Processing and visualizing the data in tweets

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1145/2094114.2094120</td>
</tr>
<tr>
<td>Publisher</td>
<td>Association for Computing Machinery</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Dec 20 14:02:25 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/79351</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike 3.0</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/3.0/</td>
</tr>
</tbody>
</table>
ABSTRACT
Microblogs such as Twitter provide a valuable corpus of diverse user-generated content. While the data extracted from Twitter is generally timely and accurate, the process by which developers currently extract structured data from the tweet stream is ad-hoc and requires reimplementing common data manipulation primitives. In this paper, we present two systems for extracting structure from and querying Twitter-embedded data. The first, TweeQL, provides a streaming SQL-like interface to the Twitter API, making common tweet processing tasks simpler. The second, TwitInfo, shows how end-users can interact with and understand aggregated data from the tweet stream (as well as showcasing the power of the TweeQL language). Together these systems show the richness of content that can be extracted from Twitter.

1. INTRODUCTION
The Twitter messaging service (sometimes called a “microblog”) is wildly popular, with millions of users posting more than 200 million “tweets” per day. This massive flood of messages from a wide range of users results in a tweetstream that contains information on a vast array of topics, including conventional news stories, events of local interest (e.g., local sports scores), opinions, real-time events (e.g., earthquakes, flight delays), and many others.

Unfortunately, the Twitter interface does not make it easy to access this information. The majority of useful information is embedded in unstructured tweet text that is obfuscated by abbreviations (to overcome the 140-character text limit), social practices (e.g., prepending tweets from other users with RT), and references (e.g., URLs of full stories, or the @usernames of other users). Twitter’s APIs provide access to tweets from a particular time range, from a particular user, with a particular keyword, or from a particular geographic region, but provides no facility to extract structure from tweets, and does not provide aggregate views of tweets on different topics (e.g., the frequency of tweets about a particular topic over time.)

In this paper, we describe two approaches we have devised to help programmers and end-users make sense of the tweet stream by providing a more structured, database-like interface to tweets. For programmers, we have built TweeQL, a SQL-like stream processor that provides streaming semantics and a collection of user-defined functions to extract and aggregate tweet-embedded data. For end-users, we built TwitInfo, a timeline-based visualization of events in the tweetstream, linked to raw tweet text, sentiment analysis, and maps.

In the next section we describe TweeQL and the challenges associated with building a tweet-based stream processor. Then, in Section 3, we describe TwitInfo, our tweet stream visualization, which is built on top of TweeQL.

2. TWEEQL
TweeQL provides a SQL-like query interface on top of the Twitter streaming API. The streaming API allows users to issue long-running HTTP requests with keyword, location, or userid filters, and receive the tweets that appear on the stream and match these filters. TweeQL provides windowed select-project-filter-join-aggregate queries over this stream, and facilitates user-defined functions for deeper processing of tweets and tweet text.

We begin by describing the TweeQL data model, and then illustrate its operation through a series of examples. We close with a discussion of challenges with building TweeQL and future directions.

2.1 Data Model and Query Language
TweeQL is based on SQL’s select-project-filter-join-aggregate syntax. Its data model is relational, with both traditional table semantics as well as streaming semantics.

2.1.1 Streams
The primary stream that TweeQL provides is `twitter_stream`. TweeQL users define streams based on this base stream using the CREATE STREAM statement, which creates a named substream of the main twitter stream that satisfies a particular set of filters. For example, the following statement creates a queriable stream of tweets containing the term `obama` called `obamatweets` generated from the `twitter_stream` streaming source:

```
CREATE STREAM obamatweets
FROM twitter_stream
WHERE text contains 'obama';
```

While `twitter_stream` offers several fields (e.g., `text`, `username`, `userid`, `location`, `latitude`, `longitude`), the Twitter API only allows certain filters to be used as access methods for defining a stream. Specifically, when defining `twitter_stream`, the developer must supply a combination of fields which can be filtered by key or range lookups. For example, the Twitter streaming API allows parameters for `text`, `userid`, and `latitude/longitude` ranges. If a user tries to create a stream from a streaming source using an illegal set of predicates, TweeQL will raise an error.

Users are not allowed to directly query the raw `twitter_stream` because Twitter only provides access to tweets that contain a filter. If users wish to access an unrestricted stream, Twitter provides a sampled, unfiltered stream that TweeQL wraps as `twitter_sample`. An unsampled, unfiltered stream is not provided by Twitter for performance and financial reasons.

Streaming sources asynchronously generate tuples as they appear, and are buffered by an access method that implements the iterator model. They appear as tuples with a set schema to the rest of the query tree. Any streaming source must include a `_created_at` timestamp field. If one is not provided by the datasource, tuples are timestamped with their creation time. The field is necessary for the windowed aggregates described in Section 2.1.5 to follow proper ordering semantics.

While our examples show users creating streams from the `twitter_stream` base stream, in principle one could also wrap other streaming sources, such as RSS feeds, a Facebook news feed, or a Google+ feed. Once wrapped, derived streams can be generated using techniques similar to the examples we provide.

2.1.2 UDFs

TweeQL also supports user-defined functions (UDFs). UDFs in TweeQL are designed to provide operations over unstructured data such as text blobs. To support such diversity in inputs and outputs, TweeQL UDFs accept and return array- or table-valued attributes. TweeQL UDFs also help wrap web APIs for various services, such as geocoding services.

Complex Data Types. TweeQL UDFs can accept array- or table-valued attributes as arguments. This is required because APIs often allow a variable number of parameters. For example, a geocoding API might allow multiple text locations to be be mapped to latitude/longitude pairs in a single web service request.

UDFs can also return several values at once. This behavior needed both for batched APIs that submit multiple requests at once, but also for many text-processing tasks which are important in unstructured text processing. For example, to build an index of words that appear in tweets, one can issue the following query:

```
SELECT tweetid, tokenize(text)
FROM obamatweets;
```

The `tokenize` UDF returns an array of words that appear in the tweet text. For example, `tokenize("Tweet number one") = ["Tweet", "number", "one"]`. While arrays can be stored or passed to array-valued functions, users often wish to “relationalize” them. To maintain the relational model, we provide a `FLATTEN` operator (based on the operator of the same name from Olston et al.’s Pig Latin [8]). Users can wrap an array-valued function found in a `SELECT` clause with a `FLATTEN` to produce a result without arrays. For example, instead of the above query, the programmer could write:

```
SELECT tweetid, FLATTEN(tokenize(text))
FROM obamatweets;
```

The resulting tuples for a tweet with `tweetid = 5` and `text = “Tweet number one”` would then be:

```
(5, ['Tweet', 'number', 'one'])
```

Web Services as UDFs. Much of TweeQL’s structure-extraction functionality is provided by third parties as web APIs. TweeQL allows UDF implementers to make calls to such web services to access their functionality. One such UDF is the `geocode` UDF that returns the latitude and longitude for user-reported textual locations described in Section 2.1.4. The benefit of wrapping such functionality in third party services is that often the functionality requires large datasets—good geocoding datasets can be upward of several gigabytes—that an implementer can not or does not wish to package with their UDF. Wrapping services comes at a cost, however, as service calls generally incur high latency, and service providers often limit how frequently a client can make requests to their service.

Because calls to other web services may be slow or rate-limited, a TweeQL UDF developer can specify several parameters in addition to the UDF implementation.
For example, the developer can add a cache invalidation policy for cacheable UDF invocations, as well as any rate-limiting policies that the API they are wrapping allows. To ensure quality of service, the developer can also specify a timeout on wrapped APIs. When the timeout expires, the return token \textit{TIMEOUT} is returned, which acts like a \textit{NULL} value but can be retrieved at a later time. Similarly, a \textit{RATELIMIT} token can be returned for rate-limited UDFs.

2.1.3 Storing Data and Generating Streams

It is often useful for TweeQL developers to break their workflows into multiple steps and to write final results into a table. To support both of these operations, we allow the results of SELECT statements over streams to write data to named tables. In this way, intermediate steps can named to allow subsequent queries in a workflow to utilize their results.

Output to a table and temporarily naming tuples is accomplished via the \texttt{INTO} operator. To save results, a programmer can add a \texttt{INTO TABLE} \textit{tablename} clause to their query. To name a set of results that can be loaded as a stream by another query, the programmer can add a \texttt{INTO STREAM} \textit{streamname} clause to their query. For example, consider the following three queries:

```
CREATE STREAM sampled
FROM twitter_sample;

SELECT text, sentiment(text) AS sent
FROM sampled
INTO STREAM textsentiment;

SELECT text
FROM textsentiment
WHERE sent > 0
INTO TABLE positivesentiment;
```

The first query creates an unfiltered sampled stream called \textit{sampled} (without a filter, Twitter sends only a sample of the stream to non-paying users). The second query retrieves all tweet text and its sentiment (described in Section 2.1.4), and places that text in a stream called \textit{textsentiment}. The third query stores all positive-sentiment tweet text from the \textit{textsentiment} stream in a table called \textit{positivesentiment}. The final query stores all tweet text from the \textit{textsentiment} stream containing the term \textit{obama} in a table called \textit{obamasentiment}.

2.1.4 Structure Extraction UDFs

One key feature of our TweeQL implementation is that it provides a library of useful UDFs. One important class of operators are those that allow programmers to extract structure from unstructured content. These include functions for:

\textbf{String Processing}. String functions help extract structure from text. We have already described one such UDF, \texttt{tokenize} in Section 2.1.2 that splits strings into a list of tokens that can become relational with the \texttt{FLATTEN} operator. Other UDFs allow more complex string extraction such as regular expressions that can also return lists of matches for each string.

\textbf{Event Detection}. As we explore with TwitInfo in Section 3, the number of tweets per minute mentioning a topic is a good signal of peaking interest in the topic. If the number of tweets per minute is significantly higher than recent history, it might suggest that an event of interest has just occurred.

To support event detection, we provide a \textit{meanDeviations} UDF. The UDF takes a floating point value, calculates the difference between it and an exponentially weighted moving mean (EWMA) of recent values (this is the mean deviation), and updates the EWMA for future calls. The details of this algorithm are spelled out in \cite{7}. The example below illustrates its use:

```
SELECT COUNT(text) as count,
    __created_at as time
FROM obamatweets
WINDOW 1 minute
EVERY 1 minute
INTO STREAM obamacounts;

SELECT meanDeviation(count) AS dev,
    time
FROM obamacounts
WHERE dev > 2
INTO TABLE obamapeaks;
```

The first query uses windowed aggregates, described in Section 2.1.5 to calculate the tweets per minute mentioning the term \textit{obama}. The second query calculates the mean deviation of each tweets-per-minute value, and stores the time of deviations above 2 in a table \textit{obamapeaks}.

The \textit{meanDeviations} UDF is unique in that it stores state that is updated between calls. This makes the semantics of the UDF difficult to define, as calling \texttt{meanDeviation(count)} on the same \textit{count} value with different histories will result in a different return value. In context we found that we can keep a simple interface to the \textit{meanDeviations} UDF and still have clear utility.

\textbf{Location}. Twitter is one of few streams of its size containing location-annotated messages. Location informa-
tion comes in various forms on Twitter. GPS-provided coordinates are most accurate, but a small fraction of tweets are annotated with such precision (0.77% in mid-2010 [6]). More common is a self-reported location field, with values ranging from the nonsensical “Justin Bieber’s heart” [6] to a potentially accurate “Boston, MA.”

To extract structure from self-reported location strings, we offer a geocode UDF. The query below extracts the sentiment of tweets containing the term obama as well as the coordinates of the self-reported location:

```
SELECT sentiment(text) AS sent,
    geocode(loc).latitude AS lat,
    geocode(loc).longitude AS long
FROM obamatweets
INTO STREAM obamasentloc
```

The query also displays another feature of TweeQL UDFs. In addition to being able to return lists of fields to be flattened into a resultset, UDFs can return tuples rather than fields. In the example above, `geocode` returns a tuple of coordinates that the query projects into two fields, `latitude` and `longitude`, in the result set.

Classification. Classifiers can be used to identify structure in unstructured text content. For example, social science researchers explore various ways to use the tweet stream as a proxy for public sentiment about various topics. TweeQL provides a sentiment UDF for classifying tweet text as expressing positive or negative sentiment. An example of this UDF can be seen in the `obamasentloc` stream example above. Other classifiers might identify the topic, language, or veracity of a tweet.

Named entity extraction. Our examples so far have featured identifying tweets about President Obama by filtering tweets whose text contains the term obama. Such an approach may be unacceptable when two people with the same name might be confused. For example, searching for tweets containing the term clinton might combine tweets such as “Secretary Clinton accepts Crowley resignation” and ones such as “Former President Clinton undergoes heart surgery.”

To avoid ambiguity, TweeQL provides a namedEntities UDF, which identifies potential entities in context. For example, namedEntities(“Secretary Clinton accepts Crowley resignation”) would return a list of fields [“Hillary Clinton”, “P.J. Crowley”], which could be filtered.

With the namedEntities UDF, we can refine our original `obamatweets` example to identify tweets specifically involving Barack Obama.

```
CREATE STREAM obamatweets
FROM twitter_stream
WHERE text contains ‘obama’;
```

```
SELECT text,
    FLATTEN(namedEntities(text)) AS entity
FROM obamatweets
INTO STREAM obamaentities;
```

The current implementation of namedEntities is as an API wrapper around OpenCalais [2], a web service for performing named entity extraction and topic identification. OpenCalais was designed to handle longer text blobs (e.g., a newspaper article) for better contextual named entity extraction. One area of future work is to develop named entity extractors for tweets, which are significantly shorter.

2.1.5 Windowed Operators

Like other stream processing engines, TweeQL supports aggregates and joins on streams. Because streams are infinite, we attach sliding window semantics to them, as in other streaming systems [7, 1]. Windows are defined by a WINDOW parameter specifying the timeframe during which to calculate an aggregate or join. On aggregates, an EVERY parameter specifies how frequently to emit WINDOW-sized aggregates. The `_created_at` field of a tuple emitted from an aggregate is the time that the window begins.

For example, the query below converts the `obamasentloc` stream of sentiment, latitude, and longitude into an average sentiment expressed in a 1°x1° area. This average is computed over the course of three hours, and is calculated every hour.

```
SELECT AVG(sent) AS sent,
    floor(lat) AS lat,
    floor(long) AS long
FROM obamasentloc
GROUP BY lat, long
WINDOW 3 hours
EVERY 1 hour
INTO STREAM obamasentbyarea;
```

2.2 System Design

Figure 1 illustrates the key architectural components of the TweeQL stream processor. TweeQL offers its SQL-like query language through a traditional query prompt or in batched query mode. All of the queries that make up a workflow (e.g., `sampled`, `textsentiment`, `positivesentiment`, and `obamasentiment` in

Figure 1: TweeQL architectural components. ADAM: does this diagram look OK? I’ll change the example streams/services to match our new api wrapping description.

Section 2.1.3) are parsed together and sent to the Query Parser to be processed together.

The parser generates batches of dependent query trees, some of which store records in tables while others generate streams that other query trees depend on. The Optimizer reorders operators as informed by selectivity and latency statistics collected by the Sampler. In addition to reordering operators, the optimizer also decides which filters to send to streaming APIs to reduce the number of tuples returned. The sampler keeps statistics on all APIs and tables known to the database.

Optimized query tree batches are sent to the Executor. The query executor is iterator-based, and streams are buffered by streaming access method operators which allow iterator access. As we see in Section 2.1.3, a stream (such as textsentiment) can be used by multiple downstream query trees. All named streams register downstream query trees as listeners, sending batches of tuples generated at their root to the streaming buffer of each query tree.

There are three data source managers from which the executor retrieves data: a stream manager, pull-based API manager, and a relational manager.

The Stream Manager registers all streams generated with CREATE STREAM or INTO STREAM syntax. It communicates with streaming APIs such as Twitter’s, and informs streaming access method operators in query trees when new batches of tuples arrive from streaming sources.

The Pull API Manager manages requests to pull-based web services that arise during query execution. In addition to providing adapters to these services that generate relational data from nonrelational sources, it contains components that apply to all requests. The Cacher ensures that frequent requests are cached, and supports age- and frequency-based cache eviction policies. The Rate Limiter enforces webservice-based rate limiting policies. These policies generally enforce the number of requests per minute, hour, or day. Finally, the Latency Enforcer ensures that requests that run for too long are returned with TIMEOUT as discussed in Section 2.1.2. The latency enforcer still allows requests returned after a timeout to be cached for future performance benefits.

The Relational Manager simply wraps traditional relational data sources for querying, and stores tables generated with INTO TABLE syntax.

2.3 Current Status

TweeQL is implemented in Python, using about 2500 lines of code. The implementation is available as an open source distribution. The distribution includes many of the features described in this paper. We are working to add the rate-limiting and latency-enforcing logic to web service UDF wrappers. The CREATE STREAM and INTO STREAM statements, which we realized were necessary as we wrapped streams for services other than Twitter, are available in experimental versions of TweeQL. Finally, we intend to add FLAT-TEN syntax in the next TweeQL release.

2.4 Challenges

In this section, we describe a number of challenges and open issues we encountered when building TweeQL.

Uncertain Selectivities. When creating a stream, TweeQL users can issue multiple filters that could be passed to the streaming API. Only one filter type can be submitted to the API, and selecting the more efficient one to send is difficult. For example, consider a user issuing the query:

```sql
CREATE STREAM obamanyc
FROM twitter_stream
WHERE text contains 'obama';
AND location in [bounding box for NYC];
```

He or she wants to see all tweets containing the word obama that are tweeted from the New York City area. TweeQL must select between requesting all obama tweets, or all NYC tweets.

We benefit from having access to Twitter’s historical API in this case. We an issue two requests for recent tweets with both filters applied, and determine which stream is less frequent. More generally, TweeQL can sample both streams and select the filter with the lowest selectivity in order to require the least work in applying the second filter. We are also exploring Eddies-style dynamic operator reordering to adjust to changes in operator selectivity over time.

https://github.com/marcua/tweeql
Uneven Aggregate Groups. When aggregating over human output on a geographic region, traditional windowed result strategies are inadequate. Consider, for example, the $obamasentbyarea$ stream (defined in Section 2.1.5) that calculates the average sentiment in $1^\circ \times 1^\circ$ latitude/longitude regions of tweets containing the term $obama$. In this example, the average is aggregated per region every three hours.

This fixed time window is not flexible enough due to the uneven distribution of Twitter users across the planet. For example, Tokyo has many Twitter users, but Cape Town has far fewer. With a fixed time window, it is possible that no results could be produced from Cape Town while many could be produced in Tokyo. Note that basing the window size on tweet count rather than time does not solve this problem either because aggregating tweets over too long a time period may include old tweets that are now irrelevant.

An alternative solution is to employ windowing that estimates confidence in the aggregated result, similar to what was done in the CONTROL project [5]. Once a bucket falls within a certain confidence interval for an aggregate, its record can be emitted by the grouping operator.

High-latency Operators. As discussed in Section 2.1.2, TweeQL UDFs can return $TIMEOUT$ and $RATELIMIT$ for long-running or rate-limited web services. Still, the high latency of operations is tension with the traditional blocking iterator model of query execution.

Web service API requests such as geolocation can take hundreds of milliseconds apiece, but incur little processing cost on behalf of the query processor. Though the operations incur little computational cost, they often bottleneck blocking iterators. Caching responses and batching multiple requests when an API allows can reduce some request overhead.

We are also exploring modifying iterators to operate asynchronously as described by Goldman and Widom [4]. This, in combination with a data model that allows partial results as described by Raman and Hellerstein [9] might be a sufficient solution.

Aggregate Classifiers are Misleading. In the development of TwitInfo, described in Section 3.2, we ran into an issue with running aggregates over the output of classifiers such as the $sentiment$ UDF. We describe the problem and one solution in detail in [7].

One example of the issue can be seen in the $obamasentbyarea$ example in Section 2.1.5. Consider the case where the $sentiment$ UDF simply outputs 1 for positive text and -1 for negative text. It is possible that the classifier powering $sentiment$ has different recall (e.g., the fraction of text identified as positive in situations where the text is actually positive) for positive and negative classifications. In this case, $AVG(sent)$ will be biased toward the class with higher recall. The solution described in [7] is to return $\frac{1}{recall_{positive}}$ for positive text, and $\frac{1}{recall_{negative}}$, thus adjusting for this bias.

3. TWITINFO

TwitInfo [7] is an application written on top of the TweeQL stream processor. TwitInfo is a user interface that summarizes events and people in the news by following what Twitter users say about those topics over time. TwitInfo offers an example of how aggregate data extracted from tweets can be used in a user interface. Other systems, such as Vox Civitas [3], allow similar exploration, but TwitInfo focuses on the streaming nature of tweet data.

3.1 Creating an Event

TwitInfo users define an event by specifying a Twitter keyword query. For example, for a soccer game, users might enter search keywords $soccer$, $football$, $premierleague$, and team names like $manchester$ and $liverpool$. Users give the event a human-readable name like “Soccer: Manchester City vs. Liverpool” as well as an optional time window. When users are done entering the information, TwitInfo saves the event and begins logging any tweets containing the keywords using a TweeQL stream like the following:

```
CREATE STREAM twitinfo
FROM twitter_stream
WHERE text contains 'soccer'
  OR text contains 'football'
  OR text contains 'premierleague'
  OR text contains 'manchester'
  OR text contains 'liverpool';
```

3.2 Timeline and Tweets

Once users have created an event, they can monitor the event in realtime by navigating to a web page that TwitInfo creates for the event. The TwitInfo interface (Figure 2) is a dashboard summarizing the event over time. The dashboard displays a timeline for this event, raw tweet text sampled from the event, an overview graph of tweet sentiment, and a map view displaying tweet sentiment and locations.

The event timeline (Figure 2.2) reports tweet activity by volume. The more tweets that match the query during a period of time, the higher the y-axis value on the timeline for that period. When many users are tweeting about a topic (e.g., a goal by Manchester City), the timeline spikes. TwitInfo’s peak detection algorithm is implemented in a stateful TweeQL UDF described in [4].

The TwitInfo website with interactive visualizations is accessible at http://twitinfo.csail.mit.edu/
Section 2.1.4: The algorithm identifies these spikes and flags them as peaks in the interface.

Peaks appear as flags in the timeline and appear to the right of the timeline along with automatically-generated key terms that appear frequently in tweets during the peak. For example, in Figure 2.2, TwitInfo automatically tags one of the goals in the soccer game as peak “F” and annotates it on the right with representative terms in the tweets like ‘3-0’ (the new score) and ‘Tevez’ (the soccer player who scored). Users can perform text search on this list of key terms to locate a specific peak.

As users click on peaks, the map, tweet list, links, and sentiment graph update to reflect tweets in the period covered by the peak.

The Relevant Tweets panel (Figure 2.4) contains the tweets that have the highest overlap with the event peak keywords. These tweets expand on the reason for the peak. The relevant tweets are color-coded red, blue, or white depending on whether the sentiment they display is negative, positive, or neutral.

3.3 Aggregate Metadata Views

In addition to skimming sentiment for individual tweets, a user may wish to see the general sentiment on Twitter about a given topic. The Overall Sentiment panel (Figure 2.6) displays a pie chart representing the total proportion of positive and negative tweets during the event.

Twitter users share links as a story unfolds. The Popular Links panel (Figure 2.5) aggregates the top three URLs extracted from tweets in the timeframe being explored.

Often, opinion on an event differs by geographic region. A user should be able to quickly zoom in on clusters of activity around New York and Boston during a Red Sox-Yankees baseball game, with sentiment toward a given peak (e.g., a home run) varying by region. The Tweet Map (Figure 2.3) displays tweets that provide geolocation metadata. The marker for each tweet is colored according to its sentiment, and clicking on a pin reveals the associated tweet.

3.4 Uses and Study

As we develop TwitInfo, we have tested its ability to identify meaningful events and its effectiveness at relaying extracted information to users.

We have tracked events of different duration and content using TwitInfo. In soccer matches, TwitInfo successfully identifies goals, half-time, the end of a game, and some penalties. The system successfully identified all major earthquakes over a 1-month timespan. Finally, we visualized sixteen days in Barack Obama’s life and policymaking, with most newsmaking events receiving coverage. Examples of these visualizations can be found on the TwitInfo website.

We tested the TwitInfo interface on twelve users. We asked them to reconstruct either a soccer game or sixteen days in Barack Obama’s life based solely on the
TwitInfo user interface. Participants found the interface useful for such summaries, with one participant recounting in detail Obama’s every activity over the timespan without having read any other news on the topic [7].

While users explained that TwitInfo provides them with a good summary of an event, they often described the summary as shallow. This is in part due to the short, fact-oriented nature of tweets. It also suggests a good direction for future work in extracting well-founded details about events from the tweetstream.

We also found TwitInfo to be useful for journalists. A Pulitzer Prize-winning former Washington Post investigative reporter thought of two use-cases for the tool. The first was in *backgrounding*: when a journalist first starts a long-term research study, it helps to have an overview of recent discussions on the topic. The second use was in finding on-the-ground witnesses to an event. While reporters are generally averse to trusting tweets at face value, a location-based view of tweets can help identify Twitter users that may have been at or near an event to follow up with in more detail.

4. CONCLUSION

Twitter offers a diverse source of timely facts and opinions. In order for the information in unstructured tweets to be useful, however, it must be tamed. We described two tools, TweeQL and TwitInfo, to make this information more structured and accessible. TweeQL provides programmers with a streaming SQL-like query language to extract structured relations from the tweetstream. TwitInfo builds on TweeQL to generate a visualization for users who wish to track a topic or event as it is discussed on the tweetstream. More broadly, social streams offer the database community an opportunity to build systems for streaming, unstructured data, and social networks in the wild.

5. ACKNOWLEDGEMENTS

We thank Eugene Wu, who discussed the mechanics of stream creation and wrapping syntax.

6. REFERENCES

