Measurements of B^{+}_c Production and Mass with the $B^{+}_cJ/^{+}$ Decay

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Measurements of B_c^+ Production and Mass with the $B_c^+ \rightarrow J/\psi \pi^+$ Decay

R. Aaij et al.*
(LHCb Collaboration)

(Received 25 September 2012; published 5 December 2012)

Measurements of B_c^+ production and mass are performed with the decay mode $B_c^+ \rightarrow J/\psi \pi^+$ using 0.37 fb$^{-1}$ of data collected in pp collisions at $\sqrt{s} = 7$ TeV by the LHCb experiment. The ratio of the production cross section times branching fraction for $B_c^+ \rightarrow J/\psi \pi^+$ decays is measured to be 0.68 ± 0.10 (stat) ± 0.03 (syst) ± 0.05 (lifetime)% for B_c^+ and B^+ mesons with transverse momenta $p_T > 4$ GeV/c and pseudorapidities $2.5 < \eta < 4.5$. The B_c^+ mass is directly measured to be 6273.7 ± 1.3 (stat) ± 1.6 (syst) MeV/c2, and the measured mass difference with respect to the B^+ meson is $M(B_c^+) - M(B^+) = 994.6 \pm 1.3$ (stat) ± 0.6 (syst) MeV/c2.

The B_c^+ meson is unique in the standard model as it is the ground state of a family of mesons containing two different heavy flavor quarks. At the 7 TeV LHC center-of-mass energy, the most probable way to produce $B_c^{(s)}$+ mesons is through the gg-fusion process, $gg \rightarrow B_c^{(s)+} + b + \bar{c}$ [1].

The production cross section of the B_c^+ meson has been calculated by a complete order-α_s^3 approach and using the fragmentation approach [1]. It is predicted to be about 0.4 μb [2,3] at $\sqrt{s} = 7$ TeV including contributions from excited states. This is 1 order of magnitude higher than that predicted at the Tevatron energy $\sqrt{s} = 1.96$ TeV. However, the theoretical predictions suffer from large uncertainties, and an accurate measurement of the B_c^+ production cross section is needed to guide experimental studies at the LHC. As is the case for heavy quarkonia, the mass of the B_c^+ meson can be calculated by means of potential models and lattice QCD, and early predictions lay in the range from 5.2–6.4 GeV/c2 [1]. The inclusion of charge conjugate modes is implied throughout this Letter.

The B_c^+ meson was first observed in the semileptonic decay mode $B_c^+ \rightarrow J/\psi (\mu^+ \mu^-) \ell^+ X (\ell = e, \mu)$ by CDF [4].

The production cross section times branching fraction for this decay relative to that for $B^+ \rightarrow J/\psi K^+$ was measured to be $0.132^{+0.041}_{-0.037}$ (stat) ± 0.031 (syst) $+0.032$ -0.020 (lifetime) for B_c^+ and B^+ mesons with transverse momenta $p_T > 6$ GeV/c and rapidities $|y| < 1$. Measurements of the B_c^+ mass by CDF [5] and D0 [6] using the fully reconstructed decay $B_c^+ \rightarrow J/\psi (\mu^+ \mu^-) \pi^+$ gave $M(B_c^+) = 6275.6 \pm 2.9$ (stat) ± 2.5 (syst) MeV/c2 and $M(B_c^+) = 6300 \pm 14$ (stat) ± 5 (syst) MeV/c2, respectively. A more precise measurement of the B_c^+ mass would allow for more

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
muon candidates with high transverse momenta. At the software trigger stage [8,9], events are selected by requiring a pair of muon candidates with invariant mass within 120 MeV/c² of the J/ψ mass [10], or a two- or three-track secondary vertex with a large track p_T sum, a significant displacement from the primary interaction, and at least one track identified as a muon.

At the offline selection stage, J/ψ candidates are formed from pairs of oppositely charged tracks with transverse momenta p_T > 0.9 GeV/c and identified as muons. The two muons are required to originate from a common vertex. Candidates with a dimuon invariant mass between 3.04 and 3.14 GeV/c² are combined with charged hadrons with p_T > 1.5 GeV/c to form the B_c and B⁺ meson candidates. The J/ψ mass window is about seven times larger than the mass resolution. No particle identification is used in the selection of the hadrons. To improve the B_c and B⁺ mass resolutions, the mass of the μ⁺μ⁻ pair is constrained to the J/ψ mass [10]. The b-hadron candidates are required to have p_T > 4 GeV/c, decay time ¼ 0.25 ps, and pseudorapidity in the range 2.5 < ς < 4.5. The fiducial region is chosen to be well inside the detector acceptance to have a reasonably flat efficiency over the phase space. To further suppress background to the B_c decay, the IP χ² values of the J/ψ and π⁺ candidates with respect to any primary vertex (PV) in the event are required to be larger than 4 and 25, respectively. The IP χ² is defined as the difference between the χ² of the PV reconstructed with and without the considered particle. The IP χ² of the B_c candidates with respect to at least one PV in the event is required to be less than 25. After all selection requirements are applied, no event has more than one candidate for the B_c → J/ψπ⁺ decay, and less than 1% of the events have more than one candidate for the B⁺ → J/ψK⁺ decay. Such multiple candidates are retained and treated the same as other candidates; the associated systematic uncertainty is negligible.

The ratio of the production cross section times branching fraction measured in this analysis is

\[
R_{c/µ} = \frac{\sigma(B_c^+)\mathcal{B}(B_c^+ → J/ψπ⁺)}{\sigma(B⁺)\mathcal{B}(B⁺ → J/ψK⁺)} = \frac{N(B_c^+ → J/ψπ⁺)}{N(B⁺ → J/ψK⁺)} \epsilon_{tot}^c \epsilon_{tot}^µ, \tag{1}
\]

where \(\sigma(B_c^+)\) and \(\sigma(B⁺)\) are the inclusive production cross sections of the B_c and B⁺ mesons in pp collisions at \(\sqrt{s} = 7\) TeV, \(\mathcal{B}(B_c^+ → J/ψπ⁺)\) and \(\mathcal{B}(B⁺ → J/ψK⁺)\) are the branching fractions of the reconstructed decay chains, \(N(B_c^+ → J/ψπ⁺)\) and \(N(B⁺ → J/ψK⁺)\) are the yields of the B_c → J/ψπ⁺ and B⁺ → J/ψK⁺ signal decays, and \(\epsilon_{tot}^c, \epsilon_{tot}^µ\) are the total efficiencies, including geometrical acceptance, reconstruction, selection, and trigger effects.

The signal event yields are obtained from extended unbinned maximum likelihood fits to the invariant mass distributions of the reconstructed B_c and B⁺ candidates in the interval \(6.15 < M(J/ψπ⁺) < 6.55\) GeV/c² for B_c candidates and \(5.15 < M(J/ψK⁺) < 5.55\) GeV/c² for B⁺ candidates. The B_c → J/ψπ⁺ signal mass shape is described by a double-sided Crystal Ball function [11]. The power law behaviour towards low mass is due primarily to final state radiation from the bachelor hadron, whereas the high mass tail is mainly due to final state radiation from the muons in combination with the J/ψ mass constraint. The B⁺ → J/ψK⁺ signal mass shape is described by the sum of two double-sided Crystal Ball functions that share the same mean but have different resolutions. From simulated decays, it is found that the tail parameters of the double-sided Crystal Ball function depend mildly on the mass resolution. This functional dependence is determined from simulation and included in the mass fit. The combinatorial background is described by an exponential function. Background to B⁺ → J/ψK⁺ from the Cabibbo-suppressed decay B⁺ → J/ψπ⁺ is included to improve the fit quality. The distribution is determined from the simulated events. The ratio of the number of B⁺ → J/ψπ⁺ decays to that of the signal is fixed to \(\mathcal{B}(B⁺ → J/ψπ⁺)/\mathcal{B}(B⁺ → J/ψK⁺) = 3.83\%\) [12]. The Cabibbo-suppressed decay B_c → J/ψK⁺ is neglected as a source of background to the B_c → J/ψπ⁺ decay. The invariant mass distributions of the selected B_c → J/ψπ⁺ and B⁺ → J/ψK⁺ candidates and the fits to the data are shown in Fig. 1. The numbers of signal events are 162 ± 18 for B_c → J/ψπ⁺ and 56243 ± 256 for B⁺ → J/ψK⁺, as obtained from the fits. The goodness of fits is checked with a χ² test, which returns a probability of 97% for B_c → J/ψπ⁺ and 87% for B⁺ → J/ψK⁺.

The efficiencies, including geometrical acceptance, reconstruction, selection and trigger effects are determined using simulated signal events. The production of the B⁺ meson is simulated using PYTHIA 6.4 [13] with the configuration described in Ref. [14]. A dedicated generator BCVEGPY [15] is used to simulate the B_c meson production. Decays of B_c, B⁺ and J/ψ mesons are described by EVTGEN [16] in which final state radiation is generated using PHOTOS [17]. The decay products are traced through the detector by the GEANT4 package [18] as described in Ref. [19]. As the efficiencies depend on p_T and ς, the efficiencies from the simulation are binned in these variables to avoid a bias. The signal yield in each bin is obtained from data by subtracting the background contribution using the sPlot technique [20], where the signal and background mass shapes are assumed to be uncorrelated with p_T and ς. The efficiency-corrected numbers of B_c → J/ψπ⁺ and B⁺ → J/ψK⁺ signal decays are 2470 ± 350 and 364188 ± 2270, respectively, corresponding to a ratio of \(R_{c/µ} = (0.68 ± 0.10)\%\), where the uncertainties are statistical only.
The systematic uncertainties related to the determination of the signal yields and efficiencies are described in the following. Concerning the former, studies of simulated events show that effects due to the fit model on the measured ratio $R_{c/u}$ can be as much as 1%, which is taken as systematic uncertainty. The uncertainties from the contamination due to the Cabibbo-suppressed decays are found to be negligible.

The uncertainties on the determination of the efficiencies are dominated by the knowledge of the B_c^+ lifetime, which has been measured by CDF \[21\] and D0 \[22\] to give $\tau(B_c^+) = 0.453 \pm 0.041 \text{ ps} \[10\]. The distributions of the $B_c^+ \rightarrow J/\psi \pi^+$ simulated events have been reweighted after changing the B_c^+ lifetime by one standard deviation around its mean value and the efficiencies are recomputed. The relative difference of 7.3% between the recomputed efficiencies and the nominal values is taken as a systematic uncertainty. The changes in the central values of the efficiencies are recomputed.

The alignment of the tracking system and the calibration of the momentum scale are performed using a sample of $J/\psi \rightarrow \mu^+ \mu^-$ decays in periods corresponding to different running conditions, as described in Refs. \[24\]. The validity of the calibrated momentum scale has been checked using samples of $K_S^0 \rightarrow \pi^+ \pi^-$ and $Y \rightarrow \mu^+ \mu^-$ decays. In all cases, the effect of the final state radiation, which cause the fitted masses to be underestimated, is taken into account. The difference between the correction factors determined using the J/ψ and Y resonances, 0.06%, is taken as the systematic uncertainty.

The B_c^+ mass is determined with an extended unbinned maximum likelihood fit to the invariant mass distribution of the selected $B_c^+ \rightarrow J/\psi \pi^+$ candidates. The mass difference $M(B_c^+) - M(B^+)$ is obtained by fitting the invariant mass distributions of the selected $B_c^+ \rightarrow J/\psi \pi^+$ and $B^+ \rightarrow J/\psi K^+$ candidates simultaneously. The fit model is the same as in the production cross section ratio measurement. Figure 2 shows the invariant mass distribution for $B_c^+ \rightarrow J/\psi \pi^+$. The B_c^+ mass is determined to be $6273.0 \pm 1.3 \text{ MeV}/c^2$, with a resolution of $13.4 \pm 1.1 \text{ MeV}/c^2$, and the mass difference $M(B_c^+) - M(B^+)$ is $994.3 \pm 1.3 \text{ MeV}/c^2$. The uncertainties are statistical only.

The mass measurement is affected by the systematic uncertainties due to the invariant mass model, momentum scale calibration, detector description, and alignment. To evaluate the systematic uncertainty, the complete analysis, including the track fit and the momentum scale calibration when needed, is repeated. The parameters to which the mass measurement is sensitive are varied within their uncertainties. The changes in the central values of the masses obtained from the fits relative to the nominal results are then assigned as systematic uncertainties.

Table 1 summarizes the systematic uncertainties assigned to the measured B_c^+ mass and mass difference $\Delta M = M(B_c^+) - M(B^+)$. The main source is the between data and simulation, estimated with a tag and probe method \[23\] of $J/\psi \rightarrow \mu^+ \mu^-$ decays, which is found to be negligible. The second is due to the 2% uncertainty on the effect from hadronic interactions assumed in the detector simulation.

The uncertainty due to the choice of the (p_T, η) binning is found to be negligible. Combining all systematic uncertainties in quadrature, we obtain $R_{c/u} = (0.68 \pm 0.10(\text{stat}) \pm 0.03(\text{syst}) \pm 0.05(\text{lifetime}))\%$ for B_c^+ and B^+ mesons with transverse momenta $p_T > 4 \text{ GeV}/c$ and pseudorapidities $2.5 < \eta < 4.5$.

For the mass measurement, different selection criteria are applied. All events are used regardless of the trigger line. The fiducial region requirement is also removed. Only candidates with a good measured mass uncertainty ($< 20 \text{ MeV}/c^2$) are used, and a loose particle identification requirement on the pion of the $B_c^+ \rightarrow J/\psi \pi^+$ decay is introduced to remove the small contamination from $B_c^+ \rightarrow J/\psi K^+$ decays.
uncertainty in the momentum scale calibration. After the calibration procedure a residual $\pm 0.06\%$ variation of the momentum scale remains as a function of the particle pseudorapidity η. The impact of this variation is evaluated by parameterizing the momentum scale as a function of η. The amount of material traversed by a particle in the tracking system is known to 10\% accuracy, the magnitude of the energy loss correction in the reconstruction is therefore varied by 10\%. To quantify the effects due to the alignment uncertainty, the horizontal and vertical slopes of the tracks close to the interaction region, which are determined by measurements in the vertex detector, are changed by $\pm 0.1\%$, corresponding to the estimated precision of the length scale along the beam axis [25]. To test the relative alignment of different subdetectors, the analysis is repeated ignoring the hits of the tracking station between the vertex detector and the magnet. Other uncertainties arise from the signal and background line shapes. The bias due to the final state radiation is studied using a simulation based on PHOTOS [17]. The mass returned by the fit model is found to be underestimated by 0.7 ± 0.1 MeV$/c^2$ for the B^+_c meson, and by 0.4 ± 0.1 MeV$/c^2$ for the B^+ meson. The mass and mass difference are corrected accordingly, and the uncertainties are propagated. The effects of the background shape are evaluated by using a constant or a first-order polynomial function instead of the nominal exponential function. The stability of the measured B^+_c mass is studied by dividing the data samples according to the polarity of the spectrometer magnet and the pion charge. The measured B^+_c masses are consistent with the nominal result within the statistical uncertainties.

In conclusion, using 0.37 fb$^{-1}$ of data collected in pp collisions at $\sqrt{s} = 7$ TeV by the LHCb experiment, the ratio of the production cross section times branching fraction of $B^+_c \rightarrow J/\psi \pi^+$ relative to that for $B^+ \rightarrow J/\psi K^+$ is measured to be $R_{B_c^+} = (0.68 \pm 0.10(\text{stat}) \pm 0.03(\text{syst}) \pm 0.05(\text{lifetime}))%$ for B^+_c and B^+ mesons with transverse momenta $p_T > 4$ GeV$/c$ and pseudorapidities $2.5 < \eta < 4.5$. Given the large theoretical uncertainties on both production and branching fractions of the B^+_c meson, more precise theoretical predictions are required to make a direct comparison with our result. The B^+_c mass is measured to be $6273.7 \pm 1.3(\text{stat}) \pm 1.6(\text{syst})$ MeV$/c^2$. The measured mass difference with respect to the B^+ meson is $M(B^+_c) - M(B^+) = 994.6 \pm 1.3(\text{stat}) \pm 0.6(\text{syst})$ MeV$/c^2$. Taking the world average B^+ mass [10], we obtain $M(B^+_c) = 6273.9 \pm 1.3(\text{stat}) \pm 0.6(\text{syst})$ MeV$/c^2$, which has a smaller systematic uncertainty. The measured B^+_c mass is in agreement with previous measurements [5,6] and a recent prediction given by the lattice QCD calculations, 6278(6)(4) MeV$/c^2$ [26]. These results represent the most precise determinations of these quantities to date.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at CERN and at the LHCb institutes, and acknowledge support from the National Agencies CAPES, CNPq, FAPERJ, and FINEP (Brazil); CERN; NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS (Romania); MinES of Russia and Rosatom (Russia); MICINN, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7 and the Region Auvergne.

PRL 109, 232001 (2012)

Physical Review Letters

week ending 7 December 2012

(LHCb Collaboration)

1 Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3 Center for High Energy Physics, Tsinghua University, Beijing, China
4 LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
5 Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8 LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12 School of Physics, University College Dublin, Dublin, Ireland
13 Sezione INFN di Bari, Bari, Italy
14 Sezione INFN di Bologna, Bologna, Italy
15 Sezione INFN di Cagliari, Cagliari, Italy
16 Sezione INFN di Ferrara, Ferrara, Italy
17 Sezione INFN di Firenze, Firenze, Italy
18 Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19 Sezione INFN di Genova, Genova, Italy
20 Sezione INFN di Milano Bicocca, Milano, Italy
21 Sezione INFN di Roma Tor Vergata, Roma, Italy
22 Sezione INFN di Roma La Sapienza, Roma, Italy
23 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
24 AGH University of Science and Technology, Kraków, Poland
25 National Center for Nuclear Research (NCBJ), Warsaw, Poland
26 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
27 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
28 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
29 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
30 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
31 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
32 Institute for High Energy Physics (IHEP), Protvino, Russia
33 Universitat de Barcelona, Barcelona, Spain
34 Universidade de Santiago de Compostela, Santiago de Compostela, Spain
35 European Organization for Nuclear Research (CERN), Geneva, Switzerland
36 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
37 Physik-Institut, Universität Zürich, Zürich, Switzerland
38 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
39 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
40 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
41 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
42 University of Birmingham, Birmingham, United Kingdom
43 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
44 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
45 Department of Physics, University of Warwick, Coventry, United Kingdom
46 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
47 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
48 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
49 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
50 Imperial College London, London, United Kingdom
51 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
52 Department of Physics, University of Oxford, Oxford, United Kingdom
53 Syracuse University, Syracuse, New York, USA

232001-7
PONTIFICIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO (PUC-RIO), RIO DE JANEIRO, BRAZIL (ASSOCIATED WITH INSTITUTION UNIVERSIDADE FEDERAL DO RIO DE JANEIRO (UFRJ), RIO DE JANEIRO, BRAZIL)

INSTITUT FÜR PHYSIK, UNIVERSITÄT ROSTOCK, ROSTOCK, GERMANY (ASSOCIATED WITH INSTITUTION PHYSIKALISCHES INSTITUT, RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG, HEIDELBERG, GERMANY)

aP.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
bUniversità di Bari, Bari, Italy
cUniversità di Bologna, Bologna, Italy
dUniversità di Cagliari, Cagliari, Italy
eUniversità di Ferrara, Ferrara, Italy
fUniversità di Firenze, Firenze, Italy
gUniversità di Urbino, Urbino, Italy
hUniversità di Modena e Reggio Emilia, Modena, Italy
iUniversità di Genova, Genova, Italy
jUniversità di Milano Bicocca, Milano, Italy
kUniversità di Roma Tor Vergata, Roma, Italy
lUniversità di Roma La Sapienza, Roma, Italy
mUniversità della Basilicata, Potenza, Italy
nLIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
oHanoi University of Science, Hanoi, Viet Nam
pMassachusetts Institute of Technology, Cambridge, MA, United States