined as

\[
M_{i,j}^{X} = \frac{M_{i,j}^{X,(\text{RS,RS})}}{N_i^{\text{RS}}N_j^{\text{RS}}},
\]

where \(M_{i,j}^{X,(\text{RS,RS})} \) is the full RS to RS reconstructed antineutrino energy bin covariance for correlation type \(X \). \(M_{i,j}^{X,(\text{WS,WS})} \) and \(M_{i,j}^{X,(\text{RS,WS})} \) are similarly defined fractional error matrices for correlation type \(X \) with different RS and WS correlations. \(M_i^{\text{stat}} \) is the statistical covariance matrix in reconstructed antineutrino energy bins for correlation type \(X \) (only \(SB - SB \) and \(MB - MB \) have nonzero elements).

The decomposition and reconstruction of the full error matrix \(M \) to and from the fractional error matrices allows the error matrix to be updated based on different MC predictions, as a function of the oscillation parameters in the physics parameter space.

For illustrative purposes, Fig. 10 shows the square roots of the elements of the total fractional error matrix, \(\sqrt{M_{ij}} = \sqrt{M_{ij}/\sqrt{N_iN_j}} \), where \(M_{ij} \) are the elements of the total error matrix and \(N_i \) (\(N_j \)) is the MC prediction for reconstructed antineutrino energy bin \(i \) (\(j \)). Figure 11 shows the correlation coefficients of the total error matrix in reconstructed antineutrino energy bins.

Figure 12 shows the MiniBooNE and SciBooNE default MC \(E_p^\text{QE} \) predictions for RS and WS events with error bars corresponding to the \(\sqrt{M_{ii}} \) values of the error matrix diagonal elements.

VI. ANALYSIS METHODOLOGY

Oscillation predictions are based on a two-antineutrino oscillation model, where the oscillation survival probability for a \(\bar{\nu}_\mu \) in the beam is given by

\[
P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu) = 1 - \sin^22\theta\sin^2\frac{1.27\Delta m^2 L}{E}. \quad (5)
\]

\(L \) is the path length in kilometers, \(E \) is the antineutrino energy in GeV, \(\theta \) is the mixing angle, and \(\Delta m^2 \) is the difference in the squares of the masses of two different mass eigenstates.

The \(\chi^2 \) statistic is formed,

\[
\chi^2 = \sum_{i,j=1}^{42} (D_i - N_i)(M^{-1})_{ij}(D_j - N_j). \quad (6)
\]

where \((M^{-1})_{ij} \) is the \(ij \)th element of the inverse of the error matrix \(M \), the covariance matrix in MiniBooNE and SciBooNE \(E_p^\text{QE} \) bins described in Eq. (2). \(D_i (D_j) \) is the data count in bin \(i \) (\(j \)) and \(N_i (N_j) \) is the MC prediction for bin \(i \) (\(j \)) in MiniBooNE and SciBooNE \(E_p^\text{QE} \) bins. \(N_i \) is the sum of neutrino (WS) and antineutrino (RS) events in the \(i \)th bin:

\[
N_i = N_i^{\text{RS}}(\Delta m^2, \sin^22\theta) + N_i^{\text{WS}}. \quad (7)
\]

As shown in Eq. (7), only the predicted RS event rate depends on the oscillation parameters, \(\Delta m^2 \) and \(\sin^22\theta \), for this two-antineutrino oscillation model. The WS flux is assumed to not oscillate. The index runs from 1 to 42 (21 MiniBooNE \(E_p^\text{QE} \) bins and 21 SciBooNE \(E_p^\text{QE} \) bins). For the physics analysis fitting, a \(\Delta \chi^2 \) test statistic is used as defined by
\[\Delta \chi^2 = \chi^2(N(\theta_{\text{phys}}), M(\theta_{\text{phys}})) - \chi^2(N(\theta_{\text{BF}}), M(\theta_{\text{BF}})). \]

where \(\theta_{\text{BF}} \) refers to the oscillation parameters at the best fit point and \(\theta_{\text{phys}} \) refers to the oscillation parameters at a given test point.

The method of Feldman and Cousins [40] is used to determine the \(\Delta \chi^2 \) value at each point that corresponds to a certain confidence level of acceptance or rejection. To obtain the 90% confidence level exclusion region for \(\bar{\nu}_\mu \) disappearance, a \(\Delta \chi^2 \) distribution is formed for each point \(\theta_{\text{phys}} \) in parameter space using many iterations of generated fake data at that \(\theta_{\text{phys}} \). The \(\Delta \chi^2 \) value from actual data at each \(\theta_{\text{phys}} \) is then compared to the fake data \(\Delta \chi^2 \) distribution at each \(\theta_{\text{phys}} \). If the \(\Delta \chi^2 \) value from actual data is larger than 90% of the all the fake data \(\Delta \chi^2 \) values at a \(\theta_{\text{phys}} \) point, then the \(\theta_{\text{phys}} \) point in parameter space is excluded at 90% confidence level. The aggregation of all the excluded 90% confidence level \(\theta_{\text{phys}} \) points forms the 90% confidence level exclusion region.

TABLE III. Observed event counts for each MiniBooNE and SciBooNE data bin, MC predictions, and uncertainty.

<table>
<thead>
<tr>
<th>Bin range (MeV)</th>
<th>MB data</th>
<th>MB MC</th>
<th>MB error ±</th>
<th>SB data(^a)</th>
<th>SB cosmic</th>
<th>SB MC</th>
<th>SB error ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>300–400</td>
<td>565</td>
<td>413.5</td>
<td>111.0</td>
<td>1077.0</td>
<td>21.0</td>
<td>997.3</td>
<td>136.8</td>
</tr>
<tr>
<td>400–467</td>
<td>2577</td>
<td>2139.2</td>
<td>464.8</td>
<td>966.8</td>
<td>89.2</td>
<td>915.6</td>
<td>141.9</td>
</tr>
<tr>
<td>467–533</td>
<td>4433</td>
<td>4039.9</td>
<td>802.2</td>
<td>872.8</td>
<td>85.2</td>
<td>834.4</td>
<td>132.1</td>
</tr>
<tr>
<td>533–600</td>
<td>5849</td>
<td>5211.0</td>
<td>1005.7</td>
<td>854.4</td>
<td>72.6</td>
<td>809.4</td>
<td>132.2</td>
</tr>
<tr>
<td>600–667</td>
<td>6411</td>
<td>5725.6</td>
<td>1108.7</td>
<td>856.8</td>
<td>59.2</td>
<td>790.6</td>
<td>137.3</td>
</tr>
<tr>
<td>667–733</td>
<td>6445</td>
<td>5778.3</td>
<td>1130.3</td>
<td>915.0</td>
<td>51.0</td>
<td>781.9</td>
<td>144.3</td>
</tr>
<tr>
<td>733–800</td>
<td>6090</td>
<td>5586.8</td>
<td>1096.9</td>
<td>849.8</td>
<td>52.2</td>
<td>757.3</td>
<td>139.5</td>
</tr>
<tr>
<td>800–867</td>
<td>5678</td>
<td>5268.3</td>
<td>1044.8</td>
<td>876.6</td>
<td>43.4</td>
<td>717.1</td>
<td>138.8</td>
</tr>
<tr>
<td>867–933</td>
<td>5314</td>
<td>4826.2</td>
<td>951.8</td>
<td>787.0</td>
<td>39.0</td>
<td>655.8</td>
<td>138.0</td>
</tr>
<tr>
<td>933–1000</td>
<td>4624</td>
<td>4319.6</td>
<td>865.1</td>
<td>688.0</td>
<td>35.0</td>
<td>639.7</td>
<td>129.6</td>
</tr>
<tr>
<td>1000–1067</td>
<td>4015</td>
<td>3720.3</td>
<td>747.2</td>
<td>628.0</td>
<td>29.0</td>
<td>580.2</td>
<td>125.4</td>
</tr>
<tr>
<td>1067–1133</td>
<td>3349</td>
<td>3163.6</td>
<td>642.1</td>
<td>569.6</td>
<td>28.4</td>
<td>488.7</td>
<td>105.8</td>
</tr>
<tr>
<td>1133–1200</td>
<td>2965</td>
<td>2655.9</td>
<td>554.3</td>
<td>496.6</td>
<td>21.4</td>
<td>403.9</td>
<td>92.2</td>
</tr>
<tr>
<td>1200–1267</td>
<td>2464</td>
<td>2147.2</td>
<td>453.0</td>
<td>377.0</td>
<td>23.0</td>
<td>308.4</td>
<td>74.6</td>
</tr>
<tr>
<td>1267–1333</td>
<td>1937</td>
<td>1726.4</td>
<td>367.8</td>
<td>273.6</td>
<td>22.4</td>
<td>228.4</td>
<td>53.6</td>
</tr>
<tr>
<td>1333–1400</td>
<td>1534</td>
<td>1372.0</td>
<td>297.9</td>
<td>178.6</td>
<td>18.4</td>
<td>150.0</td>
<td>37.2</td>
</tr>
<tr>
<td>1400–1467</td>
<td>1227</td>
<td>1073.3</td>
<td>238.1</td>
<td>111.2</td>
<td>18.8</td>
<td>89.4</td>
<td>23.9</td>
</tr>
<tr>
<td>1467–1533</td>
<td>859</td>
<td>820.5</td>
<td>187.7</td>
<td>65.4</td>
<td>17.6</td>
<td>57.1</td>
<td>15.0</td>
</tr>
<tr>
<td>1533–1600</td>
<td>679</td>
<td>607.2</td>
<td>145.8</td>
<td>39.0</td>
<td>17.0</td>
<td>33.1</td>
<td>10.4</td>
</tr>
<tr>
<td>1600–1700</td>
<td>684</td>
<td>607.2</td>
<td>149.1</td>
<td>40.8</td>
<td>28.2</td>
<td>27.6</td>
<td>9.9</td>
</tr>
<tr>
<td>1700–1900</td>
<td>610</td>
<td>560.1</td>
<td>144.5</td>
<td>37.6</td>
<td>39.4</td>
<td>24.8</td>
<td>7.8</td>
</tr>
</tbody>
</table>

\(^a\)The SB data has its SB cosmic data background removed.
The full error matrix is used to create the fake data for the Feldman and Cousins tests. First, a Cholesky decomposition is performed on the error matrix M:

$$M = LL^*,$$

(9)

where L is a lower triangular matrix and L^* is the conjugate transpose of L. Then, a vector u is created, where each of the n elements, 42 in total, of u are drawn from a Gaussian distribution with mean 0 and variance 1. A fluctuated fake data histogram is given by

$$N_{\text{fake}} = N_{\text{default}}(\theta_{\text{phys}}) + Lu,$$

(10)

where N_{default} is the default Monte Carlo prediction assuming an oscillation signal with oscillation parameters at point θ_{phys}.

VII. RESULTS

Figure 13 shows the observed event distributions, in reconstructed antineutrino energy, for MiniBooNE and SciBooNE. The systematic uncertainty shown for the MC predictions was computed as just the square roots of the diagonals of the total error matrix without correlations.

Table III lists the event counts in each bin, for data and for MC predictions. The listed uncertainties are based on the square roots of the diagonals of the total error matrix without correlations. (The reported SciBooNE data has fractional counts due to the manner in which the cosmic ray background is subtracted.)

A MiniBooNE-only disappearance analysis is included to give a sense of what the sensitivity would be without the inclusion of SciBooNE data. Figure 14 shows the 90% C.L. exclusion region and best fit point for the MiniBooNE-only $\bar{\nu}_\mu$ disappearance analysis, completed using the same methodology as the joint disappearance analysis except with the exclusion of SciBooNE data, SciBooNE MC...
prediction, and SciBooNE error matrix uncertainties in the χ^2 statistic. The best fit point is $\Delta m^2 = 5.9$ eV2, $\sin^2 2\theta = 0.076$. At the best fit point, $\chi^2 = 25.7$ (probability 12.4%). For the null oscillation hypothesis, $\chi^2 = 28.3$ (probability 13.7%). With $\Delta \chi^2 = 2.6$, the null oscillation hypothesis is excluded at 52.4% C.L.

Figure 15 shows the $\bar{\nu}_\mu$ disappearance limit for the joint disappearance analysis. For $\Delta m^2 = 1$ eV2 and $\Delta m^2 = 10$ eV2, the 90% C.L. limit for $\sin^2 2\theta$ are at 0.121 and 0.024, respectively. At $\sin^2 2\theta = 1$, the 90% C.L. limit for Δm^2 is 0.156 eV2 The best fit point from the joint analysis is $\Delta m^2 = 5.9$ eV2, $\sin^2 2\theta = 0.086$. At the best fit point, $\chi^2 = 40.0$ (probability 47.1%). For the null oscillation hypothesis, $\chi^2 = 43.5$ (probability 41.2%). With $\Delta \chi^2 = 3.5$, the null oscillation hypothesis is excluded at 81.9% C.L.

All probabilities in both the MiniBooNE-only and joint disappearance analyses are based on fake data studies.

Figure 16 shows the data to MC ratios for MiniBooNE and SciBooNE, as well as how the best fit signal modifies the MC predictions. From these ratio plots, it can be seen how the best fit signal improves the shape agreement between data and MC. Figure 17 shows the double ratio

$$\left(\frac{\text{MiniBooNE data}}{\text{MiniBooNE default MC}} \right) \div \left(\frac{\text{SciBooNE data}}{\text{SciBooNE default MC}} \right) .$$

In Fig. 17, any common normalization difference is removed and the expected result is a value of one. The double ratio result agrees well with the expectation except where statistics are small.

VIII. CONCLUSIONS

An improved search for $\bar{\nu}_\mu$ disappearance using a two-detector combined MiniBooNE/SciBooNE analysis has been performed. Previous flux and cross section measurements, as well as an increased data set, have enabled a substantial improvement in the sensitivity to $\bar{\nu}_\mu$ disappearance. The results are consistent with no short baseline disappearance of $\bar{\nu}_\mu$ and we have dramatically improved on the excluded regions of the oscillation parameter space. MiniBooNE and SciBooNE have pushed the limit on short baseline disappearance of $\bar{\nu}_\mu$ down to roughly 10%, the region of interest for sterile neutrino models.

ACKNOWLEDGMENTS

We wish to acknowledge the support of Fermilab, the U.S. Department of Energy, and the National Science Foundation in the construction, operation, and data analysis for the MiniBooNE and SciBooNE experiments. The SciBooNE detector was mainly constructed and operated...
by the budget of Japan-U.S. Cooperative Science Program. We acknowledge the support of MEXT and JSPS (Japan) with the Japan/U.S. Cooperation Program. We also acknowledge the Los Alamos National Laboratory for LDRD funding. We acknowledge the Physics Department at Chonnam National University, Dongshin University, and Seoul National University for the loan of parts used in SciBar and the help in the assembly of SciBar. We wish to thank the Physics Departments at the University of Rochester and Kansas State University for the loan of Hamamatsu PMTs used in the MRD. We gratefully acknowledge the support of grants and contracts from the INFN (Italy), the Ministry of Science and Innovation and CSIC (Spain), and the STFC (U.K.). We acknowledge the support by MEXT and JSPS with the Grant-in-Aid for Scientific Research A 19204026, Young Scientists S 20674004, Young Scientists B 18740145, Scientific Research on Priority Areas “New Developments of Flavor Physics,” the global COE program “The Next Generation of Physics, Spun from Universality and Emergence,” and the Japan-U.S. Cooperative Science Program between JSPS and NSF.
