Dual-Pitch Processing Mechanisms in Primate Auditory Cortex

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1523/jneurosci.2563-12.2012</td>
</tr>
<tr>
<td>Publisher</td>
<td>Society for Neuroscience</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Apr 05 17:03:01 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/78836</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Dual-Pitch Processing Mechanisms in Primate Auditory Cortex

Daniel Bendor,† Michael S. Osmanski,* and Xiaqin Wang

Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21025

Pitch, our perception of how high or low a sound is on a musical scale, is a fundamental perceptual attribute of sounds and is important for both music and speech. After more than a century of research, the exact mechanisms used by the auditory system to extract pitch are still being debated. Theoretically, pitch can be computed using either spectral or temporal acoustic features of a sound. We have investigated how cues derived from the temporal envelope and spectrum of an acoustic signal are used for pitch extraction in the common marmoset (Callithrix jacchus), a vocal primate species, by measuring pitch discrimination behaviorally and examining pitch-selective neuronal responses in auditory cortex. We find that pitch is extracted by marmosets using temporal envelope cues for lower pitch sounds composed of higher-order harmonics, whereas spectral cues are used for higher pitch sounds with lower-order harmonics. Our data support dual-pitch processing mechanisms, originally proposed by psychophysicists based on human studies, whereby pitch is extracted using a combination of temporal envelope and spectral cues.

Introduction

Pitch is our perception of fundamental frequency (f_0) (Plack et al., 2005; Oxenham, 2012). Because pitch is not explicitly represented in the cochlea, it must be computed by the central auditory system. Periodicity information from either spectral or temporal acoustic features could potentially be used as a cue by the auditory system to extract the f_0 of a sound (Goldstein, 1973; Shackleton and Carlyon, 1994; Shamma and Klein, 2000).

Complex sounds containing components at integer multiples of a common f_0 are spectrally periodic, and this spectral periodicity can theoretically be measured using a harmonic template (a form of spectral pattern matching) (Goldstein, 1973). Any harmonic template-based mechanism must be sensitive to both the frequency spacing between harmonics and the absolute frequency of each harmonic component. A harmonic template mechanism can only function with resolved harmonics. In humans, the first five to eight harmonics of a complex tone are resolved (Plomp, 1964; Plomp and Mimpen, 1968; but see Bernstein and Oxenham, 2003). Evidence for the existence of harmonic template neurons suitable for extracting pitch is still lacking in the central auditory system (including auditory cortex).

A complex sound composed of more than one harmonic of a common f_0 also has a temporal periodicity in the envelope, with a repetition rate equal to the f_0 of a sound. Temporal envelope periodicity can be calculated by performing an autocorrelation on the phase-locked auditory nerve firing, which only provides a suitable estimate of pitch for f_0 below 1300 Hz (Cariani and Delgutte, 1996a,b). At higher frequencies, the fidelity of the temporal envelope information needed for this analysis is compromised by the degraded phase locking of auditory nerve fibers. The most common all-order interspike interval (analogous to the peak of the autocorrelation) provides a good estimate of the f_0 of the acoustic signal (Cariani and Delgutte, 1996a,b; Cedolin and Delgutte, 2005), whereas pitch salience is related to how well a periodic template can be fitted to all peaks in the autocorrelation function (Bidelman and Heinz, 2011). However, whether downstream neurons use this information for computing pitch has not been determined.

In both humans and monkeys, a putative pitch-processing center has been reported in the low-frequency region of auditory cortex (Patterson et al., 2002; Penagos et al., 2004; Bendor and Wang, 2005, 2010; Schneider et al., 2005; Schönwiesner and Zatorre, 2008; Puschmann et al., 2010). In the common marmoset (Callithrix jacchus), pitch-selective neurons in this region can encode the pitch of missing fundamental (MF) sounds that are spectrally outside their excitatory frequency response area (Bendor and Wang, 2005). In addition, pitch-selective neurons are sensitive to pitch salience and temporal envelope regularity (Bendor and Wang, 2005, 2010). A crucial question that has yet been
addressed in these previous studies is what acoustic cues are used by pitch-selective neurons to encode pitch. In the present study, using both behavioral and electrophysiological techniques, we provide evidence of dual-pitch-processing mechanisms in marmoset auditory cortex. These findings further advance our understanding of the neural basis of pitch processing in the primate brain.

Materials and Methods

Detailed procedures for conducting single-unit recording from awake marmosets can be found in previous publications from our laboratory (Lu et al., 2001a; Wang et al., 2005). We recorded from four marmosets in the present study [M36N (right hemisphere), M2P (left hemisphere), M41O (left hemisphere), and M32Q (left hemisphere)]. In each experiment, the marmoset was sitting quietly in a semi-restraint device with its head immobilized. Experiments were performed within a double-walled soundproof chamber (Industrial Acoustics) with an interior covered by 3-inch acoustic absorption foam (Sonox; Pinta Acoustic). High-impedance tungsten microelectrodes (2–5 MΩ; AM Systems) were mounted on a micromanipulator (Narishige) and advanced by a manual hydraulic microdrive (Trent Wells). Typically 5–15 electrode penetrations were made within a miniature recording hole (~1 mm diameter), after which the hole was sealed with dental cement and another hole was opened for new electrode penetrations. Action potentials were detected online using a template-based spike sorter (MSD; Alpha Omega), which was continuously monitored during the experiment. Neurons were recorded from all cortical layers but most commonly from supragranular layers. All experimental procedures were approved by the Johns Hopkins University Animal Use and Care Committee.

Generation of acoustic stimuli

Digitally generated acoustic stimuli were played from a free-field speaker located 1 m in front of the animal. All sound stimuli were generated at a 100 kHz sampling rate and low-pass filtered at 50 kHz. Harmonic artifacts were at least 43 dB lower than the fundamental at 80 dB SPL. This difference grew as the sound level of the fundamental decreased. The maximum sound level of individual frequency components used in this study was 80 dB SPL. The animal was awake and semi-restrained in a custom-made primate chair but was not performing a task during these experiments.

After each neuron was isolated, we measured its basic response properties, such as best frequency (BF) and sound threshold. Neurons that were responsive to pure tones were tested with harmonic complex tones and/or acoustic pulse trains. Complex tone and acoustic pulse train stimuli were 500 ms in duration. All intertrial intervals for these stimuli were at least 1 s long.

Harmonic complex tones. The most commonly used harmonic complex tone had three components in cosine phase, and each component was played at the sound level threshold of the neuron measured at its BF. Sound levels 10 dB or more below BF threshold were also used in approximately one-third of pitch-selective neurons (25 of 74) to evoke significant MF responses. In a few cases, we used harmonic complex tones composed of more than three components with harmonics most commonly in Schroeder phase (Schroeder, 1970). Neurons failed the criteria of pitch selectivity if they did not respond to MF sounds with the individual harmonics presented at 10 dB above the sound level threshold of the neuron at its BF (or lower sound levels). Components of the MF harmonic complex tone were considered outside the excitatory frequency response area of the neuron if each harmonic component, when played individually at 0 and +10 dB relative to its sound level within the harmonic complex, did not evoke a significant excitatory response. Also for neurons tested with harmonic complex tones composed of greater than three components, no response to individual components +20 dB above threshold was also required. Sound levels were varied in 10 dB steps.

Pitch-shifting experiment. Three component complex tones were frequency shifted by an amount proportional to the fundamental frequency. The frequency spacing between components remained constant and equaled the fundamental frequency. Complex tones were shifted from 0% (harmonics 1–3) to 600% in steps of 25% (relative to f0).

Phase manipulation experiment. Nine tone harmonic complex tones were used, with either all components in cosine phase (COS) or alternating phase (ALT). ALT phase stimuli contained odd harmonics in sine phase and even harmonics in cosine phase. Harmonic complex tones composed of harmonic components 1–9, 2–10, 3–11, 4–12, 6–14, 8–16, and 12–20 were used. Several neurons were also tested using Schroeder phase stimuli (Schroeder, 1970).

Acoustic pulse trains. Each pulse was generated by windowing the preferred carrier signal (pure tones) by a Gaussian envelope. In this report, we refer to this type of acoustic pulse train as a Gaussian click train. In a limited number of cases, we used other types of acoustic pulse trains, including rectangular clicks and Gaussian windowed acoustic pulses with a broadband noise carrier. Pulse widths ranged from 0.1 to 1 ms for rectangular clicks, and Gaussian pulses had a r ranging from 0.89 to 2.53 ms.

Regular acoustic pulse trains had envelope repetition rates near the preferred fundamental frequency and had interpulse intervals (IPIs) equal to the inverse of the fundamental frequency. Irregular acoustic pulse trains were created by randomly jittering each IPI by a random number generated from a uniform distribution between [IPI, Jb], where IPI = IPI – IPI (maximum jitter) and Jb = IPI + IPI (maximum jitter). The maximum jitter was varied between 5 and 50% in 5% steps. Thus, for a mean IPI of 10 ms and a maximum jitter of 10%, each IPI would be chosen from a uniform distribution spanning values between 9.1 and 11.1 ms. For a given jitter amount, the temporal pattern of aperiodic acoustic pulses was the same across all trials.

Typically, 10 repetitions of each acoustic pulse train, complex tone, and rate level stimulus set were presented, but data with a minimum of five repetitions per stimulus were included in the analysis. Frequency tuning curves and rate-level functions were typically generated using 200-ms-long pure tone stimuli and interstimulus intervals >500 ms.

Behavioral experiments

The subjects in the behavioral experiments were four common marmosets (three male, one female) maintained at ~90% of their free-feeding weight on a diet consisting of a combination of monkey chow, fruit, and yogurt. This was a different subject group than was used for the electrophysiological experiments. Reward food consisted of a mixture of Similac baby formula, Gerber single-grain rice cereal, and strawberry-flavored Nesquik and was delivered via a syringe pump (model NE-500; New Era Pump Systems) mounted to the base of a custom restraint chair. Marmosets were tested while seated in the center of a single-walled sound-isolation chamber [model 400A (101 × 124 × 230 cm interior dimensions); Industrial Acoustic Company] lined with 3-inch acoustic absorption foam (Sonox; Pinta Acoustic). An infrared (IR) photo beam was positioned at the end of a feeding tube placed in front of the animal, and subject behavior was recorded when the animal licked at the feeding tube, which caused the IR beam to break.

All sound stimuli were generated offline using MATLAB software (MathWorks) and delivered at a nominal sampling rate of 100 kHz through a digital signal processor and programmable attenuator (models RX6 and PA5; Tucker-Davis Technologies), followed by an audio amplifier (model D-75; Crown Instruments). Stimuli were played from a loudspeaker (Arena series; frequency response from 80 Hz to 54 kHz; Tannoy) mounted 40 cm directly in front of the animal and were calibrated before the experiment using a 1/2-inch free-field microphone (type 4191; Bruel and Kjaer) positioned in the chamber at the same location as the animal’s head.

All animals were initially trained using operant conditioning techniques on a basic tone detection task in which they had to respond to a 7 kHz tone against a silent background (for a detailed description of this procedure, see Osmanski and Wang, 2011) before beginning the current experiment. This initial training took ~4–6 weeks for each animal, and, once trained, animals were moved on to a discrimination training task in which they had to detect a change in f0 between a target and a repeating background tone (see below). Once trained on this discrimination task (~1 week), animals were moved on to the test sessions.
In test sessions, marmosets had to discriminate between same phase harmonic complex tones that differed by 1 octave in their f_0. Additionally, alternating phase complex tones were used to probe whether marmosets perceived these stimuli as similar to same phase harmonic complex tones with a fundamental frequency equal to f_0 or $2f_0$. Each stimulus consisted of the harmonics 4–12 of a common f_0 and was constructed so that the components either all began in cosine phase (COS stimulus) or were alternated such that the odd harmonics began in sine phase and the even harmonics began in cosine phase (ALT stimulus).

These MF harmonic stimuli were presented with a 3- octave-wide band of noise (10 dB signal-to-noise ratio) centered at f_0 to minimize the effects of potential harmonic distortion products.

Each behavior session comprised 100 trials. A trial consisted of a variable duration (5–15 s) waiting period in which a background sound was repeatedly presented to the animal. This waiting period was followed by a 5 s response window within which a target sound was alternated with the background sound four times, which provided the animal with ample opportunity to detect and respond to the presentation of the target sound. All stimuli were 500 ms in duration (20 ms rise/fall time) with a 200 ms interstimulus interval and were presented at an average level of 70 ± 5 dB SPL. The intensity of each individual stimulus was moved to remove potential amplitude cues between targets and backgrounds (see below) and between stimuli containing different phase relationships among their components.

Stimuli were presented in blocks of 10 trials that contained seven target trials (five $2f_0$ COS targets and two f_0 ALT targets (ALT stimuli essentially functioned as low-probability probe sounds to see whether they were perceived in the same way as the higher-probability COS stimuli) and three sham trials in which the target sound was identical to the background (f_0 COS). Licking the feeding tube during a sham trial was recorded as a “false alarm,” which resulted in the chamber lights being extinguished for 5 s (a “blackout”). Licking the feeding tube during a target presentation was recorded as a “hit,” while failing to respond to a target presentation during the 5 s response window was recorded as a “miss.” At the end of each session, a corrected hit rate was calculated for each target based on high-threshold theory [$P_{hit} = (P_{hit} - FA)/(1 - FA)$, where FA is false alarm] (Gescheider, 1985). Final hit rate values for each target are based on a minimum of 300 trials total. Hit rates were then averaged across the two target types (i.e., ALT and COS stimuli). Sessions with a false alarm rate higher than 25% were discarded (<10% of all sessions).

Data analyses

Discharge rates >2 SDs above the mean spontaneous rate and more than one spike for 50% of the trials were considered significant. The mean spontaneous rate was subtracted from the discharge rate. A discharge rate less than zero was therefore below the mean spontaneous rate.

Criteria for pitch-selective neurons. Pitch selectivity was defined as a neuron that (1) responded to pure tones, (2) responded to MF sounds with a fundamental frequency near its f_0, (3) did not respond significantly to components of the MF sound when they were played individually, and (4) the sound level of the MF sound (measured relative to the individual components) did not need to be >10 dB above the BF sound level threshold of the neuron to drive the neuron (Bendor and Wang, 2005). Firing rates were calculated using the entire stimulus duration. It is important to note that sensitivity to temporal envelope regularity was not used as part of the criteria for pitch selectivity.

The spectral sensitivity index is defined as $2 \times (R_{100\%} + R_{200\%})/(R_{150\%} + R_{150\%} + R_{100\%} + R_{200\%}) - 1$, where R is the discharge rate (spontaneous rate is not subtracted), and $\%$ for $R_{\%}$ was the percentage frequency shift of the complex tone relative to the fundamental frequency. The value was scaled by multiplying by two and subtracting one, so that values were 0 for no spectral cue preference (equal response for harmonic complex tones with a fundamental frequency equal to f_0 or $2f_0$) and odd-harmonic complex tones with a fundamental frequency equal to $f_0/2$ and 1 for a maximum spectral cue preference (neuron only responded to harmonic complex tones with a fundamental frequency equal to f_0 of the neuron.

The phase sensitivity index (PSI) is defined as $PSI = (R_{COS} - R_{ALT})/(R_{COS} + R_{ALT})$, where R_{COS} is the firing rate of the neuron in response to the cosine phase complex tone, and R_{ALT} is the firing rate of the neuron in response to the alternating phase complex tone (spontaneous rate is not subtracted). Both complex tones had the same fundamental frequency. A PSI of 0 indicated that the firing rate for the alternating phase complex tone was equal to the firing rate of the cosine phase complex tone. If the neuron only responded to the cosine phase complex tone and had no response to the alternating phase complex tone, the PSI was 1. The spontaneous firing rate was not subtracted from the firing rate so that the values of the PSI were between −1 and 1. If a neuron did not respond to a complex tone of a particular harmonic composition, for either the cosine or alternating phase condition, this response was not included in the population analysis in Figure 4.

Normalized responses for the pitch-shifting experiment were calculated by dividing the firing rate for each frequency shifted complex tone by the response to a 0% shifted complex tone (harmonics 1–3).

Results

To investigate whether the encoding of pitch relies on temporal envelope or spectral cues, we examined whether marmosets perceived similar pitches for harmonic complex tones with two different phase relationships, an acoustic signal manipulation allowing us to delineate the contributions of these two types of cues. The fundamental frequency of a harmonic complex tone with all of its harmonics in cosine phase (referred hereafter as a COS stimulus) is the same whether it is measured using the temporal envelope periodicity or spectral periodicity of the acoustic signal (frequency spacing between harmonics) (Fig. 1A, B). However, a harmonic complex tone with its odd harmonics in sine phase and its even harmonics in cosine phase (referred hereafter as an ALT stimulus) has an envelope repetition rate that is double that of a COS harmonic tone (i.e., the fundamental frequency based on temporal envelope cues is one octave higher) (Fig. 1A, C). This phase manipulation does not change the spacing between harmonics, and so the f_0 measured using spectral cues is the same between these two stimuli. Additionally, a COS harmonic complex tone with a fundamental frequency equal to f_0 has the same envelope repetition rate (and pitch derived from temporal envelope cues) as an ALT complex tone with a fundamental frequency equal to $f_0/2$ (Fig. 1B, F). Because this acoustic stimulus manipulation allows us to independently vary the frequency spacing between harmonics and the repetition rate of the envelope, we can verify whether marmosets extract pitch using temporal envelope and/or spectral cues (Fig. 1A–F). In humans, an alternating phase harmonic complex tone has a pitch 1 octave higher than a same phase complex tone with an identical f_0 when all the harmonics are unresolved (Shackleton and Carlyon, 1994). The perceived pitch of a harmonic complex tone composed of only resolved harmonics does not depend on temporal envelope cues and is therefore identical for same and alternating phase complex tones.

Behavioral measurements of pitch discrimination in marmosets

Marmosets were tested in two daily sessions of 100 trials each. A trial consisted of a repeating “background” sound (i.e., an f_0 COS stimulus) that was alternated with one of two “target” sounds: (1) a $2f_0$ COS stimulus or (2) an f_0 ALT stimulus. The animal’s task was to detect the presentation of the target sound and respond by licking a feeding tube to access food reward. If marmosets
used only spectral information to derive fundamental frequency, they would detect a pitch change for the f_0 COS stimulus but not the f_0 ALT stimulus in this task. However, if marmosets used temporal envelope information to derive fundamental frequency, they would detect a pitch change for both stimuli.

Marmosets were able to easily discriminate f_0 COS targets from f_0 COS background stimuli, showing highly consistent hit rates (>95% correct) across all f_0 values tested ($F_{(4,12)} = 0.894$, $p = 0.50$) (Fig. 2A). Performance with f_0 ALT targets, however, showed a significant decrease in discrimination ability as f_0 increased ($F_{(4,12)} = 34.484$, $p < 0.001$) (Fig. 2A). Discrimination was statistically equivalent for both f_0 ALT and $2f_0$ COS targets when the background f_0 was 150 Hz ($t_{(3)} = -2.74$, $p = 0.07$, Bonferroni’s corrected) (Fig. 2A), but discrimination of f_0 ALT targets became increasingly different from f_0 COS targets as f_0 increased (300 Hz, $t_{(3)} = -4.37$, $p < 0.05$; 450 Hz, $t_{(3)} = -3.89$, $p < 0.05$; 600 Hz, $t_{(3)} = -12.29$, $p < 0.01$; 900 Hz, $t_{(3)} = -17.25$, $p < 0.001$, Bonferroni’s corrected). In general, performance dropped below 50% correct at f_0 values above 450 Hz (Fig. 2A), suggesting that the marmosets relied more strongly on spectral cues compared with temporal envelope cues as we increased the f_0 of the complex tone above 450 Hz.

To look at the influence of harmonic order on these behavioral results, we also tested the same four subjects on a second set of harmonic complex tones with f_0 values of either 150 or 900 Hz and the harmonic components confined to one of three distinct spectral regions: low (harmonics 1–4), medium (harmonics 5–8), or high (harmonics 9–12). All medium and high harmonic stimuli were presented with a 3-octave-wide band of noise (10 dB signal-to-noise ratio) centered at f_0 to minimize the influence of cochlear distortion products at the fundamental frequency. However, other non-f_0 distortion products (e.g., $2f_0-f_0$) were above the frequency range of this noise masker and not blocked. Therefore, it is possible that, although a complex tone was composed entirely of unresolved components, additional resolved harmonic components were produced by distortion products and may have influenced our results (Oxenham et al., 2009).

Each marmoset was pseudorandomly assigned to one f_0 and one spectral region. After completing 300 trials at one spectral region, a subject was moved to the next spectral region. Marmosets were moved on to the second f_0 only after all three spectral regions at the first f_0 were tested.

Results for the 150 and 900 Hz f_0 conditions are shown in Figure 2, B and C, respectively. As expected from the previous experiment, marmosets on this task easily discriminated f_0 COS targets from f_0 COS backgrounds (>90% correct) in both 150 and 900 Hz f_0 conditions (Fig. 1B, C, blue curves). Hit rates did not significantly change across any of the spectral regions tested at either 150 Hz f_0 ($F_{(2,6)} = 1.52$, $p = 0.29$) or 900 Hz f_0 ($F_{(2,6)} = 0.952$, $p = 0.45$). However, the performance of the marmosets decreased when the targets changed to f_0 ALT stimuli. At the 150 Hz f_0 condition, the hit rate was well below 50% in the low spectral region (Fig. 2B), suggesting that the marmosets did not use the envelope repetition rate when accomplishing this task when the f_0 component was present in the target. The average hit rate increased as spectral region moved from low to medium and high ($F_{(2,6)} = 21.54$, $p < 0.01$). Data in Figure 2B show that the f_0 ALT targets were much harder to discriminate compared with $2f_0$ COS targets at both low ($t_{(3)} = -9.27$, $p < 0.01$, Bonferroni’s corrected) and medium ($t_{(3)} = -8.54$, $p < 0.01$, Bonferroni’s corrected) spectral region conditions, although the two target types were indistinguishable in the high spectral region condition ($t_{(3)} = -1.96$, $p = 0.15$, Bonferroni’s corrected). Conversely, in the 900 Hz f_0 condition, performance for f_0 ALT targets was significantly worse than $2f_0$ COS targets at all three spectral regions (low, $t_{(3)} = -8.21$, $p < 0.01$; medium, $t_{(3)} = -16.06$, $p < 0.01$; high, $t_{(3)} = -6.79$, $p < 0.01$, Bonferroni’s corrected) (Fig. 2C).

The average hit rates for f_0 ALT targets never rose above 30% and showed little variation across spectral region ($F_{(2,6)} = 1.23$, $p = 0.36$), suggesting that the marmosets did not use the temporal envelope cues to accomplish this task for high f_0 (900 Hz).

According to the behavioral data shown in Figure 2, the transition point in f_0 for detecting a pitch change in an ALT harmonic complex tone (harmonics 4–12) relative to a COS harmonic

Figure 1. Harmonic complex tones with same or alternating phase. Harmonic complex tones with fundamental frequencies 1 octave apart ($f_0 = 100$ Hz and $f_1 = 50$ Hz in this example, harmonics 8–16). For each fundamental frequency, harmonics are either in same (COS) or alternating (ALT) phase (odd harmonics in sine phase, even harmonics in cosine phase). Alternating phase complex tones have twice the envelope repetition rate as their same phase counterpart, and the autocorrelation of the half-wave-rectified acoustic signal indicates a periodicity at twice the fundamental frequency. A, Amplitude spectrum of a harmonic complex tone with $f_0 = 100$ Hz. B, Acoustic waveform and autocorrelation plots (inset) for a same phase harmonic complex (COS stimulus) with $f_0 = 100$ Hz. C, Acoustic waveform and autocorrelation plots (inset) for an alternating phase harmonic complex (ALT stimulus) with $f_0 = 100$ Hz. D, Amplitude spectrum of a harmonic complex tone with $f_0 = 50$ Hz. E, Acoustic waveform and autocorrelation plots (inset) for a COS stimulus with $f_0 = 50$ Hz. F, Acoustic waveform and autocorrelation plots (inset) for an ALT stimulus with $f_0 = 50$ Hz.
complex tone was ~450 Hz (Fig. 2A). This finding suggests that, in marmosets, the spectral resolvability of harmonic components in a complex tone depends on both harmonic order and f_0. In humans, harmonic order is directly linked to spectral resolvability; the relationship with f_0 is less clear. The first five to eight harmonics of a complex tone are resolved, and harmonic resolvability is only weakly dependent on frequency (Plomp, 1964). However, these psychophysical measurements were based on the ability to hear out individual components rather than measuring the interactions between components (temporal envelope cues). At lower f_0 values (below 100 Hz), temporal envelope cues dominate the perceived pitch of alternating polarity click trains (Flanagan and Guttman, 1960). Although previous measurements of human cochlear tuning reported a relatively constant bandwidth across frequency channels (Glasberg and Moore, 1990), more recent measurements suggest a sharpening of tuning as frequency increases (from a Q_{ERB} of 10 at 1 kHz to a Q_{ERB} of 20 at 8 kHz) (Oxenham and Shera, 2003).

Temporal envelope information processing by pitch-selective neurons

Pitch-selective neurons were observed previously in a low-frequency region of marmoset auditory cortex, bordering primary auditory cortex, the rostral field, and lateral belt (Fig. 3A) (Bendor and Wang, 2005, 2010). Pitch-selective neurons were identified using three criteria: (1) they had pure-tone responses (Fig. 3B), (2) they responded to MF sounds at sound levels in which estimated combination tone responses were below threshold (Fig. 3C), and (3) they had no response to the individual harmonics of the MF sound, indicating that the MF sound is outside the excitatory frequency response area of the neuron (Fig. 3D). MF responses have not been observed outside of this pitch region, in neighboring primary auditory cortex (Schwarz and Tomlinson, 1990; Fishman et al., 1998, 2000). In addition to MF responses, pitch-selective neurons have also been reported previously to be sensitive to temporal envelope regularity, have similar pitch tuning for spectrally different sounds (Fig. 3B,E), and show sensitivity to pitch salience (Fig. 3F,G) (Bendor and Wang, 2005, 2010).

Using high-impedance tungsten electrodes (see Materials and Methods), we recorded 74 well-isolated pitch-selective neurons in four marmosets, with 68 pitch-selective neurons localized within the putative pitch region. Four of six of the remaining pitch neurons were found near the border of the putative pitch region. A total of 203 neurons were recorded in the pitch center, of which 157 were tone-responsive. Thus, 33.5% of the total neurons encountered were classified as pitch selective (43% of tone-responsive neurons). Here, we present data from 28 pitch-selective neurons that were further studied in the four subjects to examine the sensitivity of pitch responses to temporal envelope and spectral cues. Because of the limited recording time in each neuron, we were not able to examine every pitch-selected neuron for their temporal envelope and spectral cue sensitivity.

Given the quantitative differences between marmoset and human pitch perception in terms of how the temporal envelope and
spectral information is used, we next examined the responses of pitch-selective neurons to the COS and ALT harmonic complex tone stimuli used in the marmoset behavioral experiments (Fig. 2), to examine whether these differences were also reflected in responses of pitch-selective neurons.

We observed that pitch-selective neurons differed in their responses to ALT and COS stimuli, shifting their \(f_0 \) tuning for ALT stimuli down by 1 octave compared with COS stimuli (Fig. 4A, B). We tested pitch-selective neurons with both COS and ALT stimuli in several harmonic compositions. The fundamental frequency of these harmonic complex tones was selected to be at the preferred fundamental frequency of the pitch-selective neuron (Bendor and Wang, 2005), referred to hereafter as the \(B_{f0} \). An example pitch-selective neuron is shown in Figure 4C. Firing rates were higher for COS stimuli with \(f_0 \) values equal to the \(B_{f0} \) of the pitch-selective neuron (152 Hz) than for their ALT counterpart, except for the highest-order harmonic composition (8–16) that did not elicit a significant response for either stimuli (Fig. 4C, COS, solid blue curve; ALT, solid red curve). This neuron did not respond to COS stimuli with \(f_0 \) values set at an octave below its \(B_{f0} \) (Fig. 4C, dashed blue curve), but when tested by ALT stimuli with \(f_0 \) values set at \(B_{f0}/2 \), this pitch-selective neuron showed higher firing rates than its COS counterpart for higher-order harmonic compositions (4–12 and 8–16) (Fig. 4C, dashed red curve). Thus, temporal envelope cues (preference for the envelope repetition rate to equal the \(B_{f0} \)) affected the pitch responses in this neuron when higher-order harmonics were present in the complex tones, whereas when lower-order harmonics were present (1–9), spectral cues (preference for the \(f_0 \) to equal the \(B_{f0} \)) dominated the pitch response. Large variations in firing rate between COS and ALT stimuli were more common in pitch-selective neurons with low \(B_{f0} \) values (Fig. 4C, \(B_{f0} = 152 \) Hz) compared with pitch-selective neurons with high \(B_{f0} \) values (Fig. 4D, \(B_{f0} = 1.45 \) kHz).

We quantified the change in firing rate between COS and ALT stimuli for a population of pitch-selective neurons using the PSI (see Materials and Methods). Because we compared responses to two acoustic stimuli that were spectrally identical, any difference in firing rate was only attributable to differences in the phase relationship between harmonics (which in turn affected the envelope repetition rate). If a pitch-selective neuron was sensitive only to the envelope repetition rate of the acoustic stimulus, the PSI would be 1 for the COS and ALT stimuli at \(B_{f0} \) and \(-1 \) at \(B_{f0}/2 \). Conversely, a PSI of 0 indicated that only spectral information was used, because there was no difference in firing rate between the two phase conditions (COS vs ALT).

We observed that the PSI was significantly greater for pitch-selective neurons with a \(B_{f0} < 450 \) Hz compared with those with a higher \(B_{f0} \) (Fig. 4E). This effect was statistically significant when
lower-order harmonics (harmonics 1–3) were not present in the complex tone [median PSI = 0.34 (Bf0 < 450 Hz) and 0.11 (Bf0 > 450 Hz)]; mean PSI = 0.43 (Bf0 < 450 Hz) and 0.14 (Bf0 > 450 Hz); Wilcoxon’s rank-sum test, p < 0.05] (Fig. 4E, circles). However, when the fundamental (first harmonic) was present in the stimuli, there was no longer a statistically significant difference in PSI between pitch-selective neurons with Bf0 < 450 Hz and Bf0 > 450 Hz [median PSI = −0.03 (Bf0 < 450 Hz) and 0.18 (Bf0 > 450 Hz); mean PSI = 0.06 (Bf0 < 450 Hz) and 0.14 (Bf0 > 450 Hz); Wilcoxon’s rank-sum test, p = 0.29] (Fig. 4E, crosses).

For pitch-selective neurons with Bf0 < 450 Hz, we observed PSIs significantly greater than 0 (signed-rank test, p < 0.05, Bonferroni’s corrected) when higher-order harmonics (fourth or higher) were present in harmonic complex tones played at the Bf0 of the pitch-selective neuron (Fig. 4F, solid green curve). Although the mean PSI was positive for pitch-selective neurons with Bf0 > 450 Hz, it was not significantly different from 0 (signed-rank test, p > 0.05, Bonferroni’s corrected) (Fig. 4F, solid magenta curve). When harmonic complex tones with f0 values 1 octave below the Bf0 of the pitch-selective neuron were used, we observed negative PSIs (Fig. 4F, dashed curves). This indicates that the Bf0 of a harmonic complex tone did not need to match the Bf0 of a pitch-selective neuron for temporal envelope repetition rate to influence the response of the neuron (as long as the repetition rate matched the Bf0 of the neuron). This trend was only observed in pitch-selective neurons with Bf0 < 450 Hz, but the mean PSI was not significantly different from 0 (signed-rank test, p > 0.05, Bonferroni’s corrected) (Fig. 4F, dashed green curve). These data show that temporal envelope information is used by pitch-selective neurons with Bf0 < 450 Hz when higher-order harmonics are present in the harmonic complex tone, whereas pitch responses depend more on spectral information for neurons with Bf0 > 450 Hz.

Spectral information processing by pitch-selective neurons

Although changing the phase of harmonics can alter the temporal envelope cues used for pitch extraction, this stimulus manipulation does not allow us to modify the spectral cues used without changing the fundamental frequency. To more closely examine the influence of spectral cues on pitch processing, we next investigated whether pitch-selective responses were sensitive to the absolute frequency of the components of a complex tone using a different acoustic stimulus set. We used frequency-shifted complex tones, for which each component was parametrically shifted in frequency by an amount proportional to f0 (Fig. 5A). For shifts
Figure 5. Experiment with frequency-shifted complex tones.

A, Each harmonic of a three-component complex tone was shifted in frequency by an amount relative to the fundamental frequency. Thus, a 25% frequency shift in a complex tone (with $f_0 = 100$ Hz) would be a 25 Hz increase in frequency for each harmonic, resulting in an inharmonic complex tone. Frequency shifts of multiples of 100% of f_0 resulted in harmonic complex tones (components were integer multiples of the fundamental frequency). Harmonic complex tones ($f_0 = 100$ Hz, harmonics 5–7, left bottom plot) and odd-harmonic complex tones ($f_0 = 100$ Hz, shifted by 50%, right bottom plot) differed slightly in their waveforms but had similar envelope periodicity (dashed line). The autocorrelations of the half-wave-rectified waveforms of these complex tones were also similar (see insets of each plot).

B, Spectral sensitivity of pitch-selective neurons. Vertical dashed line indicates $Bf_0 = 450$ Hz. The horizontal dashed lines indicate a spectral sensitivity index of 1 and 0, respectively.

C, The mean normalized response of pitch-selective neurons with $Bf_0 < 450$ Hz to frequency-shifted complex tones. Vertical dashed lines indicate shifts of multiples of 100% of f_0 (i.e., harmonic complex tones). Normalized responses were calculated by dividing the discharge rate by the maximum response of the neuron to the stimulus set.

D, Normalized response of pitch-selective neurons with $Bf_0 > 450$ Hz to frequency-shifted complex tones. (Figure legend continues.)
and 350 Hz) would create an odd-harmonic complex tone because these three components are harmonics 3, 5, and 7 of the harmonic complex tone with an \(f_0 = 50 \) Hz (1 octave below an \(f_0 \) of 100 Hz). In these experiments, the frequency separation between components was equal to \(f_0 \) for all acoustic stimuli, and, as a result, the envelope repetition rate was always equal to \(f_0 \) despite our spectral manipulations. In humans, pitch shifts or ambiguous pitches are perceived when the components of the inharmonic complex tone are resolved (Patterson and Wightman, 1976; Moore and Moore, 2003). Conversely, when the components are unresolved, inharmonic complex tones have minor or negligible effects on the perceived pitch, and any observed pitch shifts can be attributed to shifts in the spectral “center of gravity” (Moore and Moore, 2003). Although these data can be modeled using a harmonic template in the auditory system for pitch extraction, similar predictions have also been obtained using temporal fine structure cues (Meddis and O’Mard, 1997).

Because the peak firing rate of a pitch-selective neuron occurs at its \(Bf \), and decreases when the pitch salience decreases, a pitch shift or ambiguous pitch should be reflected by a decrease in firing rate only when the harmonics are resolved. If the harmonics are not resolved, then only the temporal envelope pitch information remains, and pitch–selective neurons should be insensitive to these frequency shifts. As such, pitch-selective neurons should have lower firing rates for inharmonic complex tones and odd-harmonic complex tones compared with harmonic complex tones when the components are resolved. Pitch is more discriminable for odd-harmonic complex tones compared with harmonic complex tones (Michely et al., 2012), but odd-harmonic complex tones also produce the largest change in \(f_0 \) and greatest pitch ambiguity (de Boer, 1956). If pitch-selective neurons are sensitive to fundamental frequency (measured using spectral cues), they should show the largest decrease in firing rate for odd-harmonic complex tones. We calculated the spectral sensitivity index (see Materials and Methods) of pitch-selective neurons, which equaled 1 when neurons only responded to harmonic complex tones (even and odd components) and equaled 0 when neurons responded similarly to odd-harmonic complex tones (shift of 50%, 150%, etc.) and harmonic complex tones with all harmonics (shift of 0%, 100%, etc.). The spectral sensitivity index was significantly greater in pitch-selective neurons with \(Bf_0 > 450 \) Hz compared with those with lower \(Bf_0 \) values (Fig. 5B) [median = –0.34 (\(Bf_0 < 450 \) Hz) and 0.65 (\(Bf_0 > 450 \) Hz); mean = –0.29 (\(Bf_0 < 450 \) Hz) and 0.64 (\(Bf_0 > 450 \) Hz); Wilcoxon’s rank sum test, \(p < 5 \times 10^{-4} \)]. Pitch-selective neurons with \(Bf_0 < 450 \) Hz showed no decrease in their normalized responses to frequency-shifted complex tones (Fig. 5C), whereas every pitch-selective neuron in our dataset with a \(Bf_0 > 450 \) Hz showed a preference for harmonic over both inharmonic complex tones and odd-harmonic complex tones (Fig. 5D–F). These data indicate that spectral cues are used by pitch-selective neurons with \(Bf_0 > 450 \) Hz, whereas pitch responses in neurons with \(Bf_0 < 450 \) Hz are less sensitive to spectral cues.

Pitch-related responses within the putative pitch center

In addition to pitch–selective neurons that passed our criteria for pitch selectivity (see Materials and Methods), we found evidence of two additional types of responses within the putative pitch center that could contribute to encoding pitch. We identified 10 neurons that were tuned to the repetition rate of the envelope of the acoustic signal but did not respond (or were weakly responsive) to pure tones with frequencies equal to the best envelope repetition rate or harmonic frequencies of this best repetition rate. Examples of two such neurons are shown in Figure 6, A and C. Responses of these two neurons to sinusoidally modulated (sAM) tones at their best modulation frequency occurred over a range of carrier frequencies (spectral range), an order of magnitude larger than their best envelope repetition rate, demonstrating some degree of spectral invariance (Fig. 6B,D). Furthermore, no preference for the harmonicity of a complex tone was observed (Fig. 6B,D). Because of the lack of response in these neurons to pure tones at \(f_0 \), they failed the criteria for pitch selectivity (Bendor and Wang, 2005). However, in all other respects, the MF responses of these neurons were similar to the “temporal envelope-based” response of pitch-selective neurons with \(Bf_0 < 450 \) Hz. We tested a group of these neurons with temporally jittered acoustic pulse trains (with a mean envelope repetition rate equal to \(Bf_0 \)), and all tested neurons showed a preference for temporally regular sounds (Fig. 6E). It has been shown that pitch salience covaries with temporal regularity (Pollack, 1968). We have shown previously that sensitivity to temporal regularity is typically observed in pitch-selective neurons; neurons outside the pitch center are generally insensitive to temporal jitter and have similar firing rates for regular and irregular pulse trains with the same mean envelope repetition rate (Bendor and Wang, 2010). Given that these neurons do not respond to pure tones at frequencies equal to their best envelope repetition rate, their responses to MF harmonic complex tones and sensitivity to temporal regularity cannot be a byproduct of distortion products produced in the cochlea (Pressnitzer and Patterson, 2001; McAlpine, 2004).

In addition to envelope repetition rate–tuned neurons, we also found seven neurons exhibiting multipeaked spectral tuning within the putative pitch center. These neurons were tuned to several frequencies that were harmonics of their \(Bf_0 \). Response properties of two multipeaked neurons are shown in Figure 7, A–C and D–F, respectively. When tested with complex tones, a multipeaked neuron typically showed significantly higher firing rates to a harmonic complex tone than to the linear summation of the responses to individual harmonics (Fig. 7B). In response to frequency-shifted complex tones (Fig. 7B) or sAM tones varying in carrier frequency (Fig. 7E), these neurons exhibited the strongest responses to harmonic acoustic stimuli (with a fundamental frequency equal to the \(Bf_0 \)) compared with frequency shifts creating inharmonic or odd-harmonic acoustic stimuli. Furthermore, responses of these neurons to harmonic complex sounds were not affected by the phase relationship between harmonics when tested by COS, ALT, or Schroeder phase stimuli (Fig. 7C,F; see Materials and Methods). Both of these multipeaked neurons had \(Bf_0 > 450 \) Hz and had responses that were similar to pitch–selective neurons with comparable \(Bf_0 (> 450 \) Hz) that were more sensitive to spectral cues than temporal envelope cues. The only observed difference is that these units also responded to each harmonic when played individually as a pure tone (Fig. 7A,D),
which is why they failed to satisfy the criteria for pitch selectivity. The observed multipeaked tuning for harmonic frequencies creates a harmonic template that could theoretically extract the fundamental frequency using spectral cues.

Discussion

Various neural mechanisms have been proposed over the past century to explain how the auditory system extracts the pitch of an acoustic signal (for recent reviews, see Moore, 2003; Plack et al., 2005; Griffiths and Hall, 2012; Wang and Walker, 2012). Computational models relying entirely on a single mechanism are attractive given their ability to predict many pitch phenomena despite their simplicity (Meddis and Hewitt, 1991a,b; Meddis and O’Mard, 1997; Shamma and Klein, 2000; Plack et al., 2005). However, recent psycho-physical data demonstrating pitch perception in human subjects for harmonic complex tones with harmonics above the assumed phase-locking limit cast doubt on a purely temporal model to extract pitch (Oxenham et al., 2011). Furthermore, differences in pitch perception have been observed for resolved and unresolved harmonic complex tones, which has lead some researchers to argue that dual-pitch processing mechanisms provide a more parsimonious explanation of these psychophysical data (Shackleton and Carlyon, 1994; Carlyon, 1998). One difficulty in assessing the success of a model is that better performance could be linked to the use by a model of more free parameters (Plack et al., 2005).

Here we report that neurons within the putative pitch center of auditory cortex in marmosets can use either temporal envelope or spectral cues in an acoustic signal for pitch extraction, depending on pitch values and harmonic compositions. Although some neurons appeared to encode pitch using only temporal envelope or spectral cues, other neurons were sensitive to the combination of temporal envelope and spectral cues (Fig. 4C). The major determinant of whether pitch was extracted using temporal envelope and/or spectral cues was the fundamental frequency and harmonic order of the complex tone. These observations from pitch-selective neurons were mirrored in the behavioral data from marmosets (Fig. 2), in which both fundamental frequency and harmonic order influence the contribution of spectral and temporal envelope information on the perceived pitch.

Our data indicate that two different mechanisms are used by the auditory system of the marmoset to extract pitch. The temporally based mechanism is sensitive to both the temporal regularity and repetition rate of the envelope of the acoustic signal. The spectrally based mechanism is sensitive to the harmonicity and f_0 of the harmonics of the complex tone but not to the envelope of the acoustic signal. These data support previous reports of dual-pitch processing mechanisms in macaque monkeys based on electrophysiological recordings (multiunit activity and current source density) in primary auditory cortex in response to same phase and alternating phase click trains (Steinschneider et al., 1998). Temporally based
there are several possible mechanisms that can provide the spectral and temporal envelope information necessary for pitch discrimination. pitch-selective neurons have access to explicit spectral information relevant for pitch extraction.

Figure 7. Multipeaked neuron examples. A–C, This neuron (unit M2P-80.1) was not classified as a pitch-selective neuron because it did not have the same tuning for pure tones and MF harmonic complex sounds. However, it did respond to pure tones at harmonics of its f_0 at 720 Hz. A, Multipeaked tuning to pure tones. Vertical dashed lines indicate the B_f (720 Hz) and corresponding higher harmonics (2–6). B, Sensitivity to pitch shift. Stimuli were three-component harmonic/inharmonic complex tones (1–1, $f_0 = 720$ Hz). Responses shown for the complex tone (curve) are greater than the summation of responses to each component played individually (× symbols). Responses to harmonic shifts (100% of f_0) are greater than to inharmonic or odd-harmonic shifts. The dashed lines in A and B indicate the minimum firing rate criterion for a significant response (2 SDs above the mean spontaneous rate). C, Similar responses were observed for COS and ALT harmonic complex tones in several harmonic compositions, indicating no PSI for this neuron. D–F, Responses from another multipeaked neuron (unit M2P-56.1). D, Frequency tuning obtained by pure tone stimuli. Vertical dashed lines indicate frequencies that are harmonically related to the B_f (518 Hz) estimated using sAM tones. E, Responses to sAM tones with a modulation frequency equal to the B_f (518 Hz), varying in carrier frequency (labeled relative to the B_f). The neuron showed preferences for carrier frequencies that are integer multiples of the B_f. The dashed lines in D and E indicate the minimum firing rate criterion for a significant response (2 SDs above the mean spontaneous rate). F, Similar responses are observed for harmonic complex tones in COS, ALT, and Schroeder phase. No phase sensitivity is observed in this neuron.
It is unlikely that temporal envelope cues are extracted above the level of primary auditory cortex, because the frequency limit of envelope locking for the majority of cortical neurons in the core areas of the marmoset (Lu et al., 2001b; Liang et al., 2002; Lu and Wang, 2004; Bendor and Wang, 2007) is typically near to or less than the lower limit of pitch (Krumholz et al., 2000). Examples of stimulus locking at higher frequencies have been observed from multiunit responses (Steinschneider et al., 1998) and single-unit responses in auditory cortex (De Ribaupierre et al., 1972; Wallace et al., 2002). Stimulus-locked responses at frequencies >200 Hz may be from thalamic fibers (Steinschneider et al., 1998) and only reflect the temporal fidelity of the medial geniculate body (as opposed to the temporal fidelity of auditory cortex). Given that the upper limit of pitch perception in humans extends several octaves above the cortical stimulus synchronization limit, extracting the fundamental frequency of a sound using temporal cues is more likely to happen subcortically, at least for higher fundamental frequencies. As such, possible candidates for the conversion of temporal envelope information (both fine structure and envelope) in the form of temporal firing patterns into a rate code are the pathways leading to auditory cortex from the ventral and dorsal divisions of the medial geniculate body or the inferior colliculus (Kaas and Hackett, 2000; Bartlett and Wang, 2007). This rate code must be sensitive to both the envelope repetition rate and temporal envelope regularity of the acoustic stimulus, both of which are represented in the temporal firing patterns of neurons at lower levels of the auditory system. Although previous studies have shown tuning in the inferior colliculus for modulation frequency (envelope repetition rate) (Langner and Schreiner, 1988), it is unknown whether these neurons show any preference for temporally regular sounds. If they do not pass this stricter criterion, then the cortical representation of pitch must rely on another subcortical pathway for its sensitivity to temporal envelope regularity.

Only within the putative pitch center have we found neurons consistently tuned to the temporal envelope regularity of the acoustic stimulus (Bendor and Wang, 2010), an acoustic feature required for pitch perception. This raises another important distinction between neurons found throughout auditory cortex that covary their firing rates with pitch-related information (Bilzev et al., 2009, 2010; Bendor and Wang, 2010; Wang and Walker, 2012) and neurons within the putative pitch center that are defined as pitch selective using stricter criteria (Bendor and Wang, 2005). Further supporting their role in extracting pitch, here we have shown that the responses of pitch-selective neurons in the marmoset’s pitch center also closely match the pitch discrimination of the marmoset (Figs. 2B, 4C).

In our experiments, we observed multipeaked frequency tuning from neurons within the putative pitch center that could provide a sufficient spectral input for pitch neurons to perform pitch extraction (Fig. 7). Although these harmonic template neurons exist in auditory cortex, it is entirely possible that they also exist at lower levels of the auditory system (Shamma and Klein, 2000). Unlike the temporal envelope processing of pitch, which must occur at a level of the auditory system in which neuronal inputs are synchronized to the fundamental frequency, spectral pattern matching can occur at higher levels of the auditory system. Given the higher degree of plasticity (Recanzone et al., 1993) and sharper spectral tuning of neurons in auditory cortex relative to lower levels of the auditory system (Bitterman et al., 2008; Bartlett et al., 2011), the auditory cortex may be a more optimal location for the formation of harmonic templates. If this is true, then the putative pitch center identified in auditory cortex may be the first stage of the auditory system in which temporally and spectrally based pitch extraction pathways are unified into a central neural representation of pitch.

References
