Search for the Standard Model Higgs Boson in the Diphoton Decay Channel with 4.9fb⁻¹ of pp Collision Data at s=7TeV with ATLAS
Search for the Standard Model Higgs Boson in the Diphoton Decay Channel with 4.9 fb\(^{-1}\) of \(pp\) Collision Data at \(\sqrt{s} = 7\) TeV with ATLAS

G. Aad et al. *

(ATLAS Collaboration)

(Received 7 February 2012; published 13 March 2012)

A search for the standard model Higgs boson is performed in the diphoton decay channel. The data used correspond to an integrated luminosity of 4.9 fb\(^{-1}\) collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of \(\sqrt{s} = 7\) TeV. In the diphoton mass range 110–150 GeV, the largest excess with respect to the background-only hypothesis is observed at 126.5 GeV, with a local significance of 2.8 standard deviations. Taking the look-elsewhere effect into account in the range 110–150 GeV, this significance becomes 1.5 standard deviations. The standard model Higgs boson is excluded at 95% confidence level in the mass ranges of 113–115 GeV and 134.5–136 GeV.

The Higgs mechanism [1] is one of the best-motivated processes to explain electroweak (EW) symmetry breaking. In the standard model (SM), this mechanism explains the generation of the W and Z boson masses and predicts the existence of the only elementary scalar in the SM, the hypothetical Higgs boson. Prior direct searches at LEP, Tevatron and LHC exclude the SM Higgs boson with a mass \(m_H \leq 114.4\) GeV and \(145 < m_H < 206\) GeV at 95% confidence level (C.L.) [2–4]. The present search for \(H \to \gamma \gamma\) uses the full 2011 data sample collected by ATLAS at 7 TeV center-of-mass energy and updates prior results with 1.08 fb\(^{-1}\) [5].

The ATLAS detector [6] consists of an inner tracking detector surrounded by a superconducting solenoid providing a 2 T magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer. The main subdetectors relevant to the search presented here are the calorimeters, in particular, the electromagnetic section, and the inner tracking system. The inner detector provides tracking in the pseudorapidity region \(|\eta| < 2.5\) and consists of silicon pixel- and microstrip detectors inside a transition radiation tracker. The electromagnetic calorimeter, a lead liquid-argon sampling device, is divided in one barrel (\(|\eta| < 1.475\)) and two end-cap (1.375 < \(|\eta| < 3.2\)) sections. The barrel (\(|\eta| < 0.8\)) and extended barrel (0.8 < \(|\eta| < 1.7\)) hadron calorimeter sections consist of steel and scintillating tiles, while the end-cap sections (1.5 < \(|\eta| < 3.2\)) are composed of copper and liquid argon.

The data were recorded using a diphoton trigger [7], each photon having a transverse energy, \(E_T\), of at least 20 GeV, seeded by a lower-level trigger that required two clusters in the electromagnetic calorimeter with \(E_T > 12\) or 14 GeV, depending on the data-taking period. The trigger efficiency for the signal events passing the final offline selection is 99%. After applying data quality requirements, the total integrated luminosity of the data set used in this analysis is 4.9 \(\pm 0.2\) fb\(^{-1}\) [8].

Events are required to contain at least one vertex with at least three associated tracks, where the transverse momentum, \(p_T\), of each track is required to be larger than 0.4 GeV, as well as two photon candidates each seeded by an energy cluster in the electromagnetic calorimeter with \(E_T > 2.5\) GeV. Photons that convert to electron-positron pairs in the inner detector leave one or two tracks that are reconstructed and matched to the clusters in the calorimeter. The photon energy is calibrated separately for converted and unconverted photon candidates using Monte Carlo (MC) simulations of the detector [9]. A correction, depending on pseudorapidity and typically of the order of \(\pm 1\%\), is applied to the calibrated photon energy as obtained from studies using \(Z \to ee\) decays in data [10]. Photons are reconstructed in the fiducial region \(|\eta| < 2.37\), excluding the calorimeter barrel-to-end-cap transition regions 1.37 < \(|\eta| < 1.52\). The photon candidates are ordered in \(E_T\) and the leading (subleading) candidate is required to have \(E_T > 40\) GeV (25 GeV). Both candidates are required to pass further identification criteria based on shower shapes measured in the electromagnetic calorimeter and on the energy leakage into the hadron calorimeter [11]. The photon reconstruction and identification efficiency ranges typically from 65% to 95% for \(E_T\) in the range 25 to 80 GeV. The two photon candidates are required to be isolated by having at most 5 GeV energy deposited in the calorimeters in a cone of \(\Delta R = \sqrt{\Delta \eta^2 + (\Delta \phi)^2}\) = 0.4 around the candidate, where \(\phi\) is the azimuthal angle, after subtracting the energy assigned to the photon itself. The measured isolation [11] is corrected for lateral shower leakage and ambient energy from...
multiple proton-proton interactions (pileup), following the method in Ref. [12]. The isolation cut retains \(\sim 87\% \) of Higgs boson signal events with \(m_H = 120 \) GeV while rejecting \(\sim 44\% \) of the selected data, which includes jets that can be misidentified as photons.

The opening angle of the two photons, used in the calculation of their invariant mass, is determined using the trajectories of the photons. For a converted photon with a well-measured conversion vertex, the trajectory is determined from the straight line between the barycenter of the associated energy deposits in the calorimeter and the conversion vertex. Otherwise, the trajectory is determined from the barycenters of the showers in the first and second layers of the calorimeter. The extrapolation of the trajectories as well as the average beam spot position are used to determine the origin of the photons along the beam axis, \(z \).

The resolution of the \(z \) vertex coordinate is \(\sim 6 \) mm on average for two converted photons with reconstructed tracks, and \(\sim 15 \) mm otherwise. The contribution of the resulting angular resolution to the mass resolution is negligible in comparison to that of the energy resolution.

In total, 22,489 events pass the selection in the diphoton mass range 100–160 GeV. To confirm the dominance of the diphoton processes (\(\gamma\gamma \)) over backgrounds with one or two misidentified jets (\(\gamma j, jj \)), the composition of the selected sample is estimated using the data. A sideband technique [5] is used to estimate the numbers of \(\gamma\gamma, \gamma j, \) or \(jj \) events. The fraction of true diphoton events is estimated to be \((71 \pm 5)\%\). The amount of Drell-Yan background is estimated by selecting \(Z \to ee \) decays in data where either one or both electrons pass the photon selection. The measured composition is summarized in Table I and is compatible with MC expectations. This decomposition is not directly used in the signal search; however, it is used to validate the parametrization of the background fit (see below).

The events are separated into nine mutually exclusive categories with different mass resolutions and signal-to-background ratios, to increase the sensitivity to a possible Higgs boson signal. Categories are defined by the conversion status, \(\eta \) of the selected photons, and \(p_{T\gamma} \) [13], the component of the diphoton \(p_T \) that is orthogonal to the thrust axis, as proposed in Ref. [14]. Events with two unconverted photons are separated into unconverted central (\(|\eta| < 0.75 \) for both candidates) and unconverted rest (all other events). Events with at least one converted photon are separated into converted central (\(|\eta| < 0.75 \) for both candidates), converted transition (at least one photon with \(1.3 < |\eta| < 1.75 \)), and converted rest (all other events). Excepting the converted transition category, each category is further divided by a cut at \(p_{T\gamma} = 40 \) GeV into two categories, low \(p_{T\gamma} \) and high \(p_{T\gamma} \). MC studies show that signal events, particularly those produced in vector-boson fusion (VBF) or in associated production (\(W/ZH \) and \(t\bar{t}H \)), have on average larger \(p_{T\gamma} \) than background events. The number of data events in each category is given in Table II.

The distribution of the invariant mass of the diphoton events, \(m_{\gamma\gamma} \), summed over all categories, is shown in Fig. 1. The sum of the background-only fits (described below) to the invariant mass in each of the categories is superimposed. The signal expectation for a SM Higgs boson with \(m_H = 120 \) GeV is also shown. The presence of the Higgs boson will appear as a narrow resonance in the

Table I. Composition of the selected sample as obtained from the data in the mass window of 100–160 GeV. A sum in quadrature of statistical and systematic uncertainties is quoted.

<table>
<thead>
<tr>
<th>Category</th>
<th>(\gamma\gamma) Events</th>
<th>(\gamma j) Events</th>
<th>(jj) Events</th>
<th>Drell-Yan Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>16000 (\pm 1100)</td>
<td>5230 (\pm 890)</td>
<td>1130 (\pm 600)</td>
<td>165 (\pm 8)</td>
</tr>
<tr>
<td>Fraction</td>
<td>((71 \pm 5)%)</td>
<td>((23 \pm 4)%)</td>
<td>((5 \pm 3)%)</td>
<td>((0.7 \pm 0.1)%)</td>
</tr>
</tbody>
</table>

Table II. Mass resolution \(\sigma_{CB} \) (see text) and FWHM (both in GeV), expected number of signal events \((N_S) \) for \(m_H = 120 \) GeV, and number of events in the data \((N_D) \) in each category for 4.9 \(\text{fb}^{-1} \). \(N_S \) and \(N_D \) are for the mass range 100–160 GeV. The signal-to-background ratios \((S/B) \) are given in a mass window containing 90% of the signal for \(m_H = 120 \) GeV.

<table>
<thead>
<tr>
<th>Category</th>
<th>(\sigma_{CB})</th>
<th>FWHM</th>
<th>(N_S)</th>
<th>(N_D)</th>
<th>(S/B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconverted central, low (p_{T\gamma})</td>
<td>1.4</td>
<td>3.4</td>
<td>9.1</td>
<td>1763</td>
<td>0.05</td>
</tr>
<tr>
<td>Unconverted central, high (p_{T\gamma})</td>
<td>1.4</td>
<td>3.3</td>
<td>2.6</td>
<td>235</td>
<td>0.11</td>
</tr>
<tr>
<td>Unconverted rest, low (p_{T\gamma})</td>
<td>1.7</td>
<td>4.0</td>
<td>17.7</td>
<td>6234</td>
<td>0.02</td>
</tr>
<tr>
<td>Unconverted rest, high (p_{T\gamma})</td>
<td>1.6</td>
<td>3.9</td>
<td>4.7</td>
<td>1006</td>
<td>0.04</td>
</tr>
<tr>
<td>Converted central, low (p_{T\gamma})</td>
<td>1.6</td>
<td>3.9</td>
<td>6.0</td>
<td>1318</td>
<td>0.03</td>
</tr>
<tr>
<td>Converted central, high (p_{T\gamma})</td>
<td>1.5</td>
<td>3.6</td>
<td>1.7</td>
<td>184</td>
<td>0.08</td>
</tr>
<tr>
<td>Converted rest, low (p_{T\gamma})</td>
<td>2.0</td>
<td>4.7</td>
<td>17.0</td>
<td>7311</td>
<td>0.01</td>
</tr>
<tr>
<td>Converted rest, high (p_{T\gamma})</td>
<td>1.9</td>
<td>4.5</td>
<td>4.8</td>
<td>1072</td>
<td>0.03</td>
</tr>
<tr>
<td>Converted transition</td>
<td>2.3</td>
<td>5.9</td>
<td>8.5</td>
<td>3366</td>
<td>0.01</td>
</tr>
<tr>
<td>All categories</td>
<td>1.7</td>
<td>4.1</td>
<td>72.1</td>
<td>22489</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Higgs boson production and decay are simulated with several MC samples that are passed through a full detector simulation [15] using GEANT4 [16]. Pileup effects are accounted for by using several MC samples that are passed through a full detector simulation. The background in each category is estimated from the data by fitting the diphoton mass spectrum in the region 110–160 GeV with an exponential function with free slope and normalization parameters. The background curve in Fig. 1 is the sum of these nine contributions. For each category, a single exponential fit satisfactorily describes the tails of the mass distribution. In Fig. 2, the sum of all signal processes in all categories is shown for a Higgs boson mass of 120 GeV (MC) and analysis category. The signal-to-background ratio (S/B), calculated in a mass window symmetric about the signal maximum and containing 90% of the signal, varies from 0.11 to 0.01 depending on the mass category, a single exponential fit satisfactorily describes the tails of the mass distribution.

The cross sections multiplied by the branching ratio into two photons are shown in Table III. The number of signal events produced by gluon fusion is rescaled to take into account the expected destructive interference between the continuum background and the gluelike process [32], leading to a reduction of the production rate by 2–5% depending on m_H and analysis category. The fractions of gluon fusion, VBF, WH, ZH, and $t\bar{t}H$ production are approximately 87%, 7%, 3%, 2% and 1%, respectively, for $m_H = 120$ GeV.

The cross sections multiplied by the branching ratio into two photons are shown in Table III. The number of signal events produced by gluon fusion is rescaled to take into account the expected destructive interference between the continuum background and the gluelike process [32], leading to a reduction of the production rate by 2–5% depending on m_H and analysis category. The fractions of gluon fusion, VBF, WH, ZH, and $t\bar{t}H$ production are approximately 87%, 7%, 3%, 2% and 1%, respectively, for $m_H = 120$ GeV.

The cross sections multiplied by the branching ratio into two photons are shown in Table III. The number of signal events produced by gluon fusion is rescaled to take into account the expected destructive interference between the continuum background and the gluelike process [32], leading to a reduction of the production rate by 2–5% depending on m_H and analysis category. The fractions of gluon fusion, VBF, WH, ZH, and $t\bar{t}H$ production are approximately 87%, 7%, 3%, 2% and 1%, respectively, for $m_H = 120$ GeV.

The cross sections multiplied by the branching ratio into two photons are shown in Table III. The number of signal events produced by gluon fusion is rescaled to take into account the expected destructive interference between the continuum background and the gluelike process [32], leading to a reduction of the production rate by 2–5% depending on m_H and analysis category. The fractions of gluon fusion, VBF, WH, ZH, and $t\bar{t}H$ production are approximately 87%, 7%, 3%, 2% and 1%, respectively, for $m_H = 120$ GeV.

The cross sections multiplied by the branching ratio into two photons are shown in Table III. The number of signal events produced by gluon fusion is rescaled to take into account the expected destructive interference between the continuum background and the gluelike process [32], leading to a reduction of the production rate by 2–5% depending on m_H and analysis category. The fractions of gluon fusion, VBF, WH, ZH, and $t\bar{t}H$ production are approximately 87%, 7%, 3%, 2% and 1%, respectively, for $m_H = 120$ GeV.

The cross sections multiplied by the branching ratio into two photons are shown in Table III. The number of signal events produced by gluon fusion is rescaled to take into account the expected destructive interference between the continuum background and the gluelike process [32], leading to a reduction of the production rate by 2–5% depending on m_H and analysis category. The fractions of gluon fusion, VBF, WH, ZH, and $t\bar{t}H$ production are approximately 87%, 7%, 3%, 2% and 1%, respectively, for $m_H = 120$ GeV.

The cross sections multiplied by the branching ratio into two photons are shown in Table III. The number of signal events produced by gluon fusion is rescaled to take into account the expected destructive interference between the continuum background and the gluelike process [32], leading to a reduction of the production rate by 2–5% depending on m_H and analysis category. The fractions of gluon fusion, VBF, WH, ZH, and $t\bar{t}H$ production are approximately 87%, 7%, 3%, 2% and 1%, respectively, for $m_H = 120$ GeV.

The cross sections multiplied by the branching ratio into two photons are shown in Table III. The number of signal events produced by gluon fusion is rescaled to take into account the expected destructive interference between the continuum background and the gluelike process [32], leading to a reduction of the production rate by 2–5% depending on m_H and analysis category. The fractions of gluon fusion, VBF, WH, ZH, and $t\bar{t}H$ production are approximately 87%, 7%, 3%, 2% and 1%, respectively, for $m_H = 120$ GeV.

The cross sections multiplied by the branching ratio into two photons are shown in Table III. The number of signal events produced by gluon fusion is rescaled to take into account the expected destructive interference between the continuum background and the gluelike process [32], leading to a reduction of the production rate by 2–5% depending on m_H and analysis category. The fractions of gluon fusion, VBF, WH, ZH, and $t\bar{t}H$ production are approximately 87%, 7%, 3%, 2% and 1%, respectively, for $m_H = 120$ GeV.

The cross sections multiplied by the branching ratio into two photons are shown in Table III. The number of signal events produced by gluon fusion is rescaled to take into account the expected destructive interference between the continuum background and the gluelike process [32], leading to a reduction of the production rate by 2–5% depending on m_H and analysis category. The fractions of gluon fusion, VBF, WH, ZH, and $t\bar{t}H$ production are approximately 87%, 7%, 3%, 2% and 1%, respectively, for $m_H = 120$ GeV.
The difference between the exponential function and the true background will contribute to an excess or a deficit of events over background expectations. In order to take this into account in a conservative way, a term is included in the likelihood function that allows for a signal-like component that is consistent with the background uncertainty. For each category this uncertainty is estimated from MC simulations by the difference between the mass distribution of diphoton events generated with RESBOS and the result of the exponential fit to this distribution. Photon reconstruction and identification efficiencies are taken into account. The MC events are scaled to correspond to 4.9 fb$^{-1}$ of data. The uncertainty is then the maximal difference between the MC shape and the model integrated in a sliding mass window of 4 GeV, the approximate FWHM of the expected signal. The uncertainties obtained are ±(0.1 − 7.9) events depending on the category. Pseudoexperiments are used to check that the sum of $\gamma\gamma$, γj, and jj events can also be described well by the exponential model. The background uncertainties are further validated by fitting the data with functions that have more degrees of freedom than the single exponential, and comparing the residuals to those obtained with the exponential fit.

The dominant experimental uncertainty on the signal yield is the photon reconstruction and identification efficiency (±11%), which is estimated with data by using electrons from Z and W decays and photons selected from $Z \rightarrow \ell\ell\gamma$ ($\ell = e, \mu$) events. Pileup also affects the identification efficiency and contributes to the uncertainty (±4%). Further uncertainties on the signal yield are related to the trigger (±1%), Higgs boson p_T modeling (±1%), isolation (±5%), and luminosity (±3.9%). Uncertainties on the predicted cross sections are due to uncertainties on the QCD renormalization and factorization scales (±8%) and on the parton density functions ([37] and references therein) and α_s (±8%). The total uncertainty on the signal yield is ±14%. The total uncertainty on the mass resolution is ±14%, dominated by the uncertainty on the energy resolution of the calorimeter, determined from $Z \rightarrow ee$ events (±12%). Further uncertainties on the mass resolution result from an imperfect knowledge of material in front of the calorimeter affecting the extrapolation from electron to photon calibration (±6%), the impact of pileup (±3%) estimated from events taken with random triggers, and the photon angle measurement (±1%) estimated using $Z \rightarrow ee$ events. The uncertainty on the knowledge of the material in front of the calorimeter is used to derive the amount of event migration between the converted and unconverted categories (±4.5%). Different parton density functions and scale variations in HQT calculations are used to derive possible event migration between high and low p_T categories (±8%).

A modified frequentist approach (CL_s) [38] for setting limits and a frequentist approach to calculate the p_0 value are used [39]. The p_0 is the probability that the background fluctuates to the observed number of events or higher. The combined likelihood, which is a function of the ratio of the measured cross section relative to that of the SM prediction, is constructed from the unbinned likelihood functions of the nine categories. Systematic uncertainties are incorporated by introducing nuisance parameters with constraints. Asymptotic formulae [40] are used to derive the limits and p_0 values, which are refined with pseudoexperiments [41], as functions of the hypothetical Higgs boson mass.

The observed and expected local p_0 values and the 95% C.L. limits on the Higgs boson production in units of the SM cross section are displayed in Figs. 3 and 4. Before considering the uncertainty on the signal mass position, the largest excess with respect to the

![FIG. 2. Reconstructed invariant mass distribution for a simulated signal of $m_H = 120$ GeV summed over all categories, superimposed with the fit to the signal model.](image1)

![FIG. 3 (color online). The observed local p_0, the probability that the background fluctuates to the observed number of events or higher (solid line). The open points indicate the observed local p_0 value when energy scale uncertainties are taken into account. The dotted line shows the expected median local p_0 for the signal hypothesis when tested at m_H.](image2)
background-only hypothesis in the mass range 110–150 GeV is observed at 126.5 GeV with a local significance of 2.9 standard deviations. The uncertainty on the mass position (± 0.7 GeV) due to the imperfect knowledge of the photon energy scale has a small effect on the significance. When this uncertainty is taken into account, the significance is 2.8 standard deviations; this becomes 1.5 standard deviations when the look-elsewhere effect [42] for the mass range 110–150 GeV is included. The median expected upper limits of the cross section relative to the SM cross section is between 0.83 and 3.6 over the full mass range. A SM Higgs boson is excluded at 95% C.L. in the mass ranges of 113–115 GeV and between 1.6 and 2.7 in the mass range 115–130 GeV, and between 1.6 and 1.7 times the SM cross section in the mass range 110–150 GeV. The observed 95% C.L. upper limit of the cross section as a function of m_H is included.

The significance. When this uncertainty is taken into account, the significance is 2.8 standard deviations; this becomes 1.5 standard deviations when the look-elsewhere effect [42] for the mass range 110–150 GeV is included. The median expected upper limits of the cross section relative to the SM cross section is between 0.83 and 3.6 over the full mass range. A SM Higgs boson is excluded at 95% C.L. in the mass ranges of 113–115 GeV and between 1.6 and 2.7 in the mass range 115–130 GeV, and between 1.6 and 1.7 times the SM cross section in the mass range 110–150 GeV. The observed 95% C.L. upper limit of the cross section as a function of m_H is included.

The significance. When this uncertainty is taken into account, the significance is 2.8 standard deviations; this becomes 1.5 standard deviations when the look-elsewhere effect [42] for the mass range 110–150 GeV is included. The median expected upper limits of the cross section relative to the SM cross section is between 0.83 and 3.6 over the full mass range. A SM Higgs boson is excluded at 95% C.L. in the mass ranges of 113–115 GeV and between 1.6 and 2.7 in the mass range 115–130 GeV, and between 1.6 and 1.7 times the SM cross section in the mass range 110–150 GeV. The observed 95% C.L. upper limit of the cross section as a function of m_H is included.

The significance. When this uncertainty is taken into account, the significance is 2.8 standard deviations; this becomes 1.5 standard deviations when the look-elsewhere effect [42] for the mass range 110–150 GeV is included. The median expected upper limits of the cross section relative to the SM cross section is between 0.83 and 3.6 over the full mass range. A SM Higgs boson is excluded at 95% C.L. in the mass ranges of 113–115 GeV and between 1.6 and 2.7 in the mass range 115–130 GeV, and between 1.6 and 1.7 times the SM cross section in the mass range 110–150 GeV. The observed 95% C.L. upper limit of the cross section as a function of m_H is included.

The significance. When this uncertainty is taken into account, the significance is 2.8 standard deviations; this becomes 1.5 standard deviations when the look-elsewhere effect [42] for the mass range 110–150 GeV is included. The median expected upper limits of the cross section relative to the SM cross section is between 0.83 and 3.6 over the full mass range. A SM Higgs boson is excluded at 95% C.L. in the mass ranges of 113–115 GeV and between 1.6 and 2.7 in the mass range 115–130 GeV, and between 1.6 and 1.7 times the SM cross section in the mass range 110–150 GeV. The observed 95% C.L. upper limit of the cross section as a function of m_H is included.
H. Zhang,5 J. Zhang,5 X. Zhang,6a Z. Zhang,7 L. Zhao,6 T. Zhao,6 A. Zhemchugov,1 S. Zheng,2a J. Zhong,6 B. Zhou,1 N. Zhou,1 Y. Zhou,6 C. G. Zhu,6 H. Zhu,1 J. Zhu,5 Y. Zhu,6 X. Zhuang,6 V. Zhuravlov,7 D. Ziemsinska,5 R. Zimmermann,20 S. Zimmermann,20 S. Zimmermann,47 M. Ziolkowski,139 R. Zitoun,4 L. Živković,34 V. V. Zmouchko,126,a G. Zobernig,170 A. Zoccoli,19a,19b Y. Zolnierzowski,4 A. Zsenei,29 M. zur Nedden,15 V. Zutshi,104 and L. Zwalinski29

(ATLAS Collaboration)

1 University at Albany, Albany, New York, USA
2 Department of Physics, University of Alberta, Edmonton, Alberta, Canada
3 Department of Physics, Ankara University, Ankara, Turkey
4 Department of Physics, Dumlupinar University, Kayseri, Kayseri, Turkey
5 Department of Physics, Gazi University, Ankara, Turkey
6 Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
7 Turkish Atomic Energy Authority, Ankara, Turkey
8 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
9 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
10 Department of Physics, University of Arizona, Tucson, Arizona, USA
11 Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
12 Physics Department, University of Athens, Athens, Greece
13 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
14 Turkish Atomic Energy Authority, Ankara, Turkey
15 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
16 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
17 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
18 Department of Physics, University of Arizona, Tucson, Arizona, USA
19 Physics Department, The University of Texas at Arlington, Arlington, Texas, USA
20 Department of Physics, University of Athens, Athens, Greece
21 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
22 Department of Physics, Bogazici University, Istanbul, Turkey
23 Department of Physics, Istanbul Technical University, Istanbul, Turkey
24 Division of Physics, Bogazici University, Istanbul, Turkey
25 Department of Physics, Istanbul Technical University, Istanbul, Turkey
26 Department of Physics, Instytut Fizyki, University of Warsaw, Warsaw, Poland
27 Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
28 Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
29 Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
30 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
31 Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
32 Department of Physics, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile
33 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
34 Department of Modern Physics, University of Science and Technology of China, Anhui, China
35 Department of Physics, Nanjing University, Jiangsu, China
36 School of Physics, Shandong University, Shandong, China
37 School of Physics, Shandong University, Shandong, China

PRL 108, 111803 (2012) PHYSICAL REVIEW LETTERS week ending 16 MARCH 2012

111803-15
PRL 108, 111803 (2012) PHYSICAL REVIEW LETTERS week ending 16 MARCH 2012

134 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
135 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
136 Department of Physics, University of Washington, Seattle, Washington, USA
137 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
138 Department of Physics, Shinshu University, Nagano, Japan
139 Fachbereich Physik, Universität Siegen, Siegen, Germany
140 Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
141 SLAC National Accelerator Laboratory, Stanford, California, USA
142a Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
142b Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
143a Department of Physics, University of Johannesburg, Johannesburg, South Africa
143b School of Physics, University of the Witwatersrand, Johannesburg, South Africa
144a Department of Physics, Stockholm University, Sweden
144b The Oskar Klein Centre, Stockholm, Sweden
145 Physics Department, Royal Institute of Technology, Stockholm, Sweden
146 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA
147 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
148 School of Physics, University of Sydney, Sydney, Australia
149 Institute of Physics, Academia Sinica, Taipei, Taiwan
150 Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
151 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
152 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
153 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
154 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
155 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
156 Department of Physics, University of Toronto, Toronto ON, Canada
157a TRIUMF, Vancouver, British Columbia, Canada
157b Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
158 Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
159 Science and Technology Center, Tufts University, Medford, Massachusetts, USA
160 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
161 Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
162a INFN Gruppo Collegato di Udine, Italy
162b ICTP, Trieste, Italy
162c Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
163 Department of Physics, University of Illinois, Urbana, Illinois, USA
164 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
165 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
166 Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
167 Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
168 Waseda University, Tokyo, Japan
169 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
170 Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
171 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
172 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
173 Department of Physics, Yale University, New Haven, Connecticut, USA
174 Yerevan Physics Institute, Yerevan, Armenia
175 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

a Deceased.
b Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal.
c Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
d Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
e Also at TRIUMF, Vancouver, BC, Canada.
f Also at Department of Physics, California State University, Fresno, CA, USA.
g Also at Novosibirsk State University, Novosibirsk, Russia.
h Also at Fermilab, Batavia, IL, USA.
i Also at Department of Physics, University of Coimbra, Coimbra, Portugal.