Search for the rare decays $B^0 \to D_s^{(*)+} a_{0(-)}$

1550-7998/2006/73(7)/071103(8)$23.00 071103-1 071103-1 © 2006 The American Physical Society
SEARCH FOR THE RARE DECAYS $B^0 \rightarrow D^{(*)+} \phi(1020)$

PHYSICAL REVIEW D 73, 071103(R) (2006)
The time-dependent decay rates for neutral B mesons into a D meson and a light meson provide sensitivity to the Cabibbo-Kobayashi-Maskawa (CKM) [1] quark mixing matrix phases β and γ [2]. A CP-violating term emerges through the interference between $B^0\bar{B}^0$ mixing mediated and direct decay amplitudes. The time-dependent CP-asymmetries in the decay modes $B^0 \to D^{(*)} \pi^+$ have been studied by BABAR and BELLE [4,5]. In these modes, the CP-asymmetries arise due to a phase difference between two amplitudes of very different magnitudes: one decay amplitude is suppressed by the product of two small CKM elements V_{ub} and V_{cd}, while the other is CKM favored. Therefore, the decay rate is dominated by the CKM-favored part of the amplitude, resulting in a very small CP-violating asymmetry.

Recently it was proposed to consider other types of light mesons in the two-body final states [6]. The idea is that decay amplitudes with light scalar or tensor mesons, such as a_0^+ or a_2^+, emitted from a weak current, are significantly suppressed because of the small coupling constants $f_{a0\pi}$. In the $SU(2)$ limit, $f_{a0\pi} = 0$ (since the coupling constant of a light scalar is proportional to the mass difference between u and d quarks), and any nonzero value of $f_{a0\pi}$ is of the order of isospin conservation breaking effects. Since the light tensor meson a_2^+ has spin 2, it cannot be emitted by a W-boson (i.e. $f_{a2} \equiv 0$), and thus could only appear in a V_{cb}-mediated process via final state hadronic interactions and rescattering. Therefore, the absolute values of the CKM-suppressed and favored parts of the decay amplitude (see Fig. 1, top two diagrams) could become comparable, potentially resulting in a large CP-asymmetry. No $B \to a_{0(2)}X$ transitions have been observed yet. A summary of the theoretical predictions for the values of V_{ub} and V_{cb}-mediated parts of the $B^0 \to D^{(*)} a_{0(2)}$ branching fractions can be found in [7].

The V_{ub}-mediated amplitudes in [7] were computed in the factorization framework. In addition to model uncertainties, significant uncertainty in the theoretical calculations is due to unknown $B \to a_{0(2)}X$ transition form factors. One way to verify the numerical assumptions and test the validity of the factorization approach experimentally is to measure the branching fractions for the $SU(3)$ conjugated decay modes $B^0 \to D_3^{(*)} a_{0(2)}$. These decays are represented by a single tree diagram (Fig. 1, bottom diagram) with external W^+ emission, without contributions from additional tree or penguin diagrams. The V_{ub}-mediated part of the $B^0 \to D_3^{(*)} a_{0(2)}$ decay amplitude can be related to $B^0 \to D_3^{(*)} a_2$ using $\tan(\theta_{\text{Cabibbo}}) \approx |V_{cb}|/|V_{cs}|$ and the ratio of the decay constants $f_{d^{(*)}}/f_{D^{(*)}}$.

Branching fractions for $B^0 \to D_3^{(*)} a_2$ are predicted to be in the range 1.3–1.8 (2.1–2.9) in units of 10^{-5} [8]. Branching fraction estimates for $B^0 \to D_3^{(*)} a_2$ of approximately 8×10^{-5} are obtained using $SU(3)$ symmetry from the predictions made for $B^0 \to D_3^{(*)} a_2$ in [7].

In this paper we present the first search for the decays $B^0 \to D_3^{(*)} a_2$, $B^0 \to D_3^{(*)} a_0$, $B^0 \to D_3^{(*)} a_2$ and $B^0 \to D_3^{(*)} a_0$. The analysis uses a sample of approximately 230×10^6 $Y(4S)\to BB$ decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We find no evidence for these decays and set upper limits at 90% C.L. on the branching fractions: $\mathcal{B}(B^0 \to D_3^{(*)} a_0) < 1.9 \times 10^{-5}$, $\mathcal{B}(B^0 \to D_3^{(*)} a_0) < 3.6 \times 10^{-5}$, $\mathcal{B}(B^0 \to D_3^{(*)} a_0) < 1.9 \times 10^{-4}$, and $\mathcal{B}(B^0 \to D_3^{(*)} a_0) < 2.0 \times 10^{-4}$.

DOI: 10.1103/PhysRevD.73.071103
PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

FIG. 1. Top two diagrams: tree diagrams contributing to the decay amplitude of $B^0 \to D_3^{(*)} a_{0(2)}$ (including the $B^0 B^0$ mixing mediated part of the amplitude). Bottom diagram: tree diagram representing the decay amplitude of $B^0 \to D_3^{(*)} a_{0(2)}$.

071103-4
device are used. Photons are identified and measured using the electromagnetic calorimeter, which is comprised of 6580 thallium-doped CsI crystals. These systems are located inside a 1.5 T solenoidal superconducting magnet. We use GEANT4 [11] software to simulate interactions of particles traversing the BABAR detector, taking into account the varying detector conditions and beam backgrounds.

The optimal selection criteria as well as the shapes of the distributions of selection variables are determined by a blind analysis based on Monte Carlo (MC) simulation of both signal and background. For the calculation of the expected signal yield we assume \(\mathcal{B}(B^0 \to D_s^{(*)}a_1^0) \) to be the mean values of the predicted intervals from [8] and an estimate of \(\mathcal{B}(B^0 \to D_s^{(*)}a_0^0) \) obtained from \(\mathcal{B}(B^0 \to D_s^{(*)}a_0^0) \) predicted in [7] and assuming SU(3) symmetry. We use MC samples of our signal modes and, to simulate backgrounds, inclusive samples of \(B^+ B^- \) (800 fb\(^{-1})\), \(B^0 \overline{B}^0 \) (782 fb\(^{-1})\), \(c\bar{c} \) (263 fb\(^{-1})\), and \(q\bar{q}, q = u, d, s \) (279 fb\(^{-1})\). In addition, we use large samples of simulated events of rare background modes which have final states similar to \(K \) and \(B \) backgrounds, inclusive samples of \(W^+ W^- \) and \(Z \). We require \(\theta_H \) to have invariant masses less than about 10 MeV from their nominal values [12] (both \(D^{(*)}_s \) and \(D^{(*)}_s \) mass resolutions are around 6 MeV/c\(^2\)). The invariant mass of the \(D^{(*)}_s \) is calculated after the mass constraint on the daughter \(D^{(*)}_s \) has been applied. Subsequently, all \(D^{(*)}_s \) candidates are subjected to a mass-constrained fit.

We reconstruct \(a_0^0 \) and \(a_2^0 \) candidates in their decay to the \(\eta \pi^- \) final state. For reconstructed \(\eta \to \gamma \gamma \) candidates we require the energy of each photon to be greater than 250 MeV for \(a_0^0 \) candidates, and greater than 300–400 MeV for \(a_2^0 \) candidates, depending on the \(D^+_s \) mode. The \(\eta \) mass is required to be within a \(\pm 1 \sigma \) or \(\pm 2 \sigma \) interval of the nominal value [12], depending on the background conditions in a particular \(B^0, D^{(*)}_s \) decay mode (the \(\eta \) mass resolution is measured to be around 15 MeV/c\(^2\)). The \(a_1^0 \) and \(a_2^0 \) candidates are required to have a mass \(m_{\eta \pi^-} \) in the range 0.9–1.1 GeV/c\(^2\) and 1.2–1.5 GeV/c\(^2\), respectively. We also require that photons from \(\eta \) and \(D^{(*)}_s \) are inconsistent with \(\pi^0 \) hypothesis when combined with any other photon in the event (the \(\pi^0 \) veto window varies from \(\pm 10 \) to \(\pm 15 \) MeV/c\(^2\)). Finally, the \(B^0 \) meson candidates are formed using the reconstructed combinations of \(D^+_s a_0^0, D^{(*)}_s a_2^0 \), and \(D^{(*)}_s a_1^0 \).

The background from continuum \(q\bar{q} \) production (where \(q = u, d, s, c \)) is suppressed based on the event topology. We calculate the angle \(\theta_T \) between the thrust axis of the \(B \) meson candidate and the thrust axis of all other particles in the event. In the center-of-mass frame (c.m.), \(B\bar{B} \) pairs are produced approximately at rest and have a uniform \(\cos \theta_T \) distribution. In contrast, \(q\bar{q} \) pairs are produced in the c.m. frame with high momentum, which results in a \(\cos \theta_T \) distribution peaking at 1. Depending on the background level of each mode, \(\cos \theta_T \) is required to be smaller than 0.70–0.75. We further suppress backgrounds using a Fisher discriminant \(\mathcal{F} \) [13] constructed from the scalar sum of the c.m. momenta of all tracks and photons (excluding the \(B \) candidate decay products) flowing into 9 concentric cones centered on the thrust axis of the \(B \) candidate. The more isotropic the event, the larger the value of \(\mathcal{F} \). We require \(\mathcal{F} \) to be larger than a threshold that retains 75% to 86% of the signal while rejecting 78% to 65% of the background, depending on the background level. In addition, the ratio of the second and zeroth order Fox-Wolfram moments [14] must be less than a threshold in the range 0.25–0.40 depending on the decay mode.

We extract the signal using the kinematical variables \(m_{ES} = \sqrt{E_b^2 - (\sum_i p_i^\prime)^2} \) and \(\Delta E = \sum_i m_i^2 + p_i^\prime^2 - E_b \), where \(E_b \) is the beam energy in the c.m. frame, \(p_i^\prime \) is the c.m. momentum of the daughter particle \(i \) of the \(B^0 \) meson candidate, and \(m_i \) is the mass hypothesis for particle \(i \).
signal events, m_{ES} peaks at the B^0 meson mass with a resolution of about 2.7 MeV/c^2 and ΔE peaks near zero with a resolution of 20 MeV, indicating that the B^0 candidate has a total energy consistent with the beam energy in the c.m. frame. The B^0 candidates are required to have $|\Delta E| < 40$ MeV and $m_{ES} > 5.2$ GeV/c^2.

The fraction of multiple B^0 candidates per event is estimated using the MC simulation and found to be around 2% for $D^+_s a_{0(2)}$ and 5% for $D^+_s a_{0(2)}$ combinations. In each event with more than one B^0 candidate that passed the selection requirements, we select the one with the lowest $|\Delta E|$ value.

After all selection criteria are applied, we estimate the B^0 reconstruction efficiencies, excluding the intermediate branching fractions (see Table I).

Background events that pass these selection criteria are mostly from $q\bar{q}$ continuum, and their m_{ES} distribution is described by a threshold function [15]:

$$f(m_{ES}) \sim m_{ES} \sqrt{1 - x^2} \exp[-\xi(1 - x^2)]$$

where $x = 2m_{ES}/\sqrt{s}$, \sqrt{s} is the total energy of the beams in their center-of-mass frame, and ξ is the fit parameter.

A study using simulated events of B^0 and B^+ decay modes with final states similar to our signal mode, including $D_s^{(*)\pi^-}$ and $D_s^{(*)\rho^-}$, shows that these modes do not peak in m_{ES}.

Table II shows the m_{ES} distributions for the reconstructed candidates $B^0 \to D_s^+ a_0^+$, $B^0 \to D_s^+ a_2^+$, $B^0 \to D_s^+ a_0^-$, and $B^0 \to D_s^+ a_2^-$. For each mode, we perform an unbinned maximum-likelihood fit to the m_{ES} distributions using the candidates from all D_s^+ decay modes combined. We fit the m_{ES} distributions with the same function $f(m_{ES})$ characterizing the combinatorial background and a Gaussian function to describe the signal. The total signal yield in each B^0 decay mode is calculated as a sum over D_s^+ modes ($i = \phi \pi^-$, $K^0 S K^+ + K^0 S K^+$):

$$n_{sig} = B \cdot N_{BB} \cdot \sum_i B_i \cdot \epsilon_i$$

where B is the branching fraction of the B^0 decay mode, N_{BB} is the number of produced BB pairs, B_i is the product of the intermediate branching ratios and ϵ_i is the reconstruction efficiency. The mean and the width of the Gaussian function are fixed to values obtained from simulated signal events for each decay mode. The threshold shape parameter ξ, along with the branching ratio B are

Table I. Reconstruction efficiencies for $B^0 \to D_s^{(*)\pm} a_{0(2)}$ decays (excluding the intermediate branching fractions).

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>$D_s^+ \to \phi \pi^-$</th>
<th>$D_s^+ \to K^0 S K^+$</th>
<th>$D_s^+ \to K^0 S K^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to D_s^+ a_0^+$</td>
<td>4.7%</td>
<td>2.9%</td>
<td>2.5%</td>
</tr>
<tr>
<td>$B^0 \to D_s^+ a_2^+$</td>
<td>1.9%</td>
<td>1.1%</td>
<td>1.1%</td>
</tr>
<tr>
<td>$B^0 \to D_s^+ a_0^-$</td>
<td>2.2%</td>
<td>1.5%</td>
<td>1.3%</td>
</tr>
<tr>
<td>$B^0 \to D_s^+ a_2^+$</td>
<td>0.9%</td>
<td>0.7%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Table II. Signal yields, branching fractions and upper limits on the branching fractions for $B^0 \to D_s^{(*)\pm} a_{0(2)}$ decays. Numbers in parentheses in the third and fourth columns indicate the branching fractions and the upper limits multiplied by the branching fractions of the decays $D_s^+ \to \phi \pi^+$ and $a_{0(2)} \to \eta \pi^+$.

<table>
<thead>
<tr>
<th>B^0 mode</th>
<th>n_{sig}</th>
<th>$B[10^{-5}(10^{-7})]$</th>
<th>U.L.$[10^{-5}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_s^+ a_0^+$</td>
<td>0.9$^{+2.2}_{-1.3}$</td>
<td>0.6$^{+1.4}_{-1.0}$ $\pm 0.1(2.6+6.4 \pm 0.5)$</td>
<td>1.9(0.09)</td>
</tr>
<tr>
<td>$D_s^+ a_2^+$</td>
<td>0.6$^{+1.0}_{-0.8}$</td>
<td>6.4$^{+10.4}_{-4.3}$ $\pm 1.5(4.5+7.3 \pm 0.8)$</td>
<td>19(0.13)</td>
</tr>
<tr>
<td>$D_s^+ a_0^-$</td>
<td>1.5$^{+2.3}_{-1.8}$</td>
<td>1.4$^{+2.1}_{-1.6}$ $\pm 0.3(6.5+10.1 \pm 1.2)$</td>
<td>3.6(0.17)</td>
</tr>
<tr>
<td>$D_s^+ a_2^+$</td>
<td>0.9$^{+2.2}_{-1.3}$</td>
<td>0.6$^{+1.4}_{-1.0}$ $\pm 0.1(2.6+6.4 \pm 0.5)$</td>
<td>1.9(0.09)</td>
</tr>
</tbody>
</table>

![Figure 2](image_url) FIG. 2. Distributions of m_{ES} for $B^0 \to D_s^{(*)\pm} a_{0(2)}$ candidates overlaid with the projection of the maximum-likelihood fit. Contributions from the three D_s^+ decay modes are shown with different hatching styles: $\phi \pi^-$ is cross hatched, $K^0 S K^+$ is hatched, and $K^0 S K^+$ is white. The fit procedure and results are described in the text.

The free parameters of the fit. The likelihood function is given by:

$$L = e^{-N} \prod_{i=1}^{N} (n_{sig} p_{i}^{sig} + (N - n_{sig}) p_{i}^{bkg})$$

where p_{i}^{sig} and p_{i}^{bkg} are the probability density functions for the corresponding hypotheses, N is the total number of events in the fit and i is the index over all events in the fit.

Table II (second column) shows the signal event yields from the m_{ES} fit. Because of a lack of entries in the signal region for the $B^0 \to D_s^{(*)\pm} a_{0}^+$ mode, the fit did not yield any central value for the number of signal events in this mode. Accounting for the estimated reconstruction efficiencies and daughter particles branching fractions, we measure the branching fractions shown in the third column of Table II.

The systematic errors include a 14% relative uncertainty for D_s^+ decay rates [16]. Uncertainties in the m_{ES} signal and background shapes result in 11% relative error in the measured branching fractions. The rest of the systematic error sources, which include uncertainties in photon and η reconstruction efficiencies, the a_0^+ and a_2^+ masses and

071103-6
widths, track and K^0 reconstruction, charged kaon identification, range between 3% and 10%. We assume the branching fraction for $a^+_0 \to \eta \pi^+$ to be 100% and assign an asymmetric systematic error of -10% to this assumption. The systematic error in the number of produced $B\bar{B}$ pairs is 1.1%. There is an additional $\pm 15\%$ systematic error for $B^0 \to D_s^{(*)+} a^-_2$ mode due to the unknown polarization state of the decay products. It was checked that the selection of the best candidate based on $|\Delta E|$ does not introduce any significant bias in the m_{ES} fit. The total relative systematic errors are estimated to be around 25% for each mode.

We use a Bayesian approach with a flat prior above zero to set 90% confidence level upper limits on the branching fractions. In a given mode, the upper limit on the branching fraction (B_{UL}) is defined by:

$$
\int_0^{B_{UL}} \mathcal{L}(B) dB = 0.9 \times \int_0^{\infty} \mathcal{L}(B) dB
$$

where $\mathcal{L}(B)$ is the likelihood as a function of the branching fraction B as determined from the m_{ES} fit described above. We account for systematic uncertainties by numerically convolving $\mathcal{L}(B)$ with a Gaussian distribution with a width determined by the relative systematic uncertainty multiplied by the branching fraction obtained from the m_{ES} fit. In cases with asymmetric errors we took the larger for the width of this Gaussian function. In case of $D_s^{(*)+} a^-_2$ (where no central value was determined from the fit) we conservatively estimate the absolute systematic error by taking the numerically calculated 90% confidence level upper limit (without the systematic uncertainties) instead of the fitted branching fraction. The resulting upper limits are summarized in Table II (fourth column). The likelihood curves are shown in Fig. 3.

We have also calculated upper limits without including the intermediate branching fractions of the decays $D_s^+ \to \phi \pi^+$ [16] and $a^+_{0(2)} \to \eta \pi^+$ [12]. The relative systematic errors in this case are reduced to 18% for each of the B^0 meson decay modes. The results are presented in Table II (third and fourth columns, numbers in parenthesis).

In conclusion, we do not observe any evidence for the decays $B^0 \to D_s^+ a^-_0$, $B^0 \to D_s^+ a^-_2$, $B^0 \to D_s^{(*)+} a^-_0$ and $B^0 \to D_s^{(*)+} a^-_{0(2)}$, and set 90% C.L. upper limits on their branching fractions. The upper limit value for $B^0 \to D_s^+ a^-_0$ is lower than the theoretical expectation, which might indicate the need to revisit the $B \to a^0 X$ transition form factor estimate. It might also imply the limited applicability of the factorization approach for this decay mode. The upper limits suggest that the branching ratios of $B^0 \to D_s^{(*)+} a^-_{0(2)}$ are too small for CP-asymmetry measurements given the present statistics of the B-factories.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), Marie Curie EIF (European Union), A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

[2] $\beta = \arg(-V_{td}V_{ts}^*/V_{td}V_{tb}^*)$, $\gamma = \arg(-V_{td}V_{ts}^*/V_{cd}V_{tb}^*)$.
[3] Charge conjugate reactions are implicitly included throughout this paper.