Measurement of the Electron Charge Asymmetry in Inclusive W Production in pp Collisions at \(s=7\text{TeV} \)

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.109.111806</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Nov 25 19:02:02 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/76308</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Measurement of the Electron Charge Asymmetry in Inclusive W Production in pp Collisions at $\sqrt{s} = 7$ TeV

S. Chatrchyan et al.*
(CMS Collaboration)
(Received 12 June 2012; published 11 September 2012)

A measurement of the electron charge asymmetry in inclusive $pp \to W + X \to e\nu + X$ production at $\sqrt{s} = 7$ TeV is presented based on data recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 840 pb$^{-1}$. The electron charge asymmetry reflects the unequal production of W^+ and W^- bosons in pp collisions. The electron charge asymmetry is measured in bins of the absolute value of electron pseudorapidity in the range of $|\eta| < 2.4$. The asymmetry rises from about 0.1 to 0.2 as a function of the pseudorapidity and is measured with a relative precision better than 7%. This measurement provides new stringent constraints for parton distribution functions.

DOI: 10.1103/PhysRevLett.109.111806 PACS numbers: 14.70.Fm, 12.15.−y, 13.85.Qk

The dominant mechanism for W boson production in pp collisions at the Large Hadron Collider (LHC) is the annihilation of a valence quark from one proton with a sea antiquark from the other. Because the proton contains two valence u quarks and one valence d quark, W^+ bosons are produced more frequently than W^- bosons. The Compact Muon Solenoid (CMS) Collaboration measured the ratio of the inclusive W^+ and W^- production cross sections at $\sqrt{s} = 7$ TeV at the LHC [1] to be in good agreement with the prediction of the standard model based on various parton distribution functions (PDFs) [2–7]. In this Letter, we present a further investigation of inclusive W^+ and W^- production in the $W \to e\nu$ decay channel. We measure the electron charge asymmetry, defined as

$$A(\eta) = \frac{d\sigma/d\eta(W^+ \to e^+\nu) - d\sigma/d\eta(W^- \to e^-\bar{\nu})}{d\sigma/d\eta(W^+ \to e^+\nu) + d\sigma/d\eta(W^- \to e^-\bar{\nu})},$$

(1)

where η is the electron pseudorapidity in the CMS lab frame [$\eta = -\text{ln} \tan(\theta/2)$, θ is the polar angle, measured from the anticlockwise beam direction], and $d\sigma/d\eta$ is the differential cross section for electrons from W boson decays. Within the CMS tracker acceptance ($|\eta| < 2.5$), the asymmetry is expected to rise with increasing $|\eta|$ because the valence u quarks that produce the W^+ bosons tend to carry a higher fraction x of the proton momentum [8] than the valence d quarks that produce the W^- bosons. Measurements of the asymmetry provide constraints on the u, d, \bar{u}, and \bar{d} PDFs in the range $10^{-3} < x < 10^{-1}$ and are complementary to measurements of deep inelastic scattering at HERA [4].

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
1.48 < |η| < 3.00 in two end cap regions. A preshower detector consisting of two planes of silicon sensors interleaved with a total of 3X0 of lead is located in front of the ECAL end caps. The energy resolution measured for electrons from Z decays varies across the acceptance of the ECAL. It is less than 2% in the central region of the ECAL barrel (|η| < 1), 3% in the outer barrel, and approximately 4%–5% in the end caps.

The W → eν candidates are characterized by a high-pT electron accompanied by missing transverse energy E_T, due to the escaping neutrino. Experimentally, E_T is determined as the magnitude of the negative vector sum of the transverse momenta of all particles reconstructed using a particle-flow algorithm [15] and, in this measurement, E_T is used to separate signal from background on a statistical basis. The W → eν candidates used in this analysis were collected using a set of inclusive single-electron triggers that did not include E_T requirements. Multijet and photon + jet production (QCD backgrounds) can give rise to high-pT electron candidates and mimic W decays. Other background sources include Drell-Yan (Z/γ* → ℓ+ℓ−) and W → τν production [electroweak (EW) backgrounds], as well as top-quark pair (t¯t) production.

Monte Carlo (MC) simulation samples are used to develop analysis techniques and estimate some of the background contributions. The signal and the EW backgrounds are simulated with the POWHEG [16] event generator interfaced with the CT10 [3] PDF model. The t¯t background is generated with the MADGRAPH [17] event generator interfaced with the CTEQ6L [18] PDF model. All generated events are passed through the CMS detector simulation using GEANT4 [19] and then processed with a reconstruction sequence identical to that used for collision data.

The selection criteria for electron identification are similar to those used in the W and Z cross section measurements [1]. A brief summary is given here for completeness. Electrons are identified as clusters of energy deposited in the ECAL fiducial volume matched to tracks from the silicon tracker. The tracks are reconstructed using a Gaussian sum filter (GSF) algorithm [20] that takes into account possible energy loss due to bremsstrahlung in the tracker layers. Particles misidentified as electrons are suppressed by requiring that the shower shape of the ECAL cluster be consistent with an electron candidate, and that the η and φ coordinates of the track trajectory extrapolated to the ECAL match those of the ECAL cluster. The azimuthal angle φ is measured in the plane perpendicular to the beam axis. Furthermore, electrons from W decay are expected to be isolated from other activity in the event. We therefore require that little transverse energy be observed in the ECAL, hadron calorimeter, and silicon tracking system within a cone ΔR < 0.3 around the electron direction, where ΔR = √((Δφ)² + (Δη)²) and where the calorimeter energy deposits and the track associated with the electron candidate are excluded.

A large fraction of electrons radiate photons, owing to the substantial amount of material in front of the ECAL detector. These photons may convert close to the original electron trajectory, leading to a non-negligible charge misidentification probability. Three different methods are used to determine the electron charge. First, the electron charge is determined by the signed curvature of the associated GSF track. Second, the charge is determined from the associated trajectory reconstructed in the silicon tracker using a Kalman filter algorithm [21]. Third, the electron charge is determined from the azimuthal angle between the vector joining the nominal interaction point and the ECAL cluster position and the vector joining the nominal interaction point and the innermost hit of the GSF track. It is required that all three charge determinations from these methods agree. This procedure significantly reduces the charge misidentification probability to 0.01% in the ECAL barrel and to 0.3% in the ECAL end caps. The electron pseudorapidity is measured from the GSF track at the pp interaction point; the uncertainty on η is negligible for this analysis.

The W → eν candidates are selected by requiring electrons to have transverse momentum p_T > 35 GeV, |η| < 2.4, and to be associated with one of the electron trigger candidates used to select the electron data set. The Drell-Yan production and t¯t backgrounds are suppressed by rejecting events that contain a second isolated electron or muon with p_T > 15 GeV and |η| < 2.4. According to MC simulations, the data sample of selected electrons consists of about 16% QCD background events, about 7.4% EW background events, and about 0.4% t¯t background events.

As the forward and backward hemispheres are equivalent in pp collisions, the asymmetry results are presented as a function of the absolute value of the electron pseudorapidity. The selected events are divided into bins of |η| with bin width 0.2. The region of |η| between 1.4 and 1.6 is excluded because the cables and services in the transition region between the ECAL barrel and end caps cause a significant reduction in the efficiency and purity of the W selection. A total of 1229315 W+ → e+ν candidates and 991256 W− → e−¯ν candidates are selected in the 11 bins of |η|.

A binned extended maximum-likelihood fit is performed to the E_T distribution to estimate the W → eν signal yield for electrons (N−) and positrons (N+) in each pseudorapidity bin. The signal E_T shape is derived from MC simulations with an event-by-event correction to account for differences in the energy scale and resolution between data and simulation inferred from the hadronic recoil energy distributions in Z/γ* → e+e− events selected from data [22]. The shape of the QCD background is determined, for each charge, from a signal-free control sample obtained by inverting a subset of the electron identification criteria [1]. The E_T shapes for other backgrounds
The results of the fits to the data are shown for the

\[j \]

symmetric. The yield of the QCD background calculated from the predicted values of the cross sections at next-to-leading order (NLO). The yield of the QCD background shape is evaluated by studying the distribution for positrons (left) and electrons (right) in data. The hatched area represents the statistical and systematic uncertainties associated with the fitting procedure.

Results are shown for the first pseudorapidity bin (\(|\eta| < 0.2\), top) and for the tenth pseudorapidity bin (\(2.0 < |\eta| < 2.2\), bottom). The systematic and statistical components associated with the fitting procedure.

such as the Drell-Yan process, \(\bar{\nu}\nu\), and \(W \rightarrow \tau \nu\) are taken from MC simulations with a fixed normalization relative to the \(W \rightarrow e\nu\) yields. The normalization factors are calculated from the predicted values of the cross sections at next-to-leading order (NLO). The yield of the QCD background and the yield of the \(W \rightarrow e\nu\) signal \((N^+\) are free parameters in the fit. The results of the fits to the data are shown for the first (\(|\eta| < 0.2\)) and the tenth (\(2.0 < |\eta| < 2.2\)) pseudorapidity bins in Fig. 1. The uncertainty in each bin represents the systematic and statistical components associated with the \(N^+\) extraction procedure. The ratio of the QCD background yields estimated from the fit to the \(E_T\) distributions for positive and negative electrons is consistent with unity. The EW background yield for positive electrons is larger than for negative electrons because of the contribution of \(W \rightarrow \tau \nu\) events. The charge asymmetry is obtained from the \((N^+ - N^-) / (N^+ + N^-)\) ratio.

Two sources of systematic uncertainty are related to the signal \(E_T\) shape, the PDF used to generate the events, and the uncertainty on the correction from the hadronic recoil applied to the signal \(E_T\) shape. The PDF uncertainties and their effects on the measured asymmetries are evaluated using the prescription given by the PDF4LHC Working Group [23]. Uncertainties on the correction from the hadronic recoil obtained from data are also propagated to the asymmetry measurements. The systematic uncertainty due to the QCD background shape is evaluated by studying samples from different QCD background control regions.

| \(|\eta|\) bin | \([0.0, 0.2]\) | \([0.2, 0.4]\) | \([0.4, 0.6]\) | \([0.6, 0.8]\) | \([0.8, 1.0]\) | \([1.0, 1.2]\) | \([1.2, 1.4]\) | \([1.6, 1.8]\) | \([1.8, 2.0]\) | \([2.0, 2.2]\) | \([2.2, 2.4]\) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| \(|\eta|\) \(\leq 0.2\) | 1.8 | 0.6 | \(<0.1\) | 4.5 |
| \(0.2 < |\eta| \leq 0.4\) | 2.5 | 0.6 | \(<0.1\) | 4.4 |
| \(0.4 < |\eta| \leq 0.6\) | 2.7 | 0.3 | \(<0.1\) | 4.4 |
| \(0.6 < |\eta| \leq 0.8\) | 2.5 | 0.3 | \(<0.1\) | 4.4 |
| \(0.8 < |\eta| \leq 1.0\) | 1.9 | 0.6 | 0.1 | 4.4 |
| \(1.0 < |\eta| \leq 1.2\) | 2.4 | 1.0 | 0.1 | 4.9 |
| \(1.2 < |\eta| \leq 1.4\) | 2.6 | 0.8 | 0.1 | 5.4 |
| \(1.6 < |\eta| \leq 1.8\) | 3.1 | 0.8 | 0.1 | 9.2 |
| \(1.8 < |\eta| \leq 2.0\) | 2.0 | 1.6 | 0.2 | 8.7 |
| \(2.0 < |\eta| \leq 2.2\) | 2.0 | 1.6 | 0.2 | 10.0 |
| \(2.2 < |\eta| \leq 2.4\) | 2.4 | 0.3 | 12.5 |

The matrix is symmetric.
The systematic uncertainty due to the modelling of Drell-Yan production, $t\bar{t}$, and $W \rightarrow \tau \nu$ is estimated by varying the relative normalization of the EW backgrounds to the $W \rightarrow e\nu$ yield by the uncertainty on the Drell-Yan production and $t\bar{t}$ cross sections, and the effect on the observed asymmetry is negligible. The values of N^\pm from the fitting procedure are insensitive to the presence of pileup interactions because the p_T distributions are obtained from data.

In order to compare our results directly to theoretical predictions, the observed charge asymmetry is corrected for three detector effects: (1) electron energy scale and resolution, (2) relative detection efficiency of positrons and electrons, and (3) electron charge misidentification.

The electron energy scale and resolution can bias the asymmetry because of the effect on electrons with transverse momentum close to the threshold value of 35 GeV. The electron energy scale and resolution are determined directly from the $Z/\gamma^* \rightarrow e^+ e^-$ data and are used to adjust the simulated electron energy at the generator level. The correction to the measured charge asymmetry is estimated in each pseudorapidity bin by comparing the charge asymmetry as determined in the simulation with the resulting asymmetry after smearing. The corrections for the electron energy scale and resolution are found to fall between -4.4×10^{-3} and 0.2×10^{-3}. The uncertainties on the energy scale and resolutions are taken as sources for systematic uncertainties. The charge asymmetry is also corrected for final-state radiation, and the uncertainty on the correction is taken as an additional systematic uncertainty, which is summed in quadrature with the uncertainty on the electron energy scale and resolution.

Any efficiency difference between electrons and positrons would bias the measured charge asymmetry. The total electron efficiency (including electron reconstruction, identification, and trigger efficiencies) in each pseudorapidity bin is measured using the $Z/\gamma^* \rightarrow e^+ e^-$ data, separately for e^- and e^+, using the tag-and-probe method [1]. The efficiency ratio is calculated and found to be between 0.96 and 1.03; the statistical uncertainties on the efficiency ratios (0.01–0.03) are treated as systematic uncertainties. This is the dominant systematic uncertainty in all the pseudorapidity bins.

The true charge asymmetry \mathcal{A} is diluted because of charge misidentification, resulting in an observed asymmetry $\mathcal{A}_{\text{obs}} = \mathcal{A} (1 - 2w)$. The electron charge misidentification probability w is measured using $Z/\gamma^* \rightarrow e^+ e^-$ events in data. The observed electron charge asymmetry is corrected for the charge misidentification probability as a function of $|\eta|$. The statistical uncertainty on the charge misidentification probability is taken as the systematic uncertainty.

Table I summarizes the systematic uncertainties in all the electron pseudorapidity bins. The full systematic covariance matrix is given in Table II.

Table III. Summary of the measured charge asymmetry results. The first uncertainty is statistical and the second is systematic.

$	\eta	$ bin	Measured	Theoretical predictions	
	Asymmetry \mathcal{A}	CT10	HERAPDF	MSTW	NNPDF
[0.0, 0.2]	102 ± 3 ± 5	109 ± 5	106.4 ± 4	87.3 ± 3	107 ± 5
[0.2, 0.4]	111 ± 3 ± 5	114 ± 5	110.4 ± 4	89.7 ± 3	110 ± 5
[0.4, 0.6]	116 ± 3 ± 5	119 ± 5	115.4 ± 4	98.3 ± 3	116 ± 5
[0.6, 0.8]	123 ± 3 ± 5	126 ± 5	122.4 ± 4	103.5 ± 3	123 ± 5
[0.8, 1.0]	133 ± 3 ± 5	138.4 ± 4	132.4 ± 4	115.5 ± 3	134 ± 5
[1.0, 1.2]	136 ± 3 ± 6	146 ± 6	140.5 ± 5	128.3 ± 4	145 ± 5
[1.2, 1.4]	156 ± 3 ± 6	164.5 ± 5	153.4 ± 5	144 ± 5	158 ± 5
[1.6, 1.8]	166 ± 3 ± 10	195.3 ± 9	181 ± 5	179 ± 5	194 ± 0
[1.8, 2.0]	197 ± 3 ± 9	207.3 ± 10	196.3 ± 10	200 ± 5	206 ± 0
[2.0, 2.2]	224 ± 3 ± 11	224.3 ± 11	211.3 ± 13	213.5 ± 19	219 ± 4
[2.2, 2.4]	210 ± 4 ± 13	241.3 ± 12	225.4 ± 14	231.5 ± 19	231 ± 5

The measured charge asymmetry results are summarized in Table III with both statistical and systematic uncertainties shown. The statistical uncertainties in the various pseudorapidity bins are uncorrelated.

The experimental results are compared in Table III and in Fig. 2 to theoretical predictions obtained with the NLO MCFM [24] generator interfaced with CT10 [3], HERAPDF [4], NNPDF [5], and MSTW2008NLO [2] PDF models. The theoretical errors are estimated using the PDF reweighting technique [25]. The experimental data are in agreement with the predictions from CT10, NNPDF, and HERAPDF, while the predictions from

![FIG. 2 (color online). Comparison of the measured electron asymmetry to the predictions of different PDF models for the electron $p_T > 35$ GeV. The error bars indicate both statistical and systematic uncertainties. The data points are placed in the center of the $|\eta|$ bins. The PDF uncertainty bands are estimated using the PDF reweighting technique and correspond to a 68% confidence level.](111806-4)
MSTW are systematically lower than the observed asymmetry in the region $|\eta| < 1.4$.

In summary, we have measured the electron charge asymmetry in the $W \rightarrow e\nu$ channel in a sample of proton-proton collisions at 7 TeV, corresponding to an integrated luminosity of 840 pb$^{-1}$. The measured asymmetry rises from about 0.1 to 0.2 as a function of the pseudorapidity, with an uncertainty that ranges from 0.006 in the central region to 0.014 in the ECAL end caps. This precise measurement of the electron charge asymmetry in inclusive W production at the LHC provides stringent constraints for parton distribution functions.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); CONICYT (Chile); KFUPM, Saudi Arabia; DST-NRF, South Africa; CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Pakistan); MSCINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); DOE and NSF (U.S.).

Also at Suez Canal University, Suez, Egypt.
Also at Zewail City of Science and Technology, Zewail, Egypt.
Also at Cairo University, Cairo, Egypt.
Also at Fayoum University, El-Fayoum, Egypt.
Also at Ain Shams University, Cairo, Egypt.
Now at British University, Cairo, Egypt.
Also at Soltan Institute for Nuclear Studies, Warsaw, Poland.
Also at Université de Haute-Alsace, Mulhouse, France.
Now at Joint Institute for Nuclear Research, Dubna, Russia.
Also at Moscow State University, Moscow, Russia.
Also at Brandenburg University of Technology, Cottbus, Germany.
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
Also at Eötvös Loránd University, Budapest, Hungary.
Also at Tata Institute of Fundamental Research - HECR, Mumbai, India.
Also at University of Visva-Bharati, Santiniketan, India.
Also at Sharif University of Technology, Tehran, Iran.
Also at Isfahan University of Technology, Isfahan, Iran.
Also at Shiraz University, Shiraz, Iran.
Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran.
Also at Facoltà Ingegneria Università di Roma, Roma, Italy.
Also at Università della Basilicata, Potenza, Italy.
Also at Università degli Studi Guglielmo Marconi, Roma, Italy.
Also at University of Athens, Athens, Greece.
Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at The University of Kansas, Lawrence, KS, USA.
Also at Paul Scherrer Institut, Villigen, Switzerland.
Also at The University of Texas at Austin, Austin, TX, USA.
Also at Facolta Ingegneria Università di Roma, Roma, Italy.
Also at INFN Sezione di Roma, Università di Roma “La Sapienza”, Roma, Italy.
Also at University of Athens, Athens, Greece.
Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at The University of Kansas, Lawrence, KS, USA.
Also at Paul Scherrer Institut, Villigen, Switzerland.
Also at The Pennsylvania State University, University Park, PA, USA.
Also at Kazan Federal University, Kazan, Russia.
Also at Philae Institute of Nuclear Research, Moscow, Russia.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Beer-Sheva University, Beer-Sheva, Israel.
Also at University of Birmingham, Birmingham, UK.
Also at The University of Warwick, Coventry, UK.
Also at University of Chicago, Chicago, IL, USA.
Also at University of California, San Diego, CA, USA.
Also at University of California, Los Angeles, CA, USA.
Also at University of California, Los Angeles, CA, USA.
Also at University of California, Los Angeles, CA, USA.
Also at University of California, Los Angeles, CA, USA.
Also at University of Manitoba, Winnipeg, Canada.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.
Also at University of New Mexico, Albuquerque, NM, USA.