Search for a Light Pseudoscalar Higgs Boson in the Dimuon Decay Channel in pp Collisions at s=7TeV

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.109.121801</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Apr 25 02:10:26 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/76304</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Search for a Light Pseudoscalar Higgs Boson in the Dimuon Decay Channel in pp Collisions at √s = 7 TeV

S. Chatrchyan et al.*
(CMS Collaboration)
(Received 27 June 2012; published 20 September 2012)

The dimuon invariant mass spectrum is searched in the range between 5.5 and 14 GeV for a light pseudoscalar Higgs boson a, predicted in a number of new physics models, including the next-to-minimal supersymmetric standard model. The data sample used in the search corresponds to an integrated luminosity of 1.3 fb–1 collected in pp collisions at √s = 7 TeV with the CMS detector at the LHC. No excess is observed above the background predictions and upper limits are set on the cross section times production. In the context of the next-to-minimal supersymmetric parameter space are presented in the context of the next-to-minimal model.

DOI: 10.1103/PhysRevLett.109.121801
PACS numbers: 14.80.Da, 13.85.Qk

Low energy supersymmetry is an elegant solution to the hierarchy problem that arises in the standard model, provides a candidate for dark matter, and allows for the unification of gauge couplings at the grand-unified-theory scale [1–5]. However, the minimal supersymmetric model (MSSM) has an ad hoc Higgs superfield mixing parameter (μ) and requires very large masses for the supersymmetric partner of the top quark (stop) in order for the lightest CP-even Higgs boson to be heavier than 122 GeV without large stop mixing [6]. Both problems are solved in the next-to-MSSM (NMSSM) (a review can be found in Ref. [7]), which extends the MSSM by introducing a complex singlet superfield which necessarily contains a scalar field component. Associated super- and scalar-potential terms generate an effective μ parameter and easily raise the mass of the light Higgs boson without requiring a heavy stop [8,9]. The added scalar field expands the Higgs sector to three CP-even scalars (h1, h2, h3) and two CP-odd scalars (a1, a2), and two charged scalars (H+, H−). The a1 is a superposition of the MSSM doublet pseudoscalar (a1MSSM) and the additional singlet pseudoscalar of the NMSSM (a1): a1 = cosθAa1MSSM + sinθA a2, where θA is the mixing angle. The NMSSM has two symmetries that, if imposed (e.g., at the grand-unification-theory scale), imply that small m_{a1}, even m_{a1} < 2m_B (where m_B is the B meson mass), and |cosθA| ≪ 1 are very natural possibilities [10]. However, the reduced couplings C_{a1,bb} = C_{a1μ⁺μ⁻} = C_{a1τ⁺τ⁻} = tanβ cosθA can be sizeable for large values of tanβ, the ratio of neutral Higgs field vacuum expectation values, even if cosθA is small. More generally, superstring modeling suggests the possibility of many light a particles, at least some of which couple to μ⁺ μ⁻, τ⁺ τ⁻, and bb [11]. In the following, a (a1) denotes a general (NMSSM) light pseudoscalar Higgs boson.

Searches for a light a are mainly sensitive to C_{abba} [12,13]. For m_a ≪ m_{Y(3S)}, the strongest constraints on C_{abba} are those from BABAR [14,15]. For m_a > m_{Y(3S)}, only the Tevatron and Large Hadron Collider (LHC) have sensitivity [16], using production via gg → a, where the coupling C_{abba} derives from quark (especially bottom and top) triangle loops. This process, plus higher-order corrections, leads to a large cross section due to the large gg parton luminosity at small gluon momentum fractions, provided the C_{abba} (q = t, b in particular) couplings are not too suppressed. This large cross section will typically lead to a significant number of gg → a → μ⁺ μ⁻ events even though B(a → μ⁺ μ⁻) is small.

In the NMSSM context, where C_{a1,bb} = tanβ cosθA, the existing limits [17,18] translate to rather modest limits on |cosθA|. Such bounds do not strongly constrain NMSSM models of interest for possibly hiding a light Higgs boson because of h → aa decays (with a → 2τ, 2g, 2c, 2s decays being dominant [19]) that are not excluded by large electron-positron (LEP) collider experiments [20,21].

At tree level, the branching fraction for a → μ⁺ μ⁻ depends on m_a and on tanβ, but not on cosθA [16]. It is nearly constant for m_a > 5 GeV and ranges from 10⁻³ to 4 × 10⁻³ for tanβ = 1 to tanβ = 50, changing very little once tanβ > 2. In contrast, σ(gg → a) increases rapidly with tanβ due to the fact that C_{abba} ≈ tanβ. However, top-quark loop contributions and higher-order corrections imply a slower σ(gg → a) increase than tan²β. In the context of the NMSSM, all q̅q couplings of the a1 are proportional to cosθA, implying that σ(gg → a1) ≈ cos²β cosθA.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
This Letter presents the results of a search in $p\bar{p}$ collisions for a light a with a mass near the Y resonances decaying into two oppositely charged muons. Data used for this analysis were recorded by the Compact Muon Solenoid (CMS) detector in $p\bar{p}$ collisions at a center-of-mass energy of 7 TeV, between August and November 2011. The sample corresponds to a total integrated luminosity of 1.3 fb$^{-1}$, collected with a dedicated trigger. As estimated in Ref. [16] and explicitly demonstrated here, CMS has sensitivity beyond the $B\bar{B}$ and CDF limits, for the latter due to the higher production yield $\sigma_{B_{HC}(p\bar{p}\rightarrow a)} \sim 4.5 \sigma_{C_{Tevatron}(p\bar{p}\rightarrow a)}$ and the higher acceptance and efficiency of the muon detector. Furthermore, the CMS analysis can extend the limits into the $m_a > m_{Y(35)}$ mass range.

The central feature of the CMS detector is a superconducting solenoid, of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter, and the brass-scintillator hadron calorimeter. Muons are measured by gas-ionization detectors embedded in the steel return yoke in the pseudorapidity range $|\eta| < 2.4$, $(\eta = -\ln\tan(\theta/2))$, where θ is the polar angle of the trajectory of a particle with respect to the direction of the counterclockwise proton beam) using three detector technologies: drift tubes (DT) (for the range $|\eta| < 1.2$), resistive plate chambers (RPC) (for $|\eta| < 1.6$) and cathode strip chambers (CSC) (for $0.9 < |\eta| < 2.4$). The DT and RPC are indicated as the central “barrel” while the CSC comprises the “end caps.” A more detailed description of the CMS detector can be found in [22].

We search the dimuon invariant mass distribution between 5.5 and 8.8 GeV (defined as “mass range 1”) and between 11.5 and 14 GeV (“mass range 2”) for a narrow resonance a, with a decay width \simMeV, which is natural in the NMSSM context. We avoid the range between 9 and 11 GeV because the abundant contributions of the bottomonium resonances to the mass spectrum makes this search unfeasible. Selection criteria are applied to reduce backgrounds from the QCD continuum, and we perform a mass scan in mass ranges 1 and 2 to determine a potential contribution from an a signal. Given the better mass resolution in the barrel part of the detector than in the end caps, we also separate the mass scan into two acceptance regions, based on the dimuon η, in order to improve the sensitivity.

We analyze events collected with an online selection that requires the detection of two opposite-sign muons with transverse momenta $p_T > 3.5$ GeV and additional requirements imposed at the high level trigger (HLT). All three muon systems, DT, CSC, and RPC, take part in the trigger decision. A good primary vertex is also required, as defined in Ref. [23]. The additional HLT requirements include $p_T(\mu^+\mu^-) > 6$ GeV, $5.5 < m_{\mu^+\mu^-} < 14$ GeV, and a distance of the closest approach of the muon tracks to the beam axis compatible with that expected for prompt decays. A prescale factor of 2 was imposed on the trigger to maintain a reasonable trigger rate.

The main backgrounds arise from QCD processes and, in the lower invariant mass range, from a residual tail of the $Y(1S)$ resonance. We determine the background shape in the invariant mass directly from data, and use simulated events as a cross check. Signal samples, QCD, and Y resonances are simulated with PYTHIA 6.4.24, Tune D6T [24], and CTEQ6 parton distribution functions [25]. Tune Z2 gives compatible results. As the NMSSM is not fully implemented in PYTHIA, we generate the MSSM pseudoscalar A boson in the mass range of 5.5 to 14 GeV and require dimuon decays. These samples also contain a simulation of the effects on the number of primary vertices from overlapping $p\bar{p}$ interactions in the same bunch crossing.

To select the best dimuon candidate in each event, quality criteria are applied to the tracks which reject misidentified muons and muons from kaon and pion decays. Muons are required to be within the geometrical acceptance ($|\eta| \leq 2.4$) and to be in the plateau of the trigger efficiency, with $p_T > 5.5$ GeV. Muon tracks are required to have at least 11 hits in the silicon tracker, at least one of which must be in the pixel detector, and a track fit χ^2/dof < 1.8. This value is chosen to maximize the signal significance with respect to the QCD continuum, which is extracted directly from data.

Isolation requirements suppress misidentified leptons from jets and nonprompt muons from hadron decays. Muons are required to be isolated within a cone of radius $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.3$ around the muon direction, where ϕ is the azimuthal angle. The muon isolation, I_{rel}, is defined as the sum of the p_T (as measured in the silicon tracker) and transverse energy (as measured in the calorimeters) of all objects within this cone (excluding the muon itself), divided by the muon as measured by the tracker. We require $I_{rel} < 0.2$. This requirement is optimized by comparing the simulated a signal with opposite-sign dimuons from data, and we verify that this value is appropriate for both the barrel and end cap dimuon pairs. This isolation requirement rejects a large fraction of the background arising from the QCD production of jets.

Dimuon candidates consist of two opposite-sign muons [26] with an invariant mass between 5.5 and 14 GeV. If more than one dimuon candidate is present, that with the highest χ^2 probability associated to the kinematic fit of the dimuon vertex is retained.

The invariant mass spectrum in the search range has two main contributions: the QCD continuum and the bottomonium resonances. To characterize these shapes for use in the mass scan, we perform a binned maximum likelihood fit to the total invariant mass distribution. For the QCD continuum, we use a first-order polynomial probability density function (PDF). Each Y resonance is parametrized...
Continuum spectra, dividing mass range 1 into 110 steps and mass visibility. We perform mass scans of the invariant mass \(a \) nominial. Figure 1 also shows hypothetical signals from ranges, the data are well described by a first-order polynomial to characterize the background, and perform an unbinned maximum likelihood fit to search for a possible contribution from the \(a \). For each signal mass point, we determine the resolution by fitting the \(a \) invariant mass spectrum with two CB functions (as for the \(Y \), the sum of two CB functions better describes the resolution) and the mass resolution is calculated as the weighted average of the widths of the two functions. The resulting dimuon invariant mass resolution ranges from 50 to 120 MeV (90 to 190 MeV) in the barrel (end caps) for the mass range 5.5 to 14 GeV. These agree well with the resolution obtained from the \(Y \) resonances in data and MC simulation. We fit the resolution as a function of mass using the simulated signal samples, and use this to extract the values of the dimuon mass resolution for each mass bin needed in the scan to determine the upper limit.

In mass range 1, we take into account the radiative tail of the \(Y(1S) \) by including its shape determined from the full invariant mass spectrum fit. No significant discrepancy with SM background predictions is observed, and we proceed to set cross section limits, as described below.

The efficiency for the selection is factorized into three contributions, \(\epsilon = \epsilon_{\text{acc}} \times \epsilon_{\text{trig}} \times \epsilon_{\text{sel}} \), where \(\epsilon_{\text{acc}} \) is the kinematic acceptance for the \(a \), \(\epsilon_{\text{trig}} \) is the efficiency of the muon trigger, and \(\epsilon_{\text{sel}} \) is the efficiency of the selection applied to the dimuon candidates. We use PYTHIA 6 to simulate the \(a \) signal and to determine \(\epsilon_{\text{acc}} \). The trigger and selection efficiencies (\(\epsilon_{\text{trig}} \) and \(\epsilon_{\text{sel}} \)) are measured with \(J/\psi \) events in data using the tag-and-probe technique [28]. We perform this study in bins of \(\eta \) and \(p_T \) of the probe muon. The efficiency values extracted from data are compared with those obtained from the simulation of prompt \(J/\psi \to \mu^+ \mu^- \). The difference between the efficiency in data and MC simulation is evaluated in bins of \(p_T \) and \(\eta \) and used as a correction to weight the MC events in order to accommodate possible discrepancies. These corrections are typically on the order of a few percent. For each dimuon candidate, the weight is the product of the corrections for the two muons.

The isolation requirement efficiency that contributes to \(\epsilon_{\text{sel}} \) cannot be measured using the \(J/\psi \) data set as one of the main production mechanisms for \(J/\psi \) is through \(B \)-meson decays, resulting in nonisolated muons. This is not well accounted for in simulation, and would result in biased data or MC efficiency corrections. In order to estimate this correction, we use \(Z \to \mu^+ \mu^- \) events and consider the lower \(p_T \) spectrum of the probe muon.

The total efficiency \(\epsilon \) is defined for each \(a \) mass sample as the fraction of generated signal events, weighted by the appropriate data-MC corrections, that satisfy all the selection requirements. This ranges from 1%–3.5% for the

![Image](image_url)

FIG. 1 (color online). Dimuon invariant mass distribution for the barrel (upper) and end caps (lower) after the event selection. The invariant mass distributions are fitted accounting for the three \(Y \) resonances and QCD continuum. Hypothetical signals from pseudoscalar Higgs bosons \(a \) at 7 and 12 GeV are shown.

<table>
<thead>
<tr>
<th>TABLE I. Fitted numbers of (Y) and continuum background events in the invariant mass range 5.5–14 GeV. The (Y) contributions are summed over the three resonances.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>(Y)</td>
</tr>
<tr>
<td>Continuum</td>
</tr>
</tbody>
</table>

range 2 into 100 steps of 30 MeV each, and treating the barrel and end cap spectra separately. At each step, we build a signal Gaussian PDF with a mean fixed to the center of the step and a width determined by the mass resolution, use a first-order polynomial to characterize the background, and perform an unbinned maximum likelihood fit to search for a possible contribution from the \(a \). For each signal mass point, we determine the resolution by fitting the \(a \) invariant mass spectrum with two CB functions (as for the \(Y \), the sum of two CB functions better describes the resolution) and the mass resolution is calculated as the weighted average of the widths of the two functions. The resulting dimuon invariant mass resolution ranges from 50 to 120 MeV (90 to 190 MeV) in the barrel (end caps) for the mass range 5.5 to 14 GeV. These agree well with the resolution obtained from the \(Y \) resonances in data and MC simulation. We fit the resolution as a function of mass using the simulated signal samples, and use this to extract the values of the dimuon mass resolution for each mass bin needed in the scan to determine the upper limit.

In mass range 1, we take into account the radiative tail of the \(Y(1S) \) by including its shape determined from the full invariant mass spectrum fit. No significant discrepancy with SM background predictions is observed, and we proceed to set cross section limits, as described below.

The efficiency for the selection is factorized into three contributions, \(\epsilon = \epsilon_{\text{acc}} \times \epsilon_{\text{trig}} \times \epsilon_{\text{sel}} \), where \(\epsilon_{\text{acc}} \) is the kinematic acceptance for the \(a \), \(\epsilon_{\text{trig}} \) is the efficiency of the muon trigger, and \(\epsilon_{\text{sel}} \) is the efficiency of the selection applied to the dimuon candidates. We use PYTHIA 6 to simulate the \(a \) signal and to determine \(\epsilon_{\text{acc}} \). The trigger and selection efficiencies (\(\epsilon_{\text{trig}} \) and \(\epsilon_{\text{sel}} \)) are measured with \(J/\psi \) events in data using the tag-and-probe technique [28]. We perform this study in bins of \(\eta \) and \(p_T \) of the probe muon. The efficiency values extracted from data are compared with those obtained from the simulation of prompt \(J/\psi \to \mu^+ \mu^- \). The difference between the efficiency in data and MC simulation is evaluated in bins of \(p_T \) and \(\eta \) and used as a correction to weight the MC events in order to accommodate possible discrepancies. These corrections are typically on the order of a few percent. For each dimuon candidate, the weight is the product of the corrections for the two muons.

The isolation requirement efficiency that contributes to \(\epsilon_{\text{sel}} \) cannot be measured using the \(J/\psi \) data set as one of the main production mechanisms for \(J/\psi \) is through \(B \)-meson decays, resulting in nonisolated muons. This is not well accounted for in simulation, and would result in biased data or MC efficiency corrections. In order to estimate this correction, we use \(Z \to \mu^+ \mu^- \) events and consider the lower \(p_T \) spectrum of the probe muon.

The total efficiency \(\epsilon \) is defined for each \(a \) mass sample as the fraction of generated signal events, weighted by the appropriate data-MC corrections, that satisfy all the selection requirements. This ranges from 1%–3.5% for the
α mass range of 5.5–14 GeV, and we fit the ϵ distributions with second (third) order polynomial functions in the barrel (end caps) to use in the mass scan. The increase in the efficiency as a function of the invariant mass is mainly due to the p_T requirements on the muons at the HLT level.

Several sources of systematic uncertainty affect these results, including a 2.2% uncertainty on the integrated luminosity [29]. The efficiency corrections are determined using the tag-and-probe results described above. We determine, event-by-event, the uncertainty on the total efficiency corrections by propagating the uncertainties on the single muon corrections. This total event efficiency uncertainty is largely independent of mass, with a maximum value of 12%. We apply this value as a systematic uncertainty for every bin in the scan.

The isolation efficiency is uncertain at the 5% level, corresponding to the largest discrepancy between data and MC simulation in the entire relevant p_T range. We evaluate the systematic uncertainty on the resolution of the α as the quadrature sum of the difference between the mass resolution of the α with a mass of 10 GeV and the resolution of the $Y(2S)$ (which has the same mass) in MC simulation, and the difference between the latter and the mass resolution obtained for the $Y(2S)$ from data. Additionally, the finite statistics for the determination of the mass resolution as a function of the dimuon mass contributes a source of uncertainty. We consider the mass ranges separately and include these systematic uncertainties in the calculation of the upper limit on the cross section times branching fraction. Overall, this adds an 11% (4%) effect for the barrel (end caps).

Systematic uncertainties on the background description include the shape uncertainty of the first-order polynomial fit of the background PDF. We fit the background with alternative functions (a second-order polynomial and an exponential function), generate MC pseudoexperiments using these functions, and fit the distributions using the first-order polynomial. The resulting systematic uncertainties, from the distribution of the fitted parameters, is of the order of a few percent.

No significant signal is observed, and we determine 95% confidence level (C.L.) upper limits on $\sigma \times B(p p \rightarrow a \rightarrow \mu^+ \mu^-)$ as a function of the dimuon mass using the CL$_S$ approach [30–32]. A few steps at the edges of the mass scans, where the fitting procedure has no predictive power on the signal shape, are not used. Figure 2 shows the upper limit results for the two mass ranges including the systematic uncertainties discussed above. These limits are significant in the context of the NMSSM, and can be presented in terms of upper limits on $|\cos \theta_1|$. The larger the value of $\tan \beta$, the stronger is the constraint. Figure 3 presents upper limits, $|\cos \theta_1|^{\text{max}}$ as a function of m_{a_1} for $\beta = 1, 2, 3, 10, 30, 50$. Our upper limits are compared to an earlier analysis of the BABAR $Y(1S)$ and $Y(3S)$ data [33], and are superior for $m_{a_1} \geq 7.5$ GeV for $\tan \beta = 50$.

In conclusion, we performed a search for a narrow, low mass pseudoscalar α, which is produced by $gg \rightarrow \alpha$ and decays via $\alpha \rightarrow \mu^+ \mu^-$ in the mass ranges 5.5–8.8 GeV and decreasing to $m_{a_1} \geq 6$ GeV for $\tan \beta = 2$, and are superior for all masses at $\tan \beta = 1$. Further, these are the first significant limits for $m_{a_1} > m_{Y(3S)}$.

In conclusion, we performed a search for a narrow, low mass pseudoscalar α, which is produced by $gg \rightarrow \alpha$ and decays via $\alpha \rightarrow \mu^+ \mu^-$ in the mass ranges 5.5–8.8 GeV and...
limits are applied in the context of the light pseudoscalar \(a\) upper limits on \(\frac{C_2}{C_7}\) detector. No significant signal is observed, and we set constraints for a significant portion of the \(m_{a_1} < m_{\chi_1}\) mass range, and are the first significant limits available in the mass range. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); DOE and NSF (U.S.).

[1] Y. A. Gol’fand and E. P. Likhtman, JETP Lett. 13, 323 (1971).

S. Chatrchyan¹, V. Khachatryan¹, A. M. Sirunyan¹, A. Tumasyan¹, W. Adam², T. Bergauer², M. Dragicevic², J. Erö², C. Fabjan², M. Friedl², R. Frühwirth², V. M. Ghete², J. Hammer², N. Hörmann², J. Hrubec², M. Jeitler², W. Kiesenhofer², K. Knünz², M. Krammer², D. Liko², I. Mikulec², M. Pernicka², B. RabHaras², C. Rohringer², H. Rohringer², R. Schöfbeck², J. Strauss², A. Taurok², P. Wagner², W. Waltenberger², G. Walzel², E. Widi², C.-E. Wulz², V. Mossolov³, N. Shumeiko³, J. Suarez Gonzalez³, S. Bansal⁴, T. Cornelis⁴, E. A. De Wolf⁴.
(CMS Collaboration)
PRL 109, 121801 (2012) PHYSICAL REVIEW LETTERS week ending 21 SEPTEMBER 2012

108 University of Bristol, Bristol, United Kingdom
109 Rutherford Appleton Laboratory, Didcot, United Kingdom
110 Imperial College, London, United Kingdom
111 Brunel University, Uxbridge, United Kingdom
112 Baylor University, Waco, Texas, USA
113 The University of Alabama, Tuscaloosa, Alabama, USA
114 Boston University, Boston, Massachusetts, USA
115 Brown University, Providence, Rhode Island, USA
116 University of California, Davis, Davis, California, USA
117 University of California, Los Angeles, Los Angeles, California, USA
118 University of California, Riverside, Riverside, California, USA
119 University of California, San Diego, La Jolla, California, USA
120 University of California, Santa Barbara, Santa Barbara, California, USA
121 California Institute of Technology, Pasadena, California, USA
122 Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
123 University of Colorado at Boulder, Boulder, Colorado, USA
124 Cornell University, Ithaca, New York, USA
125 Fairfield University, Fairfield, Connecticut, USA
126 Fermi National Accelerator Laboratory, Batavia, Illinois, USA
127 University of Florida, Gainesville, Florida, USA
128 Florida International University, Miami, Florida, USA
129 Florida State University, Tallahassee, Florida, USA
130 Florida Institute of Technology, Melbourne, Florida, USA
131 University of Illinois at Chicago (UIC), Chicago, Illinois, USA
132 The University of Iowa, Iowa City, Iowa, USA
133 Johns Hopkins University, Baltimore, Maryland, USA
134 The University of Kansas, Lawrence, Kansas, USA
135 Kansas State University, Manhattan, Kansas, USA
136 Lawrence Livermore National Laboratory, Livermore, California, USA
137 University of Maryland, College Park, Maryland, USA
138 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
139 University of Minnesota, Minneapolis, Minnesota, USA
140 University of Mississippi, Oxford, Mississippi, USA
141 University of Nebraska-Lincoln, Lincoln, Nebraska, USA
142 State University of New York at Buffalo, Buffalo, New York, USA
143 Northeastern University, Boston, Massachusetts, USA
144 Northwestern University, Evanston, Illinois, USA
145 University of Notre Dame, Notre Dame, Indiana, USA
146 The Ohio State University, Columbus, Ohio, USA
147 Princeton University, Princeton, New Jersey, USA
148 University of Puerto Rico, Mayaguez, Puerto Rico, USA
149 Purdue University, West Lafayette, Indiana, USA
150 Purdue University Calumet, Hammond, Indiana, USA
151 Rice University, Houston, Texas, USA
152 University of Rochester, Rochester, New York, USA
153 The Rockefeller University, New York, New York, USA
154 Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
155 University of Tennessee, Knoxville, Tennessee, USA
156 Texas A&M University, College Station, Texas, USA
157 Texas Tech University, Lubbock, Texas, USA
158 Vanderbilt University, Nashville, Tennessee, USA
159 University of Virginia, Charlottesville, Virginia, USA
160 Wayne State University, Detroit, Michigan, USA
161 University of Wisconsin, Madison, Wisconsin, USA

a Deceased.
b Also at Vienna University of Technology, Vienna, Austria.
c Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
d Also at Universidade Federal do ABC, Santo Andre, Brazil.
e Also at California Institute of Technology, Pasadena, California, USA.
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.

Also at Suez Canal University, Suez, Egypt.

Also at Zewail City of Science and Technology, Zewail, Egypt.

Also at Cairo University, Cairo, Egypt.

Also at Fayoum University, El-Fayoum, Egypt.

Also at Ain Shams University, Cairo, Egypt.

Now at British University, Cairo, Egypt.

Also at Soltan Institute for Nuclear Studies, Warsaw, Poland.

Also at Université de Haute-Alsace, Mulhouse, France.

Now at Joint Institute for Nuclear Research, Dubna, Russia.

Also at Moscow State University, Moscow, Russia.

Also at Brandenburg University of Technology, Cottbus, Germany.

Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

Also at Eötvös Loránd University, Budapest, Hungary.

Also at Tata Institute of Fundamental Research-HECR, Mumbai, India.

Also at University of Visva-Bharati, Santiniketan, India.

Also at Sharif University of Technology, Tehran, Iran.

Also at Isfahan University of Technology, Isfahan, Iran.

Also at Shiraz University, Shiraz, Iran.

Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Also at Facoltà Ingegneria Università di Roma, Roma, Italy.

Also at Università della Basilicata, Potenza, Italy.

Also at Università degli Studi Guglielmo Marconi, Roma, Italy.

Also at Università degli studi di Siena, Siena, Italy.

Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania.

Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

Also at University of Florida, Gainesville, Florida, USA.

Also at University of California, Los Angeles, California, USA.

Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

Also at INFN Sezione di Roma, Università di Roma “La Sapienza,” Roma, Italy.

Also at University of Athens, Athens, Greece.

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at The University of Kansas, Lawrence, Kansas, USA.

Also at Paul Scherrer Institut, Villigen, Switzerland.

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

Also at Gaziosmanpasa University, Tokat, Turkey.

Also at Adiyaman University, Adiyaman, Turkey.

Also at The University of Iowa, Iowa City, Iowa, USA.

Also at Mersin University, Mersin, Turkey.

Also at Ozyegin University, Istanbul, Turkey.

Also at Kafkas University, Kars, Turkey.

Also at Suleyman Demirel University, Isparta, Turkey.

Also at Ege University, Izmir, Turkey.

Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.

Also at University of Sydney, Sydney, Australia.

Also at Utah Valley University, Orem, Utah, USA.

Also at Institute for Nuclear Research, Moscow, Russia.

Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

Also at Argonne National Laboratory, Argonne, Illinois, USA.

Also at Erzincan University, Erzincan, Turkey.

Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

Also at Kyungpook National University, Daegu, Korea.