Reward Prediction Error Signaling in Posterior Dorsomedial Striatum Is Action Specific

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1523/jneurosci.0832-12.2012</td>
</tr>
<tr>
<td>Publisher</td>
<td>Society for Neuroscience</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Apr 24 06:08:43 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/76756</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Reward Prediction Error Signaling in Posterior Dorsomedial Striatum Is Action Specific

Thomas A. Stalnaker,1 Gwendolyn G. Calhoon,2 Masaaki Ogawa,3 Matthew R. Roesch,4,5 and Geoffrey Schoenbaum1

Neural correlates of reward prediction errors (RPEs) have been found in dorsal striatum. Such signals may be important for updating associative action representations within striatum. In order that the appropriate representations can be updated, it might be important for the RPE signal to be specific for the action that led to that error. However, RPEs signaled by midbrain dopamine neurons, which project heavily to striatum, are not action-specific. Here we tested whether RPE-like activity in dorsal striatum is action-specific; we recorded single-unit activity in posterior dorsomedial and dorsolateral striatum as rats performed a task in which the reward predictions associated with two different actions were repeatedly violated, thereby eliciting RPEs. We separately analyzed fast firing neurons (FFNs) and phasically firing neurons (total n = 1076). Only among FFNs recorded in posterior dorsomedial striatum did we find a population with RPE-like characteristics (19 of all 196 FFNs, 10%). This population showed a phasic increase in activity during unexpected rewards, a phasic decrease in activity during unexpected omission of rewards, and a phasic increase in activity during cues when they predicted high-value reward. However, unlike a classical RPE signal, this signal was linked to the action that elicited the prediction error, in that neurons tended to signal RPEs only after their anti-preferred action. This action-specific RPE-like signal could provide a mechanism for updating specific associative action representations in posterior dorsomedial striatum.
control (Yin and Knowlton, 2004, 2006; Yin et al., 2005a,b; Bal-leine et al., 2007; Johnson et al., 2007).

We found that a small subset of fast-firing neurons in pDMS but not DLS exhibited prediction error correlates that were action-specific. These neurons tended to show RPE-like activity only on trials in which their anti-preferred action occurred. These data suggest that the dorsal striatal RPE signal could selectively influence particular action-outcome associative representations. This signal could complement the more global dopamine RPE signal to permit updating of action-specific outcome associations.

Materials and Methods

Subjects. Male Long–Evans rats were obtained at 175–200 g from Charles River Labs. Rats were tested at the University of Maryland School of Medicine in accordance with School of Medicine and NIH guidelines.

Surgical procedures and histology. Surgical procedures followed guidelines for aseptic technique. Electrodes, consisting of drivable bundles of 10 25 μm diameter FeNiCr wires (Stablohm 675, California Fine Wire) electropolished with platinum to an impedance of ~300 kΩ, were manufactured and implanted as in prior recording experiments. Electrodes were implanted in either pDMS (n = 4; 0.4 mm posterior to bregma, 2.6 mm left of midline, and 3.5 mm ventral to the brain surface) or dorso-lateral striatum (n = 5; 0.7 mm anterior to bregma, 3.6 mm left of midline, and 3.5 mm ventral to the brain surface). Coordinates were identical to those used to make infusions or lesions in studies that have used identical techniques. At the end of the study, the final electrode position was controlled by computer via solenoids, and photobeam breaks at each port were monitored by computer.

Behavioral task. Recording was conducted in aluminum chambers containing a central odor port above two adjacent fluid wells on one wall. The odor port was connected to an air flow dilution olfactometer to allow the rapid delivery of olfactory cues. Delivery of odors at the odor port and 10% sucrose solution in 0.05 ml bolus at the two fluid ports were controlled by computer via solenoids, and photobeam breaks at each port were monitored by computer.

Each session consisted of a series of self-paced trials organized into four blocks. Rats could initiate a trial by poking into the odor port while the house light was illuminated. While in the odor port, an odor would be delivered for 500 ms. If the rat withdrew from the odor port before the 500 ms were finished, the trial would be aborted. At the end of the 500 ms, the odor, rats could make a choice response consisting of a movement from the odor port to the left fluid well or to the right fluid well. The identity of the odor specified whether they would receive reward at the left well (forced-choice left, specified by verbena olibac odor), the right well (forced-choice right, specified by cedryl acetate trubek odor). Odors were presented in a pseudorandom sequence such that the free-choice odor was presented on 7/20 trials and the left/right odors were presented in equal numbers (±1 over 250 trials). In addition, the same odor could be presented on no more than 3 consecutive trials. The identity and meaning of these odors remained the same across the entire experiment.

Rewards were arranged such that during each block, a low-value reward was available at one well (a delayed reward or a small reward), while a corresponding high-value reward (an immediate reward or a large reward) was available at the opposite well. These contingencies remained the same across all trials in a block. At the beginning of each new block of trials (unsig- naled to the rat), the timing of sucrose delivery was changed so that the high-value reward was replaced by a low-value reward and vice versa. Thus at each block change, positive or negative prediction errors would ensue at particular time points after each of the two choice movements (see Fig. 1 for the contingencies in each block and the timing of the reward prediction errors). On free-choice trials, which were intermixed with forced-choice trials but had the same reward contingencies, rats adapted their choice behavior to match the contingencies available on each block, so that by the end of blocks they were choosing the action leading to the higher value outcome at a high and stable rate (Fig. 2A).

For long-delay conditions, the length of the delay was titrated according to the rats behavior, according to the following algorithm: the side designated as long increased to 4 s every time that side was chosen until it became 3 s. If the rat continued to choose that side, the length of the delay increased by 1 s up to a maximum of 7 s. If the rat chose the side designated as long <8 of the last 10 choice trials then the delay was reduced by 1 s to a minimum of 3 s. The reward delay for long forced-choice trials was yoked to the delay in free-choice trials during these blocks. In the third and fourth blocks, we held the delay preceding reward delivery constant (500 ms) while manipulating the size of the expected reward. The small reward was a single bolus of sucrose. For big reward, an additional bolus was delivered 500 ms after the first bolus. On the third and fourth block, the side with the high-value reward continued to be alternated from side to side at each block. Across the experiment, the number of trials in each block varied nonsystematically −64 trials (SD = 9.7).

Single-unit recording. Procedures were the same as described previ- ously (Roesch et al., 2006, 2007). Briefly, neural activity was recorded using two identical Plexon Multichannel Acquisition Processor systems, interfaced with odor discrimination training chambers. Signals from the electrode wires were amplified 20× by an op-amp headstage (Plexon Inc, HST/8050-G20-GR), located on the electrode array. Immediately out-side the training chamber, the signals were passed through a differential preamplifier (Plexon Inc, PBX2/16sp-r-G50/G16sp-G50), where the single-unit signals were amplified 50× and filtered at 150–9000 Hz. The single-unit signals were then sent to the Multichannel Acquisition Pro-
A somewhat bimodal distribution, as shown in Figure 3. Units with a high Torbert and Redish, 2008). In both pDMS and DLS, this analysis revealed across the entire session, according to established methods (Schmitzer-

proportion of interspike intervals

alyzed in Matlab (MathWorks). We classified units according to the stamps and relevant event markers. These data were subsequently ana-

Sorted files were then processed in Neuroexplorer to extract unit time-

recorded with event timestamps from the behavioral computer. Wave-

s from the electrode wires were amplified and filtered by standard proce-

systems, interfaced with odor discrimination training chambers. Signals

activity was recorded using Plexon Multichannel Acquisition Processor

box, where they were further filtered at 250–8000 Hz, digitized at

kHz and amplified at 1–32×. Wires were screened for activity daily: if no activity was detected, the rat was removed and the electrode assembly

was advanced 40 or 80 μm. Otherwise a session was conducted and the electrode was advanced by at least 40 μm at the end of the session. Neural

activity was recorded using Plexon Multichannel Acquisition Processor systems, interfaced with odor discrimination training chambers. Signals

from the electrode wires were amplified and filtered by standard proce-

dures described in previous studies (Stalnaker et al., 2010). Waveforms

(>2.5:1 signal-to-noise) were extracted from active channels and re-

corded with event timestamps from the behavioral computer. Wave-

forms were not inverted before data analysis.

Data analysis and firing rate epochs. Units were sorted using Offline Sorter software from Plexon Inc, using a template matching algorithm. Sorted files were then processed in Neuroexplorer to extract unit time-

stamps and relevant event markers. These data were subsequently ana-

lyzed in Matlab (MathWorks). We classified units according to the proportion of interspike intervals >0.5 s in each neuron’s spike train across the entire session, according to established methods (Schmitzer-Torbert and Redish, 2008). In both pDMS and DLS, this analysis revealed a somewhat bimodal distribution, as shown in Figure 3. Units with a high proportion of long interspike intervals (>40% >0.5 s) were classified as phasically firing and constituted 67% of all neurons recorded in each region. Our rationale for using 0.5 s as the criterion for this analysis (a range of values might be legitimately used for this purpose, Schmitzer-Torbert and Redish, 2008) is that it provided the best qualitative separa-
tion between the two ends of the distribution. None of the cells could be classified as tonically active neurons according to the criteria of Schmitzer-Torbert and Redish (2008). Thus we classified all nonphasically firing neurons as fast firing but not tonically active neurons. The average waveforms of phasically firing and fast firing neurons differed from each other but were nearly identical between pDMS and DLS.

To analyze neural correlates of reward prediction errors, we examined firing rate in the 300 ms beginning 50 ms after triggering the solenoid

valve that controlled the delivery of reward. For negative reward predic-
tion errors, we examined firing rate in the 400 ms beginning 50 ms after the solenoid controlling reward should have opened. These epochs were

chosen based on a preliminary perusal of phasic increases and decreases to reward and reward omission, respectively, which revealed that phasic activity took at least 100 ms to begin to rise. We typically account for this delay by beginning analysis epochs 50 ms after the beginning of the relevant event. We performed ANOVAs (p < 0.05) on each neuron’s firing rate during each of these two epochs, including all conditions (block and direction) in which reward was newly delivered at the beginning of the block or in which reward was newly omitted at the beginning of the block, comparing early (first five trials in the block) and late (last 15 trials in the same block). For unexpected reward, these conditions in-
cluded the presentation of the second short delayed reward, the first two-bolus reward, and the second two-bolus reward. For unexpected omission, the conditions included the presentation of the first long de-
layed reward and the second small-size reward. We did not include the first small-size reward as an unexpected omission because the timing of the reward on that block was not changed compared with the previous block. We also analyzed similar epochs during control conditions in which reward was delivered at an unchanged time from the previous block, and in which reward was absent at an unchanged time from the previous block. Please see Figure 1 for a graphical depiction of all of these epochs and conditions. For cue-related activity, we analyzed an epoch beginning 50 ms after cue onset and ending at withdrawal from the odor port. Cue selectivity was calculated as the difference in firing rates be-

between the high-value predicting cue and low-value predicting cue, and was compared between early trials (first three of forced-choice trials in each direction) and late trials (last five of forced-choice trials in each direction), across the last three blocks.

For analyzing the trial-by-trial evolution of prediction errors at the beginning of blocks, we examined the peak (for positive prediction error-related activity) or minimum (for negative prediction error-related activity) firing rate in 100 ms bins during the prediction error epochs described above, during each trial. We analyzed this activity using a repeated-measures ANOVA, which included the following data: average activity in the last 10 trials of blocks preceding prediction error blocks, activity on the first five trials of the prediction error blocks, and average activity in the last 10 trials of prediction error blocks. When a significant effect of trial was found, we performed planned comparisons comparing activity on each of the first three trials of prediction error blocks with average activity on the last 10 of the previous blocks.

For correlations, we calculated the following indices: a positive prediction error index (average firing rate during positive prediction error epochs early in blocks minus late in the same blocks), a negative predic-
tion error index (average firing rate during negative prediction error epochs early in blocks minus late in the same blocks), and a cue selectivity index (the difference in firing rate during the cue predictive of the high-

value reward and the low-value reward early in blocks minus that same difference late in the same blocks). We then tested for linear correlations

Figure 2. Behavior and single-unit recordings. A, Average choice rate, collapsed across direction, for the block transition from long delay to short delay or from small size to big size. The last 20 trials of the previous block are shown in gray shading. B, Boxes show the estimated dorsal/ventral and medial/lateral extent of recording sites, based on the final position of the electrode. The range of the estimated rostral/caudal position, relative to bregma, is labeled on the figures. C, Waveforms are average ± SEM of those classified as fast-firing neurons or phasically firing neurons, recorded in each region.
between the positive prediction error score and the negative prediction error score, and between the positive prediction error score and the cue-selectivity score.

Population firing rates are shown as averages using 100 ms bins and a 3-bin boxcar smoothing function. Directional selectivity was calculated by including only the last 10 forced-choice trials in each condition and taking the condition with the highest average firing rate during the epoch beginning with odor port withdrawal and ending in fluid port entry (the epoch during which rats were moving toward their chosen side). We used forced-choice trials because equal numbers of trials existed for each condition.

Bursting activity was analyzed using the Poisson surprise method as implemented by Neuroexplorer, with a surprise criterion of 4.6, defined as the negative log of the probability of finding the burst in a Poisson distribution with the same average firing rate (Legedny and Salzman, 1985). The surprise criterion was chosen based on that used in previous recordings of striatal neurons (Cayzac et al., 2011). Interspike interval statistics (median value in each spike train and the coefficient of variation for each spike train) were calculated using Matlab.

Results

In each block of this task, sucrose was delivered at precise and consistent time-points relative to the response at the fluid well, with the exception of long-delay conditions, in which reward delivery varied from 1 to 7 s after the response. At the beginning of the second, third and fourth blocks, sucrose was delivered at different time points than it had been in the block immediately before (Fig. 1). Therefore, at certain time points at the beginning of those blocks, reward was unexpectedly delivered, resulting in a positive prediction error, while at other time points, reward was unexpectedly omitted, resulting in a negative prediction error. By examining neural activity in the epoch immediately after these time points and comparing this activity at the beginning of blocks with that at the end of the same blocks (by which time reward timing could be well predicted), we could look for reward prediction error encoding.

We recorded from a total of 489 neurons in dorsolateral striatum and 587 neurons in pDMS (Fig. 2C,D). We classified neurons as either fast firing neurons (FFNs) or phasically firing neurons (PFNs) according to the proportion of session-wide interspike intervals >0.5 s, and analyzed these populations separately (Schmitzer-Torbert and Redish, 2008). FFNs typically had triphasic waveforms, with faster baseline firing rates and shorter duration waveforms than PFNs, which typically had biphasic waveforms (see Table 1 and Figs. 3, 4 for firing rates, interspike interval distributions, and bursting statistics for these two subpopulations in each region).

Reward prediction error signaling

An analysis of associative encoding in this dataset has been previously published (Stalnaker et al., 2010). For the current analysis, we first examined activity during positive prediction error epochs, using the 300 ms epoch beginning 50 ms after unexpected reward delivery (see Fig. 1 for the times when this occurred in the session), including every time-point at which a drop of sucrose was delivered in a block when it had not been delivered in the previous block. We compared activity across all of these epochs when reward was unexpected during the first five trials versus when it was fully expected during the last 15 trials of the same blocks. As a population (using a t test across neurons), FFNs in pDMS fired significantly more to unexpected than expected reward delivery (see Table 1 and Figs. 3, 4 for firing rates, interspike interval distributions, and bursting statistics for these two subpopulations in each region).

Figure 3. Classification of neurons as fast firing or phasically firing. Histograms in A show the proportion of interspike intervals (ISIs) that were >0.5 s, across the entire session, for each neuron recorded in dorsolateral or dorsomedial striatum. Based on the bimodality of distributions, FFNs were classified as those with a value <0.4, and PFNs, those with a value of >0.4. B and C show the median ISI for each neuron in the two subpopulations. D and E show the coefficient of variation of ISIs for each neuron in the two subpopulations. A, C, and E overlay the distribution of putative prediction error-encoding neurons in red (see below).
expected reward delivery, described previously (Fig. 5 in firing to unexpected and expected reward omission was in-
pared with the last 15 trials of the same blocks, and the difference
unexpected reward omission (negative prediction errors) com-
each neuron). We found that as a population, these 19 neurons
was based on observation of the peri-event time histograms for
beginning 50 ms after unexpected reward omission (this epoch
fired significantly less during the first five trials of blocks during
expected reward omission (negative prediction errors) com-
pared with the last 15 trials of the same blocks, and the difference
firing to unexpected and expected reward omission was in-
versely correlated with the difference in firing to unexpected and
expected reward delivery, described previously (Fig. 5C, left).
Second, this population showed a significant increase in cue
selectivity (i.e., activity that differentiated the two cues) as forced-
choice cues came to fully predict rewards; this difference was
statistically evident in a comparison between firing rates in the
last five versus the first three forced-choice trials in each block
(Figs. 5C right, 6). Furthermore, a cue-selectivity score capturing
this difference for each neuron was positively correlated with the
difference in firing to unexpected and expected reward delivery
(Fig. 5C, right). Finally, these neurons also showed a significant
phasic increase in firing during unexpected reward epochs
compared with the 500 ms immediately before reward deliv-
ery, and a significant phasic decrease during unexpected omis-
sion epochs compared with the corresponding baseline (Fig.
5A, B, left). To demonstrate the reliability of positive and nega-
tive prediction error signaling across the subpopulation, the
activity of each neuron is shown in Figure 7. In addition,
population activity aligned to movement initiation and re-
ward well entry is shown in Figure 8.

Interestingly, a trial-by-trial analysis (Fig. 5A, B, right)
showed that both positive and negative RPEs in these neurons
reached their peak on the second trial after a block switch, rather
than on the first trial as occurs with a dopamine RPE signal
(Roesch et al., 2007). This was confirmed using a repeated-
measures ANOVA on peak RPE activity across trials (see Materi-
als and Methods; positive: \(F(6,108) = 2.5, p < 0.05 \); negative:
\(F(6,108) = 2.4, p < 0.05 \)). Planned comparisons revealed a signif-
ificant difference between activity on trial 2 and that on the pre-
ceding block, but no significant difference between trial 1 and
that on the preceding block (positive, first trial, \(t_{(18)} = 0.32, p =
0.75 \); second trial: \(t_{(18)} = 2.2, p < 0.05 \); negative: first trial, \(t_{(18)} =
-1.4, p = 0.17 \); second trial, \(t_{(18)} = -3.0, p < 0.01 \)).

In addition to RPE encoding, this population also fired
more to fully expected reward omission compared with fully
expected reward delivery (compare solid lines between Fig.
5A, B, left). To test the robustness of this effect and its inde-
pendence from changes in reward predictability, we per-
formed a control analysis, which compared activity in these
same neurons during reward delivery and reward omission
across blocks in which reward predictability did not change.
For this analysis, we chose epochs in which the reward deliv-
ered (or omitted) at the beginning of blocks occurred at the
same time as that delivered (or omitted) in the previous blocks
(see Fig. 1 for a graphical depiction of these epochs). In par-
allel to the previous analysis, we compared activity during
these epochs during the first five trials of these blocks with that
during the last 15 trials of the same blocks. As illustrated in
Figure 9, this analysis revealed that activity did not change
significantly within such blocks and did not differ between
reward delivery epochs and absence of reward epochs (reward
delivery early vs late: \(t_{(18)} = 1.4, p = 0.19 \); absence of reward
early vs late: \(t_{(18)} = 1.3, p = 0.23 \); reward delivery late vs
absence of reward late: \(t_{(18)} = 1.5, p = 0.15 \)). Thus the phasic
increases and decreases described above are primarily influ-
enced by the changes in the predictability of the reward deliv-
ery or omission within those blocks rather than reward
delivery or omission itself.

Dorsolateral striatal FFNs do not encode RPEs
As a population, FFNs in DLS did not show evidence of positive
prediction error encoding. Analyzed individually, 12 neurons in
this population fired significantly more to unexpected reward
than fully expected reward. However this proportion was not
significantly larger than the population that did the opposite (ex-
pected reward more than unexpected reward, \(p = 0.15 \)). Thus the
phasic increases and decreases described above are primarily influ-
enced by the changes in the predictability of the reward deliv-
ery or omission within those blocks rather than reward
delivery or omission itself.

Table 1. Characteristics of recorded units classified as FFNs or PFNs

<table>
<thead>
<tr>
<th>Classification</th>
<th>(N)</th>
<th>Baseline firing rate (spikes/s)</th>
<th>Half-peak width ((\mu s))</th>
<th>% Spikes in bursts</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFNs</td>
<td>196</td>
<td>16.6 ± 0.87</td>
<td>93.2 ± 1.5</td>
<td>11.8 ± 0.9</td>
</tr>
<tr>
<td>PFNs</td>
<td>391</td>
<td>1.78 ± 0.08</td>
<td>134.2 ± 1.8</td>
<td>28.1 ± 1.1</td>
</tr>
</tbody>
</table>

Baseline firing rates were taken across all intertrial intervals in recording sessions. Burst analysis uses the Poisson surprise method with a surprise criterion of 4.6 (\(p < 0.01 \)). Means ± SEMs are reported.
neural populations did not differ between DLS and pDMS (Stalnaker et al., 2010).

pDMS reward prediction errors are specific for the action that caused them

We have previously reported that many dorsal striatal neurons recorded in this task, including both PFNs and FFNs, show a phasic increase in activity during execution of one of the two actions available in the task and a phasic decrease in activity during the execution of the opposite action (Stalnaker et al., 2010).

The RPE-encoding striatal neurons identified above also tended to show this kind of activity. That is, 14 of the 19 RPE-encoding striatal neurons (75%) showed significant directionally selective activity for at least one of the four outcomes (short delay, long delay, large size, or small size), which is at least as high a proportion as in the total population of FFNs recorded in pDMS; indeed the RPE-encoding population shows a trend toward a greater proportion of directionally selective neurons compared with the population as a whole by χ^2, $p = 0.086$.

We next sought to test the relationship between the action-signaling and RPE-signaling in RPE-encoding FFNs. To do so, we defined the preferred action for each neuron as the action with the highest firing rate during its execution, between odor port exit and fluid well entry. Note that this epoch occurs well before rats receive reward, and thus is separable from, and time-locked to, the prediction error epochs discussed earlier. Then we examined RPE-encoding activity according to whether it occurred after that neuron’s preferred or anti-preferred action. As shown in Figure 11, neurons in this population signaled prediction errors selectively after their anti-preferred action. An ANOVA on activity during the RPE epoch, with factors negative RPE/positive RPE and preferred/anti-preferred side reveals a significant interaction effect ($F_{2,53} = 4.1; p < 0.05$), such that the population fires at higher rate during positive prediction errors on the anti-preferred side versus the preferred side, and a lower rate during negative prediction errors on the anti-preferred side versus the preferred side. Similarly, after the anti-preferred action, neurons show a significant phasic increase over baseline during unexpected reward ($t_{18} = 3.4$, $p < 0.01$) and a significant decrease under baseline during unexpected reward omission ($t_{12} = -2.3$, $p < 0.05$). After the preferred action, in contrast, there is neither a significant phasic increase nor a significant phasic decrease in these conditions (positive, $t_{18} = 0.7$, $p = 0.48$; negative, $t_{15} = -0.6$, $p = 0.58$).

Discussion

Here we tested whether dorsal striatal neurons signaled reward prediction errors in an odor-guided choice task. A subset of fast firing neurons in posterior dorsomedial striatum showed phasic increases and decreases in firing rate, lasting ~300–400 ms, that were consistent with prediction error encoding. The positive error signals were correlated with the negative prediction error signals and also with increases in firing to the differently valued cues that occurred with learning in each block. Thus, this sub-
population showed many of the same characteristics that have been reported for midbrain dopamine neurons. However, several characteristics of these signals are markedly distinct from those of the midbrain dopamine signal. First, unlike the dopaminergic signal, the dorsal striatal error signal was not maximal on the first trial after an unexpected change in reward delivery or omission; instead it appeared to peak on the second trial. This suggests a signal that integrates across trials rather than exclusively reflecting errors on the current trial. Second and more central to the current study, the dorsal striatal signal was selective for the action that led to the error. Specifically, these neurons tended to signal errors only following their anti-preferred actions—the action during which they had tended to show a phasic decrease in activity. Error signaling following their preferred action, during which they had shown a phasic increase in activity, was strongly attenuated. Thus, this prediction error-like signal was integrated with information about which action had caused the prediction error. Dopamine prediction error signaling, by contrast, has been found to be independent of the action that preceded the error (Schultz et al., 1993; Nakahara et al., 2004; Morris et al., 2006; Roesch et al., 2007).

There have been several previous reports of dorsal striatal unit activity that appears to carry RPE signals. In a probabilistic maze choice task, a small subset (~15%) of primarily fast-spiking neurons in DMS showed activity that correlated with modeled trial-by-trial RPE values (Kim et al., 2009). While the activity of many units recorded in that study was also correlated with the action chosen in that trial, the authors did not report the relationship between RPE and chosen action signaling. A second study reported that a low percentage of dorsal striatal neurons encoded positive RPEs in a Pavlovian probabilistic reward task. These neurons were likely medium spiny neurons, and were recorded in various parts of the dorsal striatum. The size of the RPE-signaling population in the current study (10% of all fast-spiking neurons recorded) is approximately consistent with the size of the populations found in these previous unit recording studies (Kim et al.,

Figure 6. Cue selectivity in RPE-encoding FFNs. Shown is mean difference in firing rate between odor cue predicting high value reward and odor cue predicting low value reward, early in the block (first five forced-choice trials) versus late in the block (last five forced-choice trials). Left panel illustrates that in dorsomedial striatum, neurons were cue-selective during presentation of the cue, late in the block when the meaning of cues had been learned, compared with early in the block when cue-reward relationships were new. Since the high and low value cues were presented in a pseudorandom sequence (i.e., not predicted), this difference is consistent with the encoding of prediction errors. Interestingly, this effect was not observed in dorsolateral striatal FFNs (right panel).

Figure 7. Individual prediction error-encoding FFNs in dorsomedial striatum. A and B show activity of each neuron in the prediction error-encoding FFN population from dorsomedial striatum in the first five trials of blocks in which unexpected reward (A) or unexpected omission (B) was given. Baseline activity (average activity in the last two bins before reward or reward omission) is subtracted from each neuron so that the response to reward or reward omission can be seen.

Figure 8. Activity of RPE-encoding FFNs in dorsomedial striatum, aligned to movement initiation (A and B) and well entry (C and D), for comparison with Figure 5, A and B. Shown are average firing rates prepared exactly like the population averages shown in Figure 5, A and B.
A number of imaging studies of human subjects have also reported BOLD activity in different parts of dorsal striatum that is correlated with RPEs (Delgado et al., 2000; McClure et al., 2003; O’Doherty et al., 2004; Tricomi et al., 2004; Haruno and Kawato, 2006). Although it is difficult to determine whether this signal derives from dopamine input or is locally generated, let alone whether different populations of neurons within striatum encode RPEs associated with different actions, these imaging data would be consistent with our results.

The RPE-like signal reported in the current paper occurred in fast firing neurons and not in phasically firing neurons. It is possible that prediction error-encoding PFNs were not detected by our analysis because they fire more slowly and hence would yield less statistical power in the small number of trials analyzed. It is also possible that the striatal RPE-like signal occurs predominantly in fast-firing interneurons, as at least one previous study has suggested (Kim et al., 2009). Although our FFN population included a much higher proportion of the total population than anatomical data suggest interneurons account for, our techniques (like those in many other published extra-cellular recording studies) may have biased recordings toward interneurons, which are far more likely to be detected during initial screening. Thus, with the caveat that extra-cellular recordings, at least when they are done exclusively during task engagement, are not well suited to the unequivocal identification of specific cell-types, our FFN population is more likely to consist of interneurons than medium spiny neurons.

Striatal interneurons, which are inhibitory, are thought to shape the activity of projection neurons that may participate in the control of movement. Thus, when interneurons show a phasic decrease in activity, it may disinhibit a population of medium spiny neurons (MSNs) that select for a particular movement (Parthasarathy and Graybiel, 1997; Gage et al., 2010). This implies that each possible action within a context may be gated by a particular subpopulation of striatal interneurons, via shaping of the activity of a corresponding subpopulation of MSNs. The current data suggest that when a prediction error occurs, the same population of neurons that gated the preceding action might selectively signal the error. Thus, this RPE-like signal would be targeted to the same MSN subpopulation that represents the action that led to the error. Because it is targeted in this way, such an RPE-like signal could in theory be particularly useful for updating of action-
outcome representations; it might trigger updating only in the relevant subpopulation of MSNs, leaving those that represent other actions, and other action-outcome associations, unaffected.

A growing number of studies have examined differences in neural processing in dorsomedial versus dorsolateral striatum during learning and decision-making (Yin et al., 2009; Thorn et al., 2010). Lesions and pharmacological manipulations of these two regions suggest that dorsomedial, or associative, striatum is critical for goal-directed behavior—that based on representations of predicted outcomes—while dorsolateral striatum, or sensorimotor striatum, is critical for habitual behavior—that based on stimulus-response representations (Yin and Knowlton, 2004, 2006; Yin et al., 2005a,b; Balleine et al., 2007; Johnson et al., 2007). However, it remains a mystery how a similar internal circuitry and a broadly similar dopaminergic input across these two regions could account for such different functions (Wickens et al., 2007). Indeed we reported previously that neural correlates of action-outcome and stimulus-response associative representations are present in equal proportions in both regions, suggesting that information content in the two regions may not account for their functional differences (Stalnaker et al., 2010). The current results may provide some clue as to the reasons for these functional differences.

The presence of an action-specific targeted RPE signal in DMS could facilitate action-outcome encoding necessary for model-based behavioral control. Conventional theories of dopamine-based learning and updating mechanisms rely on “stamping in” representations that are merely contiguous with reward; such a mechanism might be less efficient at learning or maintaining information about causal relationships between actions and outcomes. Thus, dorsolateral striatum, in the absence of an action-specific RPE signal, might be slower to learn or update causally based action-outcome associative representations, and would instead tend to develop stimulus-response associative representations. Notably, this effect might not be revealed in our paradigm, since it did not attempt to dissociate action-outcome contiguity from action-outcome causality. Alternatively, updated action-outcome representations may spread from dorsomedial to dorsolateral striatum in well trained rats such as ours, when both regions are functioning normally.

Because the RPE-like signals reported here are action-specific, it seems unlikely that they derive directly from dopamine input to this region. One possibility is that medial prefrontal cortex, which projects heavily to DMS and which has been found to signal prediction errors of action values (Vooran et al., 2004; Matsumoto et al., 2007), may convey prediction error information to DMS. Alternatively, RPEs could be calculated within DMS itself, since information about predicted outcomes is already encoded there along with information about actual outcomes (Kim et al., 2009; Stalnaker et al., 2010). The mechanism through which action-specific RPE-signaling striatal neurons may contribute to the updating of action-outcome associations, or action values, is unknown. Future empirical or computational modeling experiments may be able to test how a modulation of GABAergic input that is coincident with dopamine input during prediction errors might act to modify representations encoded by specific populations of mediiodorsal striatal neurons.

References

Clatworthy PL, Lewis SJ, Brichard L, Hong YT, Izquierdo D, Clark L, Cools R, Aigbirhio FI, Baron JC, Fryer TD, Robbins TW (2009) Dopamine release in dissociable striatal subregions predicts the different effects of oral...
methylphenidate on reversal learning and spatial working memory.

Delgado MR, Nystrom LE, Fissell C, Noll DC, Fiez JA (2000) Tracking the
hemodynamic responses to reward and punishment in the striatum.

Gage GI, Stoeztner CR, Wiltshcko AB, Berke JD (2010) Selective activation
of striatal fast-spiking interneurons during choice execution.
Neuron 67:466–479.

Haruno M, Kawato M (2006) Different neural correlates of reward expecta-
tion and reward expectation error in the putamen and caudate nucleus
95:948–959.

learning in caudate nucleus: a functional magnetic resonance imaging

Hassani OK, Cromwell HC, Schultz W (2001) Influence of expectation of
different rewards on behavior-related neuronal activity in the striatum.

value and direction of actions in the primate putamen. J Neurophysiol
102:3530–3543.

Houk JC, Adams JL, Barto AG (1995) A model of how the basal ganglia
generate and use reward signals that predict reinforcement. In: Models
of information processing in the basal ganglia (Houk JC, Davis JL, Beiser
DG, eds), pp 249–270. Cambridge: MIT.

Ito M, Doya K (2009) Validation of decision-making models and analysis of

Johnson A, van der Meer MA, Redish AD (2007) Integrating hippocampus

Kawagoe R, Takikawa Y, Hikosaka O (1998) Expectation of reward modu-

Kimchi EY, Laubach M (2009) Dynamic encoding of action selection by the

Lau B, Glimcher PW (2008) Value representations in the primate striatum

Lege`ndy CR, Salcman M (1985) Bursts and recurrences of bursts in the spike
activity of the dorsal striatum identified in squirrel monkeys. J Neurosci

Lau B, Glimcher PW (2008) Value representations in the primate striatum

Legény CR, Salcman M (1985) Bursts and recurrences of bursts in the spike
activity of the dorsal striatum identified in squirrel monkeys. J Neurosci

cell activity signaling prediction error of action values. Nat Neurosci
10:647–656.

McClure SM, Berns GS, Montague PR (2003) Temporal prediction errors in

Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesence-
phalic dopamine systems based on predictive Hebbian learning. J Neuro-

pamine neurons encode decisions for future action. Nat Neurosci

mine neurons can represent context-dependent prediction error. Neuron
41:269–280.

Dissociable roles of ventral and dorsal striatum in instrumental condi-

Parbasarathy HB, Graybiel AM (1997) Cortically driven immediate-early
gene expression reflects modular influence of sensorimotor cortex on
identified striatal neurons in the squirrel monkey. J Neurosci 17:2477–2491.

Pasquerave B, Nadjar A, Arkadir D, Bezard E, Goillandeau M, Bioulac B,
nvalues through the basal ganglia. J Neurosci 27:1176–1183.

Reynolds JN, Hyland BI, Wickens JR (2001) A cellular mechanism of

Roesch MR, Taylor AR, Schoenbaum G (2006) Encoding of time-
discounted rewards in orbitofrontal cortex is independent of value repre-

Roesch MR, Calu DJ, Schoenbaum G (2007) Dopamine neurons encode the
better option in rats deciding between differently delayed or sized re-

Schmitzer-Torbert NC, Redish AD (2008) Task-dependent encoding of
space and events by striatal neurons is dependent on neural subtype.

nurons to reward and conditioned stimuli during successive steps of

Stalnaker TA, Calhoon GG, Ogawa M, Roesch MR, Schoenbaum G (2010)
Neural correlates of stimulus-response and response-outcome associa-
tions in dorsolateral versus dorsomedial striatum. Front Integr Neurosci
4:12.

of activity changes in dorsolateral and dorsomedial striatal loops during

Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM

Wickens JR, Budd CS, Hyland BI, Arbuthnott GW (2007) Striatal contribu-
tions to reward and decision making: making sense of regional variations

Yin HH, Knowlton BJ (2004) Contributions of striatal subregions to place

Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit forma-

preserve outcome expectancy but disrupt habit formation in instrumental

Yin HH, Knowlton BJ, Balleine BW (2005a) Blockade of NMDA receptors
in the dorsomedial striatum prevents action-outcome learning in instru-

Yin HH, Knowlton BJ, Balleine BW (2005b) The role of the basal ganglia in

Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit forma-

preserve outcome expectancy but disrupt habit formation in instrumental

Yin HH, Knowlton BJ, Balleine BW (2005a) Blockade of NMDA receptors
in the dorsomedial striatum prevents action-outcome learning in instru-

Yin HH, Knowlton BJ, Balleine BW (2005b) The role of the basal ganglia in

preserve outcome expectancy but disrupt habit formation in instrumental