Search for a W or Techni-Decaying into WZ in pp Collisions at $s=7$TeV

<table>
<thead>
<tr>
<th>Citation</th>
<th>Chatrchyan, S. et al. “Search for a W or Techni-Decaying into WZ in Pp Collisions at $\sqrt{s}=7$TeV.” Physical Review Letters 109.14 (2012).</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.109.141801</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Apr 25 01:04:52 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/76280</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution 3.0</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/3.0/</td>
</tr>
</tbody>
</table>
Search for a W' or Techni-ρ Decaying into WZ in pp Collisions at $\sqrt{s}=7$ TeV

S. Chatrchyan et al.*
(CMS Collaboration)
(Received 3 June 2012; published 2 October 2012)

A search is performed in pp collisions at $\sqrt{s}=7$ TeV for exotic particles decaying via WZ to final states with electrons and muons. The data sample corresponds to an integrated luminosity of approximately 5 fb$^{-1}$. No significant excess is observed in the data above the expected standard model background. Upper bounds at 95% confidence level are set on the production cross section of the W' boson described by the sequential standard model and on the W' WZ coupling. W' bosons with masses below 1143 GeV are excluded. Limits are also set in the context of low-scale technicolor models, under a range of assumptions concerning the model parameters.

DOI: 10.1103/PhysRevLett.109.141801
PACS numbers: 13.85.Rm, 12.60.Cn, 14.80.Rt, 14.80.Tt

The standard model (SM) of particle physics has passed many rigorous tests, and its predictions have often been matched by experimental data with amazing precision. However, it is widely accepted that the SM cannot be the ultimate theory of fundamental particles and their interactions since it has a number of shortcomings; e.g., it fails to incorporate gravity and has no explanation for the dominance of matter over antimatter in the Universe. Various extensions of the SM have been proposed to address these problems and to explain the mechanism of electroweak symmetry breaking. Many of these models predict the existence of a new heavy charged gauge boson, generically known as W', that decays into a pair of W and Z bosons [1–6]. Previous W' searches have typically interpreted their results in terms of the sequential standard model (SSM) [7–12], a simple extension of the SM in which the couplings of the W' to fermions are identical to those of the W. Many of these searches have been conducted in leptonic final states and assume that the $W'\rightarrow WZ$ decay mode is suppressed. Searches for exotic particles that decay into WZ pairs are thus complementary to searches in the leptonic channels. Moreover, there are other models in which the W' couplings to SM fermions are suppressed, giving rise to a fermiophobic W' with an enhanced coupling to W and Z bosons [13,14]. It is therefore important to search for W' bosons also in the WZ final state.

Another model predicting a new heavy boson decaying into WZ is technicolor (TC): a gauge theory modeled on QCD with no elementary scalar particles [15,16]. TC provides a dynamical explanation of electroweak symmetry breaking by generating masses of the W and Z bosons through the binding energy of techni-fermions. Furthermore, it predicts a series of techni-hadrons that are bound states of the new strong interaction. By analogy with QCD, the techni-hadrons with $I^G(J^{PC})=1^{-}(0^{+-})$, $1^{+}(1^{--})$, and $1^{-}(1^{++})$ are called π_{TC}, ρ_{TC}, and σ_{TC}, respectively. In low-scale technicolor (LSTC) [17,18], the lightest techni-hadrons are expected to have masses below 700 GeV, with the charged ρ_{TC} and σ_{TC} able to decay to WZ boson pairs. Since these two states are expected to be nearly mass-degenerate [18], they would appear as a single feature in the WZ invariant mass spectrum, and we hereafter refer to them collectively as ρ_{TC}. The relationship between the masses of ρ_{TC} and π_{TC}, $M(\rho_{TC})$ and $M(\pi_{TC})$, significantly affects the ρ_{TC} branching fractions [19]. If $M(\rho_{TC})<2M(\pi_{TC})$, the decay $\rho_{TC}\rightarrow \pi_{TC}+W$ dominates, such that the branching fraction $\mathcal{B}(\rho_{TC}\rightarrow WZ)<10\%$. However, if this decay is kinematically inaccessible, $\mathcal{B}(\rho_{TC}\rightarrow WZ)$ approaches 100%.

This Letter presents a search for new particles decaying via a WZ pair with $W\rightarrow \ell\nu$ and $Z\rightarrow \ell\ell$ in the final state, where $\ell = e, \mu$. The results are interpreted in the context of a SSM W' boson and a LSTC ρ_{TC} particle. A previous search in this channel performed by the D0 experiment excludes W' bosons with masses between 188 and 520 GeV at 95% confidence level (C.L.) [9]. Their result also excludes ρ_{TC} between 208 and 409 GeV at 95% C.L., under the assumption that $M(\rho_{TC})<M(\pi_{TC})+M(W)$. The analysis presented here considers the case where the relations between parameters are those of Ref. [19], $M(\pi_{TC})=\frac{3}{2}M(\rho_{TC}) - 25$ GeV, and also investigates the results of varying the ρ_{TC} and π_{TC} masses.

This study uses data corresponding to an integrated luminosity of 4.98 \pm 0.11 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=7$ TeV, recorded by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) in 2011. The central feature of the apparatus is a superconducting solenoid, of 6 m internal diameter, providing a field of 3.8 T. Inside the magnet coil are the silicon pixel and strip tracker, the lead tungstate crystal electromagnetic calorimeter, and the brass-scintillator hadron calorimeter.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Events with a genuine isolated lepton, dominated by Z boson in the final state, including top pair (\(t\bar{t} \)), multijet, \(W + \text{jet} \), \(W\gamma \), and \(WW + \text{jet} \) production. Only the first of these makes a significant background contribution, and the others are therefore not considered in this analysis.

The irreducible SM \(WZ \) background arises from the \(WZ \to 3\ell\nu \) process, which was generated using the MADGRAPH5.1 [22] generator, interfaced to PYTHIA 6.4.22 [23] for parton showering, hadronization, and simulation of the underlying event. The CTEQ6L1 [24] parton distribution functions (PDFs) were used with PYTHIA tune Z2 [25].

Candidate events were triggered using a double-electron or double-muon requirement, with \(p_T \) thresholds of 17 and 8 GeV, respectively, for the highest-\(p_T \) and second-highest-\(p_T \) leptons. In the offline selection, events were required to have at least three reconstructed leptons within the tracking acceptance of \(|\eta| < 2.5 \) (2.4) for electrons (muons), where \(\eta \equiv -\ln[\tan(\theta/2)] \), and \(\theta \) is the polar angle with respect to the counterclockwise proton beam.

To reduce background from jets misidentified as leptons, all lepton candidates were required to satisfy a series of identification and isolation criteria. In calculating isolation variables, the track momenta and energy deposits, excluding those associated with the lepton itself, were summed in a cone of \(\Delta R < 0.3 \) around the lepton direction, where \(\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} \), and divided by the lepton transverse momentum. These sums were corrected for additional proton-proton interactions in each bunch crossing (pileup) using the fast jet energy density technique [29,30]. For simulated samples, pileup was modeled by superimposing generated minimum-bias interactions onto simulated events, weighted such that the interaction multiplicity agreed with the luminosity profile of the data set used. An additional scale factor (equal to one within 5%) derived from “tag-and-probe” [31] studies was applied to simulated events to correct for differences in lepton...
selection efficiency measured in recorded and simulated event samples.

Z boson candidates were reconstructed from pairs of opposite-sign, same-flavor leptons with the highest and second-highest lepton p_T greater than 20 and 10 GeV, respectively, and with an invariant mass between 60 and 120 GeV. In events where more than one such pair was found, the one with invariant mass closest to the nominal Z mass was selected. If four leptons compatible with two distinct Z candidates were present, the event was rejected in order to suppress ZZ background. The candidate for the W boson decay product was required to pass tighter isolation and identification requirements. If multiple lepton boson decay product was required to pass tighter isolation, with a particle-flow algorithm [32], in order to discriminate against Z against W bosons (L_T). For each W'/ρ_{TC} mass hypothesis considered, an optimized WZ mass search window and a minimum L_T requirement were jointly determined to give the best expected limit. The chosen L_T and mass-window requirements are listed in Table I, and the WZ invariant mass after applying the L_T requirement for the W' mass point at 600 GeV is shown on the lower panel of Fig. 1. There is no excess observed in the data above the expected standard model background.

As a cross-check of the simulation, the $Z + \text{jets}$ and $t\bar{t}$ backgrounds were estimated from the data by measuring the efficiencies for genuine and misidentified leptons to pass the isolation criteria and applying those efficiencies to a sample of events passing all requirements except for isolation. The total background result agrees with the numbers from simulation, and the uncertainties assigned to the $Z + \text{jets}$ and $t\bar{t}$ contributions when determining limits were based on the uncertainties in the estimates from data.

Systematic uncertainties affecting the product of acceptance, reconstruction, and identification efficiencies for the final-state objects were determined from simulation. These include uncertainties stemming from lepton and E_T^{miss} energy scales and resolutions, NLO effects, and pileup simulation. Following the recommendations of the PDF4LHC group [33], PDF and α_s variations of the MSTW2008 [34], CTEQ6.6 [35], and NNPDF2.0 [36] PDF sets were taken

<table>
<thead>
<tr>
<th>$M(W'/\rho_{TC})$ (GeV)</th>
<th>L_T (GeV)</th>
<th>WZ Mass-Window (GeV)</th>
<th>σ_{eff} (MC)</th>
<th>Data</th>
<th>σ_{sig} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>190–210</td>
<td>50 ± 9</td>
<td>52</td>
<td>8.0 ± 0.4</td>
</tr>
<tr>
<td>250</td>
<td>150</td>
<td>230–270</td>
<td>34 ± 6</td>
<td>40</td>
<td>8.8 ± 0.4</td>
</tr>
<tr>
<td>300</td>
<td>160</td>
<td>280–320</td>
<td>24 ± 5</td>
<td>23</td>
<td>18 ± 1</td>
</tr>
<tr>
<td>400</td>
<td>220</td>
<td>360–440</td>
<td>13 ± 2</td>
<td>7</td>
<td>29 ± 1</td>
</tr>
<tr>
<td>500</td>
<td>230</td>
<td>450–550</td>
<td>8 ± 2</td>
<td>9</td>
<td>41 ± 1</td>
</tr>
<tr>
<td>600</td>
<td>290</td>
<td>540–660</td>
<td>3.4 ± 0.7</td>
<td>2</td>
<td>45 ± 1</td>
</tr>
<tr>
<td>700</td>
<td>360</td>
<td>620–780</td>
<td>1.8 ± 0.4</td>
<td>2</td>
<td>48 ± 1</td>
</tr>
<tr>
<td>800</td>
<td>400</td>
<td>710–890</td>
<td>1.0 ± 0.2</td>
<td>1</td>
<td>52 ± 2</td>
</tr>
<tr>
<td>900</td>
<td>400</td>
<td>760–1040</td>
<td>1.0 ± 0.2</td>
<td>0</td>
<td>61 ± 2</td>
</tr>
<tr>
<td>1000</td>
<td>400</td>
<td>820–1180</td>
<td>0.8 ± 0.2</td>
<td>0</td>
<td>65 ± 2</td>
</tr>
<tr>
<td>1100</td>
<td>400</td>
<td>890–1310</td>
<td>0.6 ± 0.1</td>
<td>0</td>
<td>63 ± 1</td>
</tr>
<tr>
<td>1200</td>
<td>400</td>
<td>940–1460</td>
<td>0.4 ± 0.1</td>
<td>0</td>
<td>58 ± 1</td>
</tr>
<tr>
<td>1300</td>
<td>400</td>
<td>1020–1580</td>
<td>0.3 ± 0.1</td>
<td>0</td>
<td>50 ± 1</td>
</tr>
<tr>
<td>1400</td>
<td>400</td>
<td>1110–1690</td>
<td>0.18 ± 0.05</td>
<td>0</td>
<td>36 ± 1</td>
</tr>
<tr>
<td>1500</td>
<td>400</td>
<td>1200–1800</td>
<td>0.13 ± 0.04</td>
<td>0</td>
<td>30 ± 1</td>
</tr>
</tbody>
</table>
into account and their impact on the signal cross sections estimated.

The uncertainty on the background simulation is dominated by the 10% uncertainty due to NLO K-factor corrections for the WZ component. Cross section uncertainties of 7.5% for ZZ [26], 13% for $Z\gamma$ [37], and 17% for WZ [38] were also taken into account, along with a 2.2% uncertainty on the integrated luminosity [39].

Exclusion limits on the production cross section $\sigma(pp \to W'/\rho_{TC} \to WZ) \times B(WZ \to 3\ell\nu)$ were determined by comparing the number of observed events with the numbers of expected signal and background events in each search window. The calculations were performed using the ROOFTAS implementation [40] of the CL$_s$ statistic. The event counts and efficiencies are shown in Table I. We note that the efficiency drops at high W' mass because of the isolation requirement as the leptons from the boosted Z boson become more collimated. We interpolate between mass points where we have simulated the signal to establish mass limits for each model.

In the SSM, these limits allow the exclusion of W' bosons with masses below 1143 GeV (Fig. 2). For LSTC, with the chosen parameters $M(\pi_{TC}) = 4/3 M(\rho_{TC}) - 25$ GeV, ρ_{TC} hadrons with masses between 167 and 687 GeV are excluded (see Fig. 3). Figure 3 also shows LSTC limits determined as a function of the ρ_{TC} and π_{TC} masses. The lower mass limits are obtained by extrapolating below 200 GeV. For the parameters chosen by the D0 experiment, $M(\rho_{TC}) < M(\pi_{TC}) + M(W)$, more stringent limits are obtained, excluding the range 180 to 938 GeV for $M(\rho_{TC})$. It can be seen that the LSTC interpretation of a deviation from the SM observed by the CDF experiment in the $W +$ jets channel [41], with proposed parameters $M(\rho_{TC}) = 290$ GeV and $M(\pi_{TC}) = 160$ GeV [42], is excluded by the 95% C.L. upper bound of 150 GeV on $M(\pi_{TC})$ for the required ρ_{TC} mass. A more recent publication [43] proposes the evaluation of the cross section for $\rho_{TC} \to WZ$ as a function of the LSTC parameter $\sin \chi$. Changes in this parameter impact the decay branching fractions for WZ and $W\pi_{TC}$ (the channel studied in Ref. [42]), among others. Figure 2 shows the predicted cross sections corresponding to $\sin \chi = 3/4$ and $\sin \chi = 1/4$, as well as the value $\sin \chi = 1/2$ used to establish the reported limit.

The W' production cross section and the $W' \to WZ$ branching fraction are both affected by the strength of the coupling between the W', W, and Z bosons. Figure 4 shows the 95% C.L. upper limit on the coupling as a function of the mass of the W' resonance.

In summary, a search for new exotic particles decaying via WZ to final states with electrons and muons has been performed using pp collisions at $\sqrt{s} = 7$ TeV corresponding to an integrated luminosity of 4.98 \pm 0.11 fb$^{-1}$, collected by the CMS experiment. No significant excess was observed in the invariant mass distribution of WZ candidates, compared to the expectation from standard model processes. The results have been interpreted in the context of several theoretical models, with the data used to establish bounds at 95% C.L. on the masses of hypothetical particles decaying via WZ. In the framework of the sequential standard model, W' bosons with masses below 1143 GeV have been excluded. Technicolor ρ_{TC} hadrons with masses between 167 and 687 GeV have been excluded, assuming $M(\rho_{TC}) = 4/3 M(\rho_{TC}) - 25$ GeV. Under the alternative assumption $M(\rho_{TC}) < M(\pi_{TC}) + M(W)$, ρ_{TC} hadrons with masses between 180 and 938 GeV have been excluded. These are the most stringent limits to date in the WZ channel.

We thank Kenneth Lane for his help with the interpretation of the results within the context of low-scale technicolor models. We wish to congratulate our colleagues in the CERN accelerator departments for the excellent
FIG. 4 (color online). Upper limit at 95% C.L. on the strength of the W' WZ coupling normalized to the SSM prediction, as a function of the W' mass. The 1σ and 2σ combined statistical and systematic expected variation is shown as green (dark) and yellow (light) bands, respectively. PDF uncertainties on the theoretical cross section are not included.

The theoretical cross section are not included.

performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); and DOE and NSF (USA).

(CMS Collaboration)

1 Yerevan Physics Institute, Yerevan, Armenia
2 Institut für Hochenergiephysik der ÖAW, Wien, Austria
3 National Centre for Particle and High Energy Physics, Minsk, Belarus
4 Universiteit Antwerpen, Antwerpen, Belgium
5 Vrije Universiteit Brussel, Brussel, Belgium
6 Université Libre de Bruxelles, Bruxelles, Belgium
7 Ghent University, Gent, Belgium
8 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9 Université de Mons, Mons, Belgium
10 Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12 Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
13 Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14 University of Sofia, Sofia, Bulgaria
15 Institute of High Energy Physics, Beijing, China
16 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17 Universidad de Los Andes, Bogotá, Colombia
18 Technical University of Split, Split, Croatia
19 University of Split, Split, Croatia
20 Institut Rudjer Boskovic, Zagreb, Croatia
21 University of Cyprus, Nicosia, Cyprus
22 Charles University, Prague, Czech Republic
23 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25 Department of Physics, University of Helsinki, Helsinki, Finland
26 Helsinki Institute of Physics, Helsinki, Finland
27 Lappeenranta University of Technology, Lappeenranta, Finland
28 DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
29 Laboratoire Leprince-Ringuet, Ecole Polytechnique, In2P3-CNRS, Palaiseau, France
30 Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31 Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
32 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33 Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
34 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
35 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
36 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
37 Deutsches Elektronen-Synchrotron, Hamburg, Germany
38 University of Hamburg, Hamburg, Germany
39 Institut für Experimentelle Kernphysik, Karlsruhe, Germany
40 Institute of Nuclear Physics “Demokritos,” Aghia Paraskevi, Greece
41 University of Athens, Athens, Greece
42 University of Ioannina, Ioannina, Greece
43 KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
44 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
45 University of Debrecen, Debrecen, Hungary
46 Panjab University, Chandigarh, India
47 University of Delhi, Delhi, India
| University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia |
| Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain |
| Universidad Autónoma de Madrid, Madrid, Spain |
| Universidad de Oviedo, Oviedo, Spain |
| Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain |
| CERN, European Organization for Nuclear Research, Geneva, Switzerland |
| Paul Scherrer Institut, Villigen, Switzerland |
| Institute for Particle Physics, ETH Zurich, Zurich, Switzerland |
| Universität Zürich, Zurich, Switzerland |
| National Central University, Chung-Li, Taiwan |
| National Taiwan University (NTU), Taipei, Taiwan |
| Çukurova University, Adana, Turkey |
| Middle East Technical University, Physics Department, Ankara, Turkey |
| Bogazici University, Istanbul, Turkey |
| Istanbul Technical University, Istanbul, Turkey |
| National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine |
| University of Bristol, Bristol, United Kingdom |
| Rutherford Appleton Laboratory, Didcot, United Kingdom |
| Imperial College, London, United Kingdom |
| Brunel University, Uxbridge, United Kingdom |
| Baylor University, Waco, Texas, USA |
| The University of Alabama, Tuscaloosa, Alabama, USA |
| Boston University, Boston, Massachusetts, USA |
| Brown University, Providence, Rhode Island, USA |
| University of California, Davis, Davis, California, USA |
| University of California, Los Angeles, Los Angeles, California, USA |
| University of California, Riverside, Riverside, California, USA |
| University of California, San Diego, La Jolla, California, USA |
| University of California, Santa Barbara, Santa Barbara, California, USA |
| California Institute of Technology, Pasadena, California, USA |
| Carnegie Mellon University, Pittsburgh, Pennsylvania, USA |
| University of Colorado at Boulder, Boulder, Colorado, USA |
| Cornell University, Ithaca, New York, USA |
| Fairfield University, Fairfield, Connecticut, USA |
| Fermi National Accelerator Laboratory, Batavia, Illinois, USA |
| University of Florida, Gainesville, Florida, USA |
| Florida International University, Miami, Florida, USA |
| Florida State University, Tallahassee, Florida, USA |
| Florida Institute of Technology, Melbourne, Florida, USA |
| University of Illinois at Chicago (UIC), Chicago, Illinois, USA |
| The University of Iowa, Iowa City, Iowa, USA |
| Johns Hopkins University, Baltimore, Maryland, USA |
| The University of Kansas, Lawrence, Kansas, USA |
| Kansas State University, Manhattan, Kansas, USA |
| Lawrence Livermore National Laboratory, Livermore, California, USA |
| University of Maryland, College Park, Maryland, USA |
| Massachusetts Institute of Technology, Cambridge, Massachusetts, USA |
| University of Minnesota, Minneapolis, Minnesota, USA |
| University of Mississippi, University, Mississippi, USA |
| University of Nebraska-Lincoln, Lincoln, Nebraska, USA |
| State University of New York at Buffalo, Buffalo, New York, USA |
| Northeastern University, Boston, Massachusetts, USA |
| Northwestern University, Evanston, Illinois, USA |
| University of Notre Dame, Notre Dame, Indiana, USA |
| The Ohio State University, Columbus, Ohio, USA |
| Princeton University, Princeton, New Jersey, USA |
| University of Puerto Rico, Mayaguez, USA |
| Purdue University, West Lafayette, Indiana, USA |
| Purdue University Calumet, Hammond, Indiana, USA |
| Rice University, Houston, Texas, USA |
| University of Rochester, Rochester, New York, USA |
aDeceased.
bAlso at Vienna University of Technology, Vienna, Austria.
cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
dAlso at Universidade Federal do ABC, Santo Andre, Brazil.
eAlso at California Institute of Technology, Pasadena, CA, USA.
fAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
hAlso at Suez Canal University, Suez, Egypt.
iAlso at Zewail City of Science and Technology, Zewail, Egypt.
jAlso at Cairo University, Cairo, Egypt.
kAlso at Fayoum University, El-Fayoum, Egypt.
lAlso at Ain Shams University, Cairo, Egypt.
mAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.
nAlso at Université de Haute-Alsace, Mulhouse, France.
oAlso at Moscow State University, Moscow, Russia.
pAlso at Brandenburg University of Technology, Cottbus, Germany.
qAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
rAlso at Eötvös Loránd University, Budapest, Hungary.
sAlso at Tata Institute of Fundamental Research—HECR, Mumbai, India.
tAlso at University of Visva-Bharati, Santiniketan, India.
uAlso at Sharif University of Technology, Tehran, Iran.
vAlso at Isfahan University of Technology, Isfahan, Iran.
wAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
xAlso at Facoltà Ingegneria Università di Roma, Roma, Italy.
yAlso at Università della Basilicata, Potenza, Italy.
zAlso at Università degli Studi Guglielmo Marconi, Roma, Italy.
aaAlso at Università degli studi di Siena, Siena, Italy.
bAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania.
cAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.
dAlso at University of Florida, Gainesville, FL, USA.
eAlso at University of California, Los Angeles, Los Angeles, CA, USA.
fAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.
gAlso at INFN Sezione di Roma, Università di Roma “La Sapienza,” Roma, Italy.
hAlso at University of Athens, Athens, Greece.
iAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.
jAlso at The University of Kansas, Lawrence, KS, USA.
kAlso at Paul Scherrer Institut, Villigen, Switzerland.
lAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.
mAlso at Gaziosmanpasa University, Tokat, Turkey.
nAlso at Adiyaman University, Adiyaman, Turkey.
oAlso at Izmir Institute of Technology, Izmir, Turkey.
pAlso at The University of Iowa, Iowa City, IA, USA.
qAlso at Mersin University, Mersin, Turkey.
rAlso at Ozyegin University, Istanbul, Turkey.
sAlso at Kafkas University, Kars, Turkey.
tAlso at Suleyman Demirel University, Isparta, Turkey.
uu Also at Ege University, Izmir, Turkey.
vv Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
ww Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.
xx Also at University of Sydney, Sydney, Australia.
yy Also at Utah Valley University, Orem, UT, USA.
zz Also at Institute for Nuclear Research, Moscow, Russia.
aaa Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
bbb Also at Argonne National Laboratory, Argonne, IL, USA.
ccc Also at Erzincan University, Erzincan, Turkey.
ddd Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
eee Also at Kyungpook National University, Daegu, Korea.