Energy-Driven Drag at Charge Neutrality in Graphene

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.109.236602</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/77181</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Energy-Driven Drag at Charge Neutrality in Graphene

Justin C. W. Song1,2 and Leonid S. Levitov1

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 24 May 2012; published 4 December 2012)

Coulomb coupling in graphene heterostructures results in vertical energy transfer between electrons in proximal layers. We show that, in the presence of correlated density inhomogeneity in the layers, vertical energy transfer has a strong impact on lateral charge transport. In particular, for Coulomb drag, its contribution dominates over conventional momentum drag near zero doping. The dependence on doping and temperature, which is different for the two drag mechanisms, can be used to separate these mechanisms in experiments. We predict distinct features such as a peak at zero doping and a multiple sign reversal, which provide diagnostics for this new drag mechanism.

DOI: 10.1103/PhysRevLett.109.236602

Vertical heterostructures comprised of a few graphene layers separated by an atomically thin insulating layer \cite{1} afford new ways to probe the effects of electron interactions at the nanoscale. The typical layer separation \(d \) in these structures (1–2 nm) can be very small compared to the characteristic electron length scales such as the de Broglie wavelength, \(\lambda \), and the screening length. This defines a new strong-coupling regime, \(d \ll \lambda \), wherein the interlayer and intralayer interactions are almost equally strong. Fast momentum transfer between electron subsystems in the two layers and strong Coulomb drag have been predicted in this regime \cite{2–7} with characteristic dependence on doping, temperature, and layer separation distinct from that in previously studied systems \cite{8}.

Recent measurements \cite{9,10}, while confirming theoretical predictions away from charge neutrality (CN), yield unexpected results at CN. Conventional momentum drag (\(\mathcal{P} \) mechanism) vanishes at CN because the sign of the \(\mathcal{P} \) mechanism depends on the polarity of the charge carriers \cite{11}. However, Ref. \cite{10} reports a sharp peak in the drag response at CN. This disparity indicates that new physics is involved in driving drag in graphene at CN.

In this Letter, we propose a new mechanism for drag: energy-driven drag (\(E \) mechanism). As we will show, the \(E \) mechanism becomes important in the adiabatic regime where the electronic system is thermally decoupled from the lattice. In graphene, slow electron-lattice cooling means that thermal decoupling persists over few-micron length scales even at room temperature \cite{12–14}. Further, when \(d \ll \lambda \), interlayer electron-electron scattering mediates efficient vertical energy transfer between layers, coupling electron temperatures in the layers. In the adiabatic regime, the electronic heat current is a dynamical variable, that together with charge current, governs transport behavior.

The \(E \) mechanism arises due to the coupling between vertical energy transfer and lateral charge and energy transport via spatial density inhomogeneity which is intrinsic to graphene. Density inhomogeneity is known to be particularly strong at CN in the electron-hole puddle regime \cite{15}, providing the dominant disorder potential in clean samples. When a charge current is applied in layer 1, density inhomogeneity produces spatially varying heating or cooling [see Eq. (2)]. Strong thermal coupling between the electron systems in the two layers, mediated by the interlayer energy transfer, leads to a temperature pattern in layer 2 that tracks that in layer 1, \(\delta T_2(r) = \delta T_1(r) \). Further, since the disorder correlation length \(\xi_{\text{dis}} \) can reach 100 nm in graphene-BN heterostructures \cite{16,17}, exceeding the layer separation by orders of magnitude, the potential fluctuations are nearly identical in the two layers,

\[
(\delta \mu_1(r)\delta \mu_2(r')) > 0, \quad (1)
\]

for \(r \approx r' \). As a result, the position-dependent thermal power induced by the gradient \(\nabla \delta T_2(r) \) is correlated with

\[
\text{(a) } E_2 = \rho_{2,1} J_1, \quad \text{(b) Total drag} \quad \text{(c) Momentum-only drag}
\]

\[
\begin{array}{ccc}
\text{bipolar} & \text{unipolar} & \text{bipolar} \\
\text{bipolar} & \text{unipolar} & \text{unipolar}
\end{array}
\]

\[
\begin{array}{ccc}
\rho_{2,1} & \rho_{1,2}^+ & \rho_{2,2}^-
\end{array}
\]

\[
\begin{array}{ccc}
n_1 & n_1 & n_1
\end{array}
\]

\[
\begin{array}{ccc}
\uparrow & \uparrow & \uparrow
\end{array}
\]

FIG. 1 (color online). Different mechanisms for Coulomb drag in graphene heterostructures. The \(E \) mechanism dominates over the \(\mathcal{P} \) mechanism near zero doping, whereas the \(\mathcal{P} \) mechanism dominates at higher doping. The sign of the drag response depends on carrier polarity (a). For potential fluctuations of equal sign in the two layers, Eq. (1), the net drag (b) features a pair of nodal lines (white dashed lines). Positive drag in the avoided crossing region at zero doping is dominated by the \(E \) mechanism. The resulting dependence is distinct from \(\mathcal{P} \)-mechanism-only drag (c) smeared by correlated density fluctuations, \(\delta \mu_1 = \delta \mu_2 \).
the heating or cooling pattern in layer 1, giving rise to a nonzero ensemble-averaged drag voltage in layer 2.

The E mechanism predicts drag which has a characteristic density dependence [illustrated in Fig. 1(b)] featuring a positive drag resistivity at double neutrality, $\rho_{21} > 0$. The sign, as well as the peak structure in ρ_{21}, agrees with a recent experiment [10]. The density dependence for the net drag (the E and P mechanisms combined) features a split-up pattern of nodal lines with an “avoided crossing” at zero doping, as illustrated in Fig. 1(b). The double sign change along the main diagonal $n_1 = n_2$ and the peak at $n_{1,2} = 0$ make the E mechanism easy to distinguish experimentally.

As a parenthetical remark, the correlated density inhomogeneity, Eq. (1), also affects the P mechanism; however, its effect is opposite to that of the E mechanism. If the P mechanism were the dominant contribution near zero doping, the pattern of nodal lines would be such that the drag sign was constant along the main diagonal [see Fig. 1(e)].

The E mechanism is mediated by neutral modes (particle-hole excitations, or electron-lattice temperature imbalance) which are of a long-range character, and thus can be described by a hydrodynamic approach. The relevant length scales for these modes are ξ_T and ξ_{dis}, the electron-lattice cooling length and the inhomogeneity correlation length, respectively. For a long-range disorder potential and not too low temperatures, the length scales ξ_T and ξ_{dis} are larger than the inelastic mean free path, $\ell = v/\gamma$, where γ is the electron-electron scattering rate. As a result, the E mechanism is captured by a hydrodynamic framework which involves the charge current j and the heat current j_q, which in the ballistic transport regime are related by

$$j_q(r) = Q(n) j, \quad Q[n(r)] = S[n(r)]T/e, \quad (2)$$

where $S(n)$ is the entropy per carrier, $n(r)$ is the density profile, and $e < 0$ is the carrier charge. In the ballistic regime, using the electron temperature approximation, we find [18]

$$Q = \frac{2\pi^2 k_B^2 T^2}{3e(\mu^2 + \Delta^2(T))}, \quad (3)$$

where $\Delta(T)$ accounts for the Dirac point broadening due to disorder and thermal fluctuations, and μ is the chemical potential.

It is instructive to compare the Feynman diagrams describing different mechanisms (see Fig. 2). The characteristic momenta are fairly large for the P mechanism ($\sim k_F$), making it a local contribution. In contrast, the E mechanism includes ladder diagrams representing long-range modes propagating over distances of order $\xi_T \gg k_F^{-1}$.

To illustrate the relation between energy and charge transport, we first analyze the in-plane resistivity in a single layer. According to Eq. (2), spatial inhomogeneity leads to heating or cooling in the presence of uniform charge current (as in the Joule-Thomson process). The spatial temperature profile can be found from $-\nabla k \nabla \Delta T = -\nabla \cdot j_q$, where k is the thermal conductivity and ΔT is the electron-lattice cooling power. A temperature gradient $\nabla \Delta T$ drives thermopower, providing additional dissipation and thereby increasing the resistivity. Onsager reciprocity combined with Eq. (2) gives $\rho_{21}(r) = -(Q[n(r)]/T)\nabla \Delta T$ [18]. Taking an ensemble average over small density fluctuations, $\Delta \mu \ll k_B T$, μ, we find an increase in the in-plane resistivity, $\langle \rho_{\alpha \beta} \rangle = \rho_{\alpha \beta}^0 + \Delta \rho_{\alpha \beta}$, \[\alpha(\beta) = x, y,\]

$$\Delta \rho_{\alpha \beta} = \frac{1}{T} \sum_{|q| < \ell} \frac{\langle \Delta \mu \cdot \Delta \mu \rangle}{\kappa q^2 + \lambda} q_\alpha q_\beta. \quad (4)$$

Since the derivative $\partial Q/\partial \mu$ peaks at $\mu = 0$, this results in $\Delta \rho_{\alpha \beta}$ that peaks at CN. The temperature dependence estimated below is $\Delta \rho \propto T^2$, reminiscent of superlinear power laws for the resistivity frequently observed at small doping [19]. A contribution of nonthermal modes to $\Delta \rho$ was analyzed in Ref. [20].

Generalizing this analysis to two layers coupled by vertical energy transfer and accounting for correlated density fluctuations, Eq. (1), we find an ensemble-averaged drag response $E_2 = \rho_{21} j_1$,

$$\rho_{21}^{(e)} = \frac{1}{2T\tilde{\kappa}} \frac{\partial \mu}{\partial \mu_1} \frac{\partial \mu}{\partial \mu_2} \sum_q \frac{\langle \Delta \mu_2 (-q) \Delta \mu_1 (q) \rangle}{1 + \tilde{\ell}^2 q^2}. \quad (5)$$

Here $\tilde{\kappa} = \kappa_1 + \kappa_2$ is the net thermal conductivity of the two layers, and $\tilde{\ell}$ is the interlayer cooling length. This length is estimated below and is shown to be of order of the inelastic mean free path, $\ell \sim \ell$, much shorter than the electron-lattice cooling length ξ_T. Because the sign of the correlator in Eq. (5) is positive, the energy-driven drag has the same sign as $\Delta \rho_{\alpha \beta}$ in Eq. (4), i.e., it is positive at zero doping. This results in a double sign change along the main diagonal $n_1 = n_2$, see Fig. 1(b). The density dependence for $\rho_{21}^{(e)}$ features a peak at zero doping (see Fig. 3) which is a hallmark of the E-mechanism regime.

A positive correlation, Eq. (1), is expected for a disorder potential dominated by charge impurities [21–23]. For the correlator $\langle \Delta \mu_1 \Delta \mu_2 \rangle$ of a negative sign, conjectured for strain-induced charge puddles [24], our analysis predicts a negative drag at zero doping. Hence drag is a useful tool for probing the origin of inhomogeneity in graphene.
We begin by studying the energy transfer between the electronic systems in the two layers [Fig. 1(a)]. This is described by the Hamiltonian

\[\mathcal{H} = \sum_i \int d^2 r \psi_i^\dagger(r) \left(-i \hbar \mathbf{\nabla} + \delta \mu_i(r) \right) \psi_i(r) + \mathcal{H}_{el-el}, \]

(6)

where \(i = 1 \ldots 2N \) index the layer, and spin and valley degrees of freedom, \(\delta \mu_i(r) \) describes the slowly varying disorder potential, and \(\mathbf{\nabla} \) is the Fermi velocity. The electron-electron interactions are described by \(\mathcal{H}_{el-el} = \frac{i}{2} \sum_{q,k,k',j,i} V_{ij}(q) \psi_{k,j}^\dagger \psi_{k',i} \psi_{k',j} \psi_{k,i} \).

In our analysis, we ignore the correction due to the finite layer separation \(d \), approximating the interlayer interaction by the bare Coulomb interaction, \(V_{ij}(q) = V_0^d = 2\pi e^2/\varepsilon |q| \) with \(\varepsilon \) the background dielectric constant. This approximation is valid when the length scale \(d \) is small compared to the screening length and Fermi wavelength in the layers, which is the case for systems of interest [1]. The random-phase approximation then yields a screened interaction \(V_{ij}(q) = V_0^d/[1 - V_0^d(\Pi_1(q, \omega) + \Pi_2(q, \omega))] \) for \(i, j \) in the different layers.

We describe the energy distribution of carriers in each layer by a Fermi distribution at temperatures \(T_{1,2} \). Using Fermi’s Golden Rule we can calculate the rate of energy exchange between the two layers (see the Supplemental Material [18]). In the degenerate limit \(\mu_1, \mu_2 \gg k_B T \), we obtain the energy transfer rate between layers 1 and 2:

\[J_{12} = \frac{6\zeta(4)}{\hbar ^3 \pi^2 v^2} \frac{\nu d^2 k_B^2}{(\nu_1 + \nu_2)^2} \left(T_1^2 \ln \frac{T_0}{T_1} - T_2^2 \ln \frac{T_0}{T_2} \right). \]

(7)

where \(\nu(\mu) \) is the total density of states in each layer, and \(k_B T_0 = \nu(2\pi e^2/\varepsilon)(\nu_1 + \nu_2) \). Notably, for equal densities \(J_{12} \) does not depend on the Fermi surface size. For equal densities and small temperature differences between the layers \(T_1 = T_2 \), we obtain the cooling rate

\[\gamma = \frac{1}{C_{el}} \frac{d J_{12}}{dT} = \frac{9\zeta(4)k_B^2 T^2}{\pi^2 \mu h} \ln \frac{T_0}{T}, \]

(8)

where the heat capacity \(C_{el} = (\pi^2/3)k_B^2 T \rho(\mu) \) and the density of states \(\rho(\mu) = 2\mu/(\pi h^2 v^2) \) for the degenerate limit have been used. The rate \(\gamma \) increases as \(\mu \) goes towards neutrality, but is already quite large for \(\mu \) away from neutrality. This is completely analogous to intralayer scattering [25,26]. For typical values \(\mu = 100 \text{ meV}, T = 300 \text{ K} \), the rate \(\gamma \) is about 10 ps\(^{-1} \), orders of magnitude faster than typical electron-lattice cooling rates [12–14].

Vertical energy transfer couples heat transport in the two layers, so that the layer temperatures \(T_1, T_2 \) obey

\[-\nabla k_1 \nabla \delta T_1 + a(\delta T_1 - \delta T_2) + \lambda \delta T_1 = -\nabla \cdot \mathbf{j}_{q,1} \]

\[-\nabla k_2 \nabla \delta T_2 + a(\delta T_2 - \delta T_1) + \lambda \delta T_2 = 0, \]

(9)

where \(\mathbf{j}_{q,1} \) is the heat current [see Eq. (2)], and \(a = d J_{12}/dT \) [see Eq. (7)]. We consider only a response linear in the applied current, \(\mathbf{j} \), neglecting the quadratic joule heating term. Inverting the coupled linear equations, we find an increase in temperature in layer 2, \(\delta T_2(\mathbf{r}) \), that is driven by current in layer 1 as

\[\delta T_2(\mathbf{r}) = -\frac{a}{L_1 L_2 - a^2} (\mathbf{j} \cdot \nabla) Q[n_1(\mathbf{r}), T]. \]

(10)

where \(\hat{L}_i = -\nabla k_i \nabla + a + \lambda \). In what follows we suppress the \(\lambda \) term since electron-lattice cooling is slow. Equation (10) then predicts a value for the interlayer cooling length \(\ell = \sqrt{k_1 k_2 /[(k_1 + k_2)a]} \), which yields a value close to that for the mean free path \(\ell \). The induced temperature profile, \(\delta T_2(\mathbf{r}) \), creates thermal gradients that can drive a local thermopower via \(\mathbf{E}_2(\mathbf{r}) = -(Q[n_1(\mathbf{r}), T]/T) \nabla \delta T_2(\mathbf{r}) \).

Spatial fluctuations in the thermopower are governed by density fluctuations via Eq. (10). In particular, close to neutrality the local thermopower will exhibit regions of both positive and negative sign, leading to a spatial pattern of the drag resistivity. As discussed above, the correlations between \(\delta \mu_1 \) and \(\delta \mu_2 \), Eq. (1), lead to a nonzero ensemble-averaged drag resistivity. In the limit \(\delta \mu_{1,2} \ll k_B T, \mu_{1,2} \) we write \(Q(\mathbf{r}) = \langle Q(\mathbf{r}) \rangle + \langle \mathcal{O}(\mathbf{r}) \rangle \delta \mu_1(\mathbf{r}) \).

Passing to Fourier harmonics via \(\langle \delta \mu_1(\mathbf{r}) \delta \mu_2(\mathbf{r}') \rangle = \sum_q e^{i \mathbf{q} \cdot (\mathbf{r} - \mathbf{r}')}(\delta \mu_1(-\mathbf{q}) \delta \mu_2(\mathbf{q})) \), we obtain Eq. (5).
The fact that the fluctuating local thermopower, exhibiting both positive and negative signs, does not average to zero is surprising. This happens because the inhomogeneity in the heat current and the thermopower arise from the same source: electron-hole puddles. The E mechanism resembles mutual drag described by Laikhtman and Solomon [27] in semiconducting heterostructures where doping at contacts produced a similar correlation between Peltier heating or cooling and thermopower. The E mechanism in graphene differs from Ref. [27] that density inhomogeneity is intrinsic, occurs throughout the sample (not just at the contacts), and occurs on a far smaller scale.

To see how the E mechanism, Eq. (5), affects the total experimentally measured drag we need to account for the P-mechanism contribution. We use a model that captures the main qualitative features of momentum drag:

$$\rho_{21}^{(m)} = \tilde{\rho}_{21}^{(m)} \frac{h}{e^2} \left(\mu_1 \mu_2 \right)^2 \frac{(k_B T)^2}{\left(\mu_1^2 + \eta k_B T^2 \right) \left(\mu_2^2 + \eta k_B T^2 \right)},$$

(11)

$$\tilde{\rho}_{21}^{(m)} = -1.4 \alpha^2 / (2 \pi \eta^2),$$

where $\eta k_B T^2$ describes thermal broadening of the Dirac point. This expression, with the effective interaction strength $\alpha = 0.05$, and $\eta = 6.25$, was obtained by fitting the functional dependence derived in Ref. [7] in the doping region $-10 < \mu/k_B T < 10$.

Combining this with $\rho_{21}^{(s)}$ in Eq. (5), we obtain the total drag $\rho_{21}^{(tot)} = \rho_{21}^{(m)} + \rho_{21}^{(c)}$ plotted in Fig. 3. Here we have used an estimate for the thermal conductivity [28]

$$\kappa = b (\mu_1^2 + \Delta^2(T))/hT, \quad \Delta^2(T) = \Delta_0^2 + \eta (k_B T)^2,$$

(12)

and assumed Gaussian correlations with average square density fluctuations $\langle \delta \mu^2 \rangle = 25$ meV2 and $\xi_{\text{dis}} = 100$ nm [16,17]. Here $\Delta(T)$ accounts for Dirac point broadening by disorder and thermal fluctuations [18], and b is a constant of order unity; its exact value does not impact the qualitative features seen in Fig. 3. We note that the details of the functional form of the correlator in Eq. (1) do not impact the quantitative behavior. The obtained values of total drag are compatible with the measured drag resistivities reported in Refs. [9,10].

The density dependence of total drag plotted in Fig. 3(a) can be used to distinguish the two drag mechanisms in experiments. Namely, the peak at zero doping is due to the E mechanism. On the slice $\mu_1 = -\mu_2$ (black dashed line) this peak is surrounded by two peaks dominated by the momentum contribution [Fig. 3(b)]. On the slice $\mu_1 = \mu_2$ (yellow dashed line) the two mechanisms produce contributions of opposite sign, resulting in a double sign change [Fig. 3(c)]. This provides a clear means of discerning the E-mechanism regime.

The temperature dependence can be estimated as follows. At not too low T such that $\ell, \ell < \xi_{\text{dis}}$, the sum in Eq. (5) yields $\sum_q \langle \delta \mu_1(-q) \delta \mu_2(q) \rangle = \langle \delta \mu_1(r) \delta \mu_2(r') \rangle_{r=r'}$. Using Eq. (3) and κ from Eq. (12), we find a nonmonotonic T dependence

$$\rho_{21}^{(c)} \propto \frac{T^4}{(\Delta_0^2 + \eta (k_B T)^2)^3} \langle \delta \mu_1(r) \delta \mu_2(r') \rangle_{r=r'}.$$

(13)

This dependence is reminiscent of that reported in Ref. [10] for drag resistance at CN. A similar nonmonotonic T dependence arises for the in-plane resistivity $\Delta \rho_{\alpha \beta}$. At very low T such that $\ell, \ell \sim \xi_{\text{dis}}$, the sum in Eq. (5) is cut at $1/\ell$, giving $\rho_{21}^{(c)} \propto T^8$. The above analysis can be easily extended to describe the diffusive limit where the elastic mean free path is shorter than the inelastic mean free path, $\ell' < \ell$. Our hydrodynamic approach remains valid in this regime, with the quantity $Q = \sigma T$ where σ is the Seebeck coefficient. The E mechanism is still given by Eq. (5), with s and κ described by the Mott and Wiedemann-Franz relations:

$$e^2 \kappa = \frac{\pi^2}{3} k_B T \sigma, \quad \frac{\sigma}{\kappa} = \frac{\pi^2}{3} k_B T \sigma,$$

(14)

where σ is the electrical conductivity. Taking σ to vary linearly with carrier density, we find σ that takes on the same qualitative form as Eq. (3) in the clean limit. As a result, the qualitative features of $\rho_{21}^{(c)}$ are similar to those found in the clean limit: namely, the avoided crossing of nodal lines, a peak at zero doping, double sign reversal along the diagonal $n_1 = n_2$, and a three-peak structure along the diagonal $n_1 = -n_2$ [Figs. 3(a)–3(c)]. The T dependence of $\rho_{21}^{(c)}$ [plotted in Fig. 3(d)] is qualitatively similar to the nonmonotonic dependence found in the ballistic regime, Eq. (13). However, since the Wiedemann-Franz relation gives $\kappa \propto T$ (in contrast to $\kappa \propto 1/T$ in the ballistic regime), at neutrality we find $\rho_{21}^{(c)} \propto T^2$ at lowest T and $\rho_{21}^{(c)} \propto T^{-4}$ at higher $T \gg \Delta$, as shown in Fig. 3(d). Here, we accounted for Dirac point smearing in the same way as in Eqs. (3), (12), and (13).

We note that the effects of energy transport, while being completely generic, are particularly strong in graphene. Since the P mechanism vanishes at CN, whereas the E mechanism produces a sharp peak in this region, the latter can be easily discerned even at weak inhomogeneity. The peak structure, the sign, and the predicted temperature dependence strikingly resemble the experiment [10].

In summary, vertical energy transfer in graphene heterostructures has strong impact on lateral charge transport in the Coulomb drag regime, dominating the drag response at CN. Drag measurements thus afford a unique probe of energy transfer at the nanoscale, a fundamental process which is key for the physics of strong interactions that occur near neutrality.

We acknowledge useful discussions with A. K. Geim, B. Z. Spivak, and M. Serbyn, and financial support from the...
NSS program, Singapore (J.C.W.S.), the National Science Foundation Grant No. NSF PHY05-51164 and the Office of Naval Research Grant No. N00014-09-1-0724 (L. S.L).