Study of the Dijet Mass Spectrum in ppW+jets Events at s=7TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.109.251801</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Dec 29 12:13:59 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/77189</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution 3.0</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/3.0/</td>
</tr>
</tbody>
</table>
Study of the Dijet Mass Spectrum in $pp \rightarrow W +$ jets Events at $\sqrt{s} = 7$ TeV

S. Chatrchyan et al.*
(CMS Collaboration)

(Received 16 August 2012; published 21 December 2012)

We report an investigation of the invariant mass spectrum of the two jets with highest transverse momentum in $pp \rightarrow W + 2$-jet and $W + 3$-jet events to look for resonant enhancement. The data sample corresponds to an integrated luminosity of 5.0 fb$^{-1}$ collected with the CMS detector at $\sqrt{s} = 7$ TeV. We find no evidence for the anomalous structure reported by the CDF Collaboration, and establish an upper limit of 5.0 pb at 95% confidence level on the production cross section for a generic Gaussian signal with mass near 150 GeV. Additionally, we exclude two theoretical models that predict a CDF-like dijet resonance near 150 GeV.

DOI: 10.1103/PhysRevLett.109.251801

The CDF Collaboration reported evidence for an excess in the mass range 120–160 GeV in the invariant mass (m_{jj}) spectrum of the two leading transverse-momentum (p_T) jets produced in $p\bar{p} \rightarrow W + 2$-jet events with a cross section of 4 pb [1]. The D0 Collaboration carried out a similar analysis but did not confirm the CDF result, instead setting a 95% confidence level (C.L.) upper limit of 1.9 pb on the cross section [2]. This Letter details the search for a bump-like enhancement in the m_{jj} spectrum in events with a W boson using 5.0 fb$^{-1}$ of data collected from pp collisions at $\sqrt{s} = 7$ TeV with the Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider (LHC) during 2010 and 2011.

We search for a resonance with a width consistent with detector resolution as reported by CDF. We further investigate three representative models, a technicolor π_T from the decay of a technicolor ρ_T [4], and the standard model (SM) Higgs boson ($m_H = 150$ GeV) produced in association with a W boson (referred to as WH production) and decaying to a pair of jets. For the unknown state with detector resolution, we follow the convention used at the Tevatron of using the conservative WH simulation for analysis-dependent quantities like efficiencies and acceptances. The WH production cross section at the LHC is negligible compared to contributions from other SM processes, which overwhelm any contribution to this analysis from $WH \rightarrow \ell \nu jj$ decays for $m_H = 125$ GeV [5,6].

A detailed description of the CMS experiment can be found in Ref. [7]. The central feature of the CMS detector is a superconducting solenoid, of 6 m internal diameter, that produces an axial magnetic field of 3.8 T. Located within the field volume is the silicon pixel and strip tracker extending up to $|\eta| = 2.5$, as well as a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass and scintillator hadronic calorimeter (HCAL), both extending up to $|\eta| = 3$. Outside the field volume in the forward region ($3 < |\eta| < 5$) is an iron and quartz-fiber hadronic calorimeter. Muons are measured in gas-ionization detectors embedded in the steel return yoke outside the solenoid, in the pseudorapidity range $|\eta| < 2.4$. The CMS coordinate system has its origin at the center of the detector, with the z axis pointing along the direction of the counterclockwise proton beam. The azimuthal angle is denoted as ϕ, the polar angle as θ, and the pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$.

We employ selection criteria similar to those used at the Tevatron [1,2], but modified to adapt to the higher background rates and different experimental conditions at the LHC. We also place more stringent requirements on the jet kinematics, as suggested in Ref. [8], to enhance a signal compared to the irreducible W plus jets background.

Events are selected with one well-identified and isolated lepton (muon or electron), large missing transverse energy E_T, and exactly two or exactly three high-p_T jets. The data were collected with a suite of single-lepton triggers, mostly with a p_T threshold of 24 GeV for muons and 25–32 GeV for electrons. The trigger efficiency for the selected muons (electrons) is about 94% (90%). We reconstruct muon candidates in the region $|\eta| < 2.1$ by combining information from the silicon tracker and the muon detectors by means of a global fit. We identify electron candidates within $|\eta| < 1.44$ and $1.57 < |\eta| < 2.5$ as clustered energy deposits in the electromagnetic calorimeter that are matched to tracks. Muon and electron candidates need to fulfill quality criteria established for the measurement of the inclusive W and Z cross sections [9]. In addition, all leptons must be well-separated from hadronic activity in the event. Jets within an $\eta-\phi$ cone of radius 0.3 around a lepton candidate are removed.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
The muon (electron) transverse momentum must exceed 25 (35) GeV, and p_T^l must be greater than 25 (30) GeV in the muon (electron) analysis. The transverse mass M_T of each W candidate must be greater than 50 GeV, where

$$M_T = \sqrt{2p_T^l E_T^l [1 - \cos(\phi_l - \phi_{E_T^l})]}$$

and ϕ_l and $\phi_{E_T^l}$ are the azimuthal angles of the lepton and E_T^l, respectively. Events with more than one identified lepton are vetoed.

We reconstruct jets and E_T [9,10] with the particle-flow algorithm [11], which combines information from several subdetectors. The jet finding uses the anti-k_T clustering algorithm [12] with a distance parameter of 0.5. We require $|\eta_j| < 2.4$ to ensure that they lie within the tracker acceptance, and a minimum jet p_T of 30 GeV. Jets must satisfy identification criteria that eliminate jet candidates originating from noisy channels in the hadron calorimeter [13]. Jet-energy corrections are applied to account for the nonlinear response of the calorimeters to the particle energies and other instrumental effects. These corrections are based on in situ measurements using dijet, $\gamma +$ jet, and $Z +$ jet data samples [14]. Overlapping minimum-bias events from other pp collisions (pileup) and the underlying event can contribute additional energy to the reconstructed jets. The median energy density due to pileup is evaluated for each event and the corresponding energy is subtracted from each jet [15]. In addition, tracks that do not originate from the primary vertex are not considered for jet clustering [16]. We verify that the procedures successfully remove the dependence of jet response on the number of interactions in a single event. The jet p_T resolution varies from 15% at $p_T = 40$ GeV to 6% at $p_T = 400$ GeV [14].

We evaluate the mass resolution σ_{jj} for a selected jet pair using simulation and verify it using hadronic W decays in data. We find σ_{jj} to be 10% of m_{jj} for masses around 150 GeV.

We require $||\vec{p}_T^{j_1} + \vec{p}_T^{j_2}|| > 45$ GeV and $|\Delta \eta(j_1, j_2)| < 1.2$, where the jets are numbered in order of decreasing p_T. We retain events with exactly two or exactly three jets satisfying $p_T > 30$ GeV and with the leading jet having $p_T > 40$ GeV and pointing more than 0.4 rad in azimuth from the direction of the \vec{E}_T. The selected jets and the lepton from the W decay must originate from the same primary vertex. Additionally, we impose $0.3 < p_T^{j_1}/m_{jj} < 0.7$ to take advantage of the Jacobian nature of resonant dijet production as observed in simulation studies compared with nonresonant W plus jets production.

W production with two or more jets dominates the selected sample. Smaller contributions come from top-pair and single-top decays, Drell-Yan events with two or more jets, multijet production, and WW and WZ diboson production where one W decays into leptons and the other W or Z decays into quarks.

The shapes of the m_{jj} distributions for background processes are modeled using samples of simulated events. The MADGRAPH5 1.3.30 [17] event generator produces parton-level events with a W boson and up to four partons on the basis of matrix-element (ME) calculations. (The Tevatron experiments used the ALPGEN generator [18].) The ME-parton shower matching scale μ is taken to be 20 GeV [19], and the factorization and renormalization scales are set to $\mu^2 = M_W^2 + p_T^2_{W, W}$. Samples of $t\bar{t}$ and Drell-Yan events are also generated with MADGRAPH. Single-top production is modeled with POWHEG 1.0 [20]. Multijet and diboson samples (WW, WZ, ZZ) are generated with PYTHIA 6.422 [21]. PYTHIA provides the parton shower simulation in all cases, with parameters of the underlying event set to the Z2 tune [22]. The set of parton distribution functions used is CTEQ6L1 [23]. A GEANT4-based simulation [24] of the CMS detector is used in the production of all Monte Carlo (MC) samples. Multiple proton-proton interactions within a bunch crossing are simulated, and the triggers are emulated. All simulated events are reconstructed and analyzed with the same software as data.

We generate signal samples for the WH model using PYTHIA, with parameters corresponding a SM Higgs boson with $m_H = 150$ GeV. We use PYTHIA for technicolor generation as well. We generate leptophobic Z' with MADGRAPH. The authors of Refs. [3,4] provided values for masses and other parameters of the technicolor and Z' models that would best correspond to the signal observed by CDF.

We determine the contributions of the known SM processes to the observed m_{jj} spectrum by means of an extended unbinned maximum-likelihood fit in the range between 40 GeV and 400 GeV. We fit separately in four event categories, $\{\mu, e\} \times \{2$-jet, 3-jet$\}$, because the background compositions differ. The m_{jj} signal region, 123 to 186 GeV, corresponding to $\pm 2\sigma_{jj}$, is excluded from this fit in order to arrive at an unbiased estimate of a possible resonant enhancement in this region.

Table I lists the SM processes included in the fit. The W plus jets normalization is a free fit parameter because it is by far the dominant background. We allow the

<table>
<thead>
<tr>
<th>Process</th>
<th>Shape</th>
<th>Constraint on normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>W plus jets</td>
<td>MC and data</td>
<td>Unconstrained</td>
</tr>
<tr>
<td>Diboson</td>
<td>MC</td>
<td>$61.2 \text{ pb} \pm 10% (\text{NLO})$ [25]</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>MC</td>
<td>$163 \text{ pb} \pm 7% (\text{NLO})$ [26]</td>
</tr>
<tr>
<td>Single-top</td>
<td>MC</td>
<td>$84.9 \text{ pb} \pm 5% (\text{NNLL})$ [27–29]</td>
</tr>
<tr>
<td>Drell-Yan plus jets</td>
<td>MC</td>
<td>$3.05 \text{ nb} \pm 4.3% (\text{NNLO})$ [30]</td>
</tr>
<tr>
<td>Multijet (QCD)</td>
<td>data</td>
<td>E_T fit (described in text)</td>
</tr>
</tbody>
</table>

The shapes of the m_{jj} distributions for background processes are modeled using samples of simulated events. The MADGRAPH5 1.3.30 [17] event generator produces parton-level events with a W boson and up to four partons on the basis of matrix-element (ME) calculations. (The Tevatron experiments used the ALPGEN generator [18].) The ME-parton shower matching scale μ is taken to be 20 GeV [19], and the factorization and renormalization scales are set to $\mu^2 = M_W^2 + p_T^2_{W, W}$. Samples of $t\bar{t}$ and Drell-Yan events are also generated with MADGRAPH. Single-top production is modeled with POWHEG 1.0 [20]. Multijet and diboson samples (WW, WZ, ZZ) are generated with PYTHIA 6.422 [21]. PYTHIA provides the parton shower simulation in all cases, with parameters of the underlying event set to the Z2 tune [22]. The set of parton distribution functions used is CTEQ6L1 [23]. A GEANT4-based simulation [24] of the CMS detector is used in the production of all Monte Carlo (MC) samples. Multiple proton-proton interactions within a bunch crossing are simulated, and the triggers are emulated. All simulated events are reconstructed and analyzed with the same software as data.

We generate signal samples for the WH model using PYTHIA, with parameters corresponding a SM Higgs boson with $m_H = 150$ GeV. We use PYTHIA for technicolor generation as well. We generate leptophobic Z' with MADGRAPH. The authors of Refs. [3,4] provided values for masses and other parameters of the technicolor and Z' models that would best correspond to the signal observed by CDF.

We determine the contributions of the known SM processes to the observed m_{jj} spectrum by means of an extended unbinned maximum-likelihood fit in the range between 40 GeV and 400 GeV. We fit separately in four event categories, $\{\mu, e\} \times \{2$-jet, 3-jet$\}$, because the background compositions differ. The m_{jj} signal region, 123 to 186 GeV, corresponding to $\pm 2\sigma_{jj}$, is excluded from this fit in order to arrive at an unbiased estimate of a possible resonant enhancement in this region.

Table I lists the SM processes included in the fit. The W plus jets normalization is a free fit parameter because it is by far the dominant background. We allow the
normalizations of the other background components to vary within Gaussian constraints around the central values also listed in Table I. The central values for all processes except multijet come from next-to-leading-order (NLO), next-to-next-to-leading-log (NNLL), or next-to-NLO (NNLO) calculations, and the constraints reflect the published uncertainties. We derive templates for the m_{jj} distribution for each background from simulation except for the multijet events, which contribute when jets are misidentified as leptons. In a separate fit to events that fail the lepton isolation requirements, we determine the central value of the multijet normalization, the constraint on the normalization and the template for the m_{jj} distribution [9]. The fit to data determines the correlations among the various fit parameters.

The default CMS MADGRAPH sample of the dominant W plus jets background does not describe well the m_{jj} spectrum in the m_{jj} sidebands. Four alternative samples of W events, with the scales μ and q increased and reduced by a factor two with respect to those of the default, fail to provide significant improvement. Thus, we employ an empirically driven combination of three shapes to describe this component in the fit model,

$$F_{W+jets} = \alpha F_{W+jets}(\mu_0^2, q'^2) + \beta F_{W+jets}(\mu'^2, q_0^2) + (1 - \alpha - \beta) F_{W+jets}(\mu^2, q_0^2),$$

where F_{W+jets} denotes the m_{jj} shape from simulation. The parameters μ_0 (μ') and q_0 (q') correspond to the default (alternative) values of μ and q, respectively, while fractional contributions α and β are free to vary between 0 and 1. We take $\mu' = 2\mu_0$ or $0.5\mu_0$ ($q' = 2q_0$ or $0.5q_0$), depending on which alternative sample provides a better fit to data. Furthermore, we verify, via pseudoeperiment simulations generated with an alternate shape, that the function in the above equation has sufficient freedom to describe the W plus jets shape.

Figure 1(a) shows the observed m_{jj} distribution for all four event categories combined, together with the fitted projections of the contributions of various SM processes. Figure 1(b) shows the same distribution after subtraction of all SM contributions from data except electroweak diboson WW/WZ events. No peak is visible in the spectrum except that near 80 GeV due to diboson events. Figure 1(c) shows the bin-by-bin pull. Table II presents the yields of the SM components obtained from the fit. The sum of all the contributions is compared to the number of observed events. All numbers except those in the last two rows are for the m_{jj} range of 40 to 400 GeV. The last two rows compare the observed number of events and the number predicted by the fit in the m_{jj} range of 123 to 186 GeV. The data agree with the SM expectations, and we find no significant excess in the signal region. We observe a sizable deficit in the muon 2-jet data with respect to the prediction from our model. We do not observe similar deviations in the other three categories, suggesting it is a fluctuation and not a systematic bias.

We validate the fit procedure by performing pseudo-experiments. In each experiment, we generate the m_{jj} pseudodata of the SM processes, including the correlations taken from the fit to data, and then fit each pseudodata sample. The results indicate that the bias on the total yield is below 0.2% and that the fit underestimates the total yield uncertainty by about 30%. These effects are corrected for in the final result. Uncertainties in the jet energy are estimated using a sample of W bosons decaying hadronically in a pure sample of semileptonic $t\bar{t}$ events. The mean and resolution of the reconstructed dijet mass distribution

![FIG. 1 (color online).](image)

(a) Distribution of the invariant mass spectrum of the leading two jets observed in data. Overlaid are the fit projections of the various components. The region between the vertical dashed lines is excluded from the fit. (b) The same distribution after subtraction of all SM components except the electroweak processes WW/WZ. Error bars correspond to the statistical uncertainties. The hatched band represents the uncertainty on the sum of the SM components including correlations from the fit. The dark blue histogram is a resonance consistent with detector resolution and normalized to the CDF cross section scaled as described in the text. (c) The bin-by-bin pull, (data fit)/(fit uncertainty). The bins in the figures are representative of the expected resolution for a given mass and the number of entries in each bin is scaled by its width.
TABLE II. Event yields determined from maximum-likelihood fits to the data. The total fit yields are corrected for bias. The total fit uncertainties include the correlations among the various yields, as determined by the fit, and the corrections derived from the fit validation described in the text. The \(\chi^2 \) probability uses the residuals and the data and MC statistical errors.

<table>
<thead>
<tr>
<th>Process</th>
<th>2-jet Muons</th>
<th>3-jet Muons</th>
<th>2-jet Electrons</th>
<th>3-jet Electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>W plus jets</td>
<td>58 919 (\pm) 530</td>
<td>13 069 (\pm) 366</td>
<td>29 787 (\pm) 1153</td>
<td>8 397 (\pm) 292</td>
</tr>
<tr>
<td>Dibosons</td>
<td>1236 (\pm) 114</td>
<td>333 (\pm) 32</td>
<td>685 (\pm) 65</td>
<td>184 (\pm) 18</td>
</tr>
<tr>
<td>(\bar{t}t)</td>
<td>4570 (\pm) 307</td>
<td>9049 (\pm) 382</td>
<td>2556 (\pm) 174</td>
<td>4265 (\pm) 253</td>
</tr>
<tr>
<td>Single-top</td>
<td>1765 (\pm) 87</td>
<td>1001 (\pm) 50</td>
<td>916 (\pm) 46</td>
<td>521 (\pm) 26</td>
</tr>
<tr>
<td>Drell-Yan plus jets</td>
<td>1837 (\pm) 79</td>
<td>561 (\pm) 24</td>
<td>1061 (\pm) 46</td>
<td>364 (\pm) 16</td>
</tr>
<tr>
<td>Multijet (QCD)</td>
<td>29 (\pm) 284</td>
<td>0 (\pm) 90</td>
<td>3944 (\pm) 1133</td>
<td>324 (\pm) 160</td>
</tr>
</tbody>
</table>

Fit \(\chi^2 \) probability: 0.454, 0.729, 0.969, 0.991

Total from fit: 68 294 \(\pm \) 307, 24 013 \(\pm \) 193, 38 949 \(\pm \) 228, 14 055 \(\pm \) 143

Data: 67 900, 24 046, 38 973, 14 145

In the signal region 123 < \(m_{jj} \) < 186 GeV (excluded from the fit)

| Total predicted | 14 511 \(\pm \) 125 | 7739 \(\pm \) 95 | 7944 \(\pm \) 92 | 4347 \(\pm \) 70 |
| Data | 14 050 | 7751 | 8023 | 4438 |

in data agree within 0.6% with the expectation from simulation. A small difference in \(E_T \) resolution [10] between data and simulation affects the signal acceptance for the new physics models under consideration at the 0.5% level. Further systematic uncertainties are due to the uncertainty of the trigger efficiency estimates (1%) and the estimate of lepton reconstruction and selection efficiency (2%) [9]. The uncertainty on the integrated luminosity is 2.2% [31].

We scrutinize the dijet mass spectrum near 150 GeV, searching for a technicolor, leptophobic \(Z' \), or \(WH \) resonant enhancement. We also use a generic signal model obtained by convolving a delta function centered at \(m_{jj} = 150 \) GeV with a Gaussian function having width equal to \(\sigma_{jj} \). Figure 1(b) shows this generic signal shape. The expected number of signal events at the LHC for a given cross section at the Tevatron can be estimated by considering the ratio of the predicted cross sections for our reference process, \(WH \) production with \(M_H = 150 \) GeV. This process is dominated by quark-antiquark (\(q\bar{q} \)) annihilation. As \(q\bar{q} \) processes have the smallest increase in parton luminosity from the Tevatron to the LHC, this choice provides a conservative limit. We therefore assume

\[
\sigma_{\text{dijet resonance}}^\text{LHC} = \frac{\sigma_{\text{dijet resonance}}^\text{Tevatron}}{\sigma_{WH}^\text{Tevatron}} \times \sigma_{WH}^\text{LHC}
\]

where \(\sigma_{WH}^\text{Tevatron} = 300.1 \) fb [32] and \(\sigma_{WH}^\text{Tevatron} = 71.8 \) fb [33]. A generic Gaussian signal normalized to \(\sigma_{\text{dijet resonance}}^\text{Tevatron} = 4 \) pb corresponds to \(\sigma_{\text{LHC}} = 16.7 \) pb. Table III contains the values of \(\sigma_{\text{LHC}} \) times the branching fraction to jets and of the overall efficiency times acceptance \(e \cdot \mathcal{A} \) for the models considered.

Since we observe no resonant enhancement, we proceed to set exclusion limits using a modified frequentist CL_{S} method [34,35] with profile likelihood as the test statistic. Inputs to the limit-setting procedure are the \(m_{jj} \) distribution obtained by combining the SM components from the fit, the observed distribution in data, the expectation from the dijet resonance model under consideration, and the uncertainties associated with these quantities. Figure 2(a) shows the observed and expected CL_{S} values versus cross section for a generic Gaussian signal, after combining the results of all four event categories. We set a 95% C.L. upper limit of 5.0 pb and a 99.9% C.L. upper limit of 8.5 pb on the dijet production cross section for a generic resonance with \(WH \)-like \(e \cdot \mathcal{A} \).

Figure 2(b) compares the 95% C.L. upper limits with the expected cross sections for technicolor, leptophobic \(Z' \), and \(WH \) (\(M_H = 150 \) GeV) signals. The technicolor and \(Z' \) models are excluded. Because we have minimal sensitivity to \(WH \), we compare the limit in Fig. 2(b) to 100 times the SM cross section as an illustration.

In summary, we have studied the invariant mass spectrum of the two jets with highest transverse momentum in
W$^\pm$2-jet and W$^\pm$3-jet events, with the W decaying leptonically to a muon or electron. The analyzed data sample corresponds to an integrated luminosity of 5.0 fb$^{-1}$ at $\sqrt{s} = 7$ TeV. We find no evidence for a resonant enhancement near a dijet mass of 150 GeV, as reported by the CDF Collaboration, and set upper limits on the dijet production cross section of 5.0 pb at 95% C.L. and 8.5 pb at 99.9% C.L. Two theoretical models, lepto-phobic Z^0 and technicolor, which predict the presence of a resonant enhancement near 150 GeV, are excluded.

We thank Adam Martin and Matthew Buckley for help with simulation of technicolor and Z^0 models, respectively.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); ICINGN, and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

aDeceased.
bAlso at Vienna University of Technology, Vienna, Austria.
cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
dAlso at Universidade Federal do ABC, Santo Andre, Brazil.
eAlso at California Institute of Technology, Pasadena, USA.
fAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
hAlso at Suez Canal University, Suez, Egypt.
iAlso at Zewail City of Science and Technology, Zewail, Egypt.
jAlso at Cairo University, Cairo, Egypt.
kAlso at Fayoum University, El-Fayoum, Egypt.
lAlso at British University, Cairo, Egypt.
mNow at Ain Shams University, Cairo, Egypt.
nAlso at National Centre for Nuclear Research, Swierk, Poland.
oAlso at Université de Haute-Alsace, Mulhouse, France.
pNow at Joint Institute for Nuclear Research, Dubna, Russia.
qAlso at Moscow State University, Moscow, Russia.
rAlso at Brandenburg University of Technology, Cottbus, Germany.
sAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
tAlso at Eötvös Loránd University, Budapest, Hungary.
uAlso at Tata Institute of Fundamental Research—HECR, Mumbai, India.
vAlso at University of Visva-Bharati, Santiniketan, India.
wAlso at Sharif University of Technology, Tehran, Iran.
xAlso at Isfahan University of Technology, Isfahan, Iran.
yAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran.
zAlso at Facoltà Ingegneria Università di Roma, Roma, Italy.
aaAlso at Università della Basilicata, Potenza, Italy.
bbAlso at Università degli Studi Guglielmo Marconi, Roma, Italy.
ccAlso at Università degli studi di Siena, Siena, Italy.
 ddAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania.
 eeAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.
 ffAlso at University of California, Los Angeles, Los Angeles, USA.
 ggAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.
hhAlso at INFN Sezione di Roma, Università di Roma “La Sapienza,” Roma, Italy.
 iiAlso at University of Athens, Athens, Greece.
 jjAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.
 kkAlso at The University of Kansas, Lawrence, USA.
 llAlso at Paul Scherrer Institut, Villigen, Switzerland.
 mmAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.
Also at Gaziosmanpasa University, Tokat, Turkey.
Also at Adiyaman University, Adiyaman, Turkey.
Also at Izmir Institute of Technology, Izmir, Turkey.
Also at The University of Iowa, Iowa City, USA.
Also at Mersin University, Mersin, Turkey.
Also at Ozyegin University, Istanbul, Turkey.
Also at Kafkas University, Kars, Turkey.
Also at Suleyman Demirel University, Isparta, Turkey.
Also at Ege University, Izmir, Turkey.
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.
Also at University of Sydney, Sydney, Australia.
Also at Utah Valley University, Orem, USA.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Argonne National Laboratory, Argonne, USA.
Also at Erzincan University, Erzincan, Turkey.
Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
Also at Kyungpook National University, Daegu, Korea.