Search for pair-produced dijet resonances in four-jet final states in pp collisions at sqrt[s]=7TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Chatrchyan, S., V. Khachatryan, A. M. Sirunyan, et al. 2013 Search for Pair-produced Dijet Resonances in Four-jet Final States in Pp Collisions at Sqrt[s]=7 TeV. Physical Review Letters 110(14).</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.110.141802</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Mar 31 19:38:22 EDT 2017</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/79581</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Search for pair-produced dijet resonances in four-jet final states in pp collisions at $\sqrt{s} = 7$ TeV

S. Chatrchyan et al.*
(CMS Collaboration)

(Received 3 February 2013; published 4 April 2013)

A search for the pair production of a heavy, narrow resonance decaying into two jets has been performed using events collected in $\sqrt{s} = 7$ TeV pp collisions with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 5.0 fb$^{-1}$. Events are selected with at least four jets and two dijet combinations with similar dijet mass. No resonances are found in the dijet mass spectrum.

The upper limit at 95% confidence level on the product of the resonance pair production cross section, the branching fractions into dijets, and the acceptance varies from 0.22 to 0.005 pb, for resonance masses between 250 and 1200 GeV. Pair-produced colorons decaying into $q\bar{q}$ are excluded for coloron masses between 250 and 740 GeV.

PACS numbers: 13.85.Rm, 12.60.−i, 13.87.Ce, 14.80.−j

The high center-of-mass energy provided by the Large Hadron Collider (LHC) offers opportunities to search for physics beyond the standard model (SM) and, in particular, to search for new strongly interacting particles. Searches for new resonances in the dijet mass spectrum for the jets with the highest transverse momentum (p_T) have been performed at both the Tevatron [1] and the LHC [2–7]. These searches were not optimized for pair-produced particles, which are predicted by some models [8–10]. The ATLAS experiment has performed a search for pair production of a narrow resonance decaying into two jets, using the dijet mass spectrum in four-jet final states [11,12] and excludes a scalar gluon at 95% confidence level (C.L.) in this analysis, although we separately consider the possibility of decays to S_8S_8. As a third possibility, we consider an R-parity violating SUSY model [13,14] in which pair-produced top squarks (stops) each decay to $q\bar{q}$, as this leads to a similar final state.

The CMS detector is a multipurpose apparatus and is described in detail in Ref. [15]. The CMS coordinate system has its origin at the center of the detector, the z axis along the direction of the counterclockwise circulating proton beam, the y axis normal to the LHC plane pointing vertically upward, and the x axis radially inward toward the center of the LHC ring. We define ϕ to be the azimuthal angle, θ the polar angle, and $\eta = -\ln[\tan(\theta/2)]$ the pseudorapidity. The central feature of the CMS apparatus is a superconducting solenoid with a 6 m internal diameter, operating at a central field strength of 3.8 T. Within the field volume are, in order of increasing radius, a silicon pixel and strip tracker, a high-granularity electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL). All three systems have both barrel and end cap components, with $|\eta|=2.5$ (3.0) the outermost extent of the tracker (calorimeters). The ECAL and HCAL cells are grouped into towers, projecting radially outward from the origin. Outside of the field volume an iron and quartz-fiber hadron calorimeter covers the forward region ($3<|\eta|<5$). A muon system encloses the central and end cap calorimeters out to $|\eta|=2.4$.

The data sample used for this analysis was collected in 2011 and corresponds to an integrated luminosity of 5.0 fb$^{-1}$. The triggers used for the analysis require the presence of at least four jets, based on information from the calorimeters. Each jet must have $|\eta|$ less than 3.0 and p_T greater than 70 or 80 GeV, depending on the running period. This trigger is 99.5% efficient for events with four leading (highest p_T) jets, each with a transverse momentum exceeding 110 GeV.

For offline reconstruction, we employ the CMS particle-flow algorithm [16] in the region $|\eta| \leq 2.5$ to reconstruct...
objects used in jet determinations. This algorithm uses calorimeter information and reconstructed tracks to identify electrons, muons, photons, and both neutral and charged hadrons. Jets are reconstructed from particle-flow objects using the anti-k_T algorithm with a distance parameter 0.5 [17,18]. Jet energy is corrected to account for the nonlinearities and nonuniformities in the response of the calorimeters, as determined from Monte Carlo (MC) simulation, test beam, and collision data [19]. Additional corrections accounting for the effect of multiple $p p$ collisions per bunch crossing are also applied [20,21].

We require events to have at least one good primary vertex with a z position within 24 cm of the center of the detector and with a transverse distance from the beam spot of less than 2 cm. A set of jet quality criteria are applied to remove possible instrumental and noncollision backgrounds [22]. All data as well as all simulated signal events passing these selection criteria also satisfy standard jet identification requirements [23]. We require that events have at least four jets, each with $p_T > 110$ GeV and $|\eta| < 2.5$. We require the two jets in each possible pair to have a separation $\Delta R_{jj} = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \geq 0.7$. This ensures a negligible overlap between the jets. We calculate the dijet mass combinations from the four leading jets and choose the one with the smallest $\Delta m/m_{\text{avg}}$, where Δm is the mass difference between the two dijets and m_{avg} is their average mass. We require $\Delta m < 0.15 m_{\text{avg}}$, which is approximately 3 times the dijet mass resolution of 4.5%.

The benchmark signal events are simulated using the MADGRAPH V5 [24] event generator with the CTEQ6L1 parton distribution functions (PDF) [25], and PYTHIA v6.4.26 [26] parton showering and hadronization. The generated events are further processed through the GEANT4 [27] simulation of the CMS detector. The assumed width of the simulated coloron resonance is negligible compared with the experimental resolution. The dominant background arises from QCD processes resulting in four or more jets. Studies of this background are performed using a sample of simulated QCD events also generated using MADGRAPH.

For each dijet we define a quantity Δ as the difference between the scalar sum of the transverse momenta of the two jets in the dijet and the average pair mass in the event: $\Delta = \sum_{i=1,2} (p_T)_i - m_{\text{avg}}$. Figure 1 shows the distribution of Δ versus m_{avg} for simulated QCD background events as well as for coloron signal events. Because of the selection requirements, we observe a broad structure at around $m_{\text{avg}} = 300$ GeV from QCD events [28]. To remove this structure, thus leaving a smoothly falling dijet mass spectrum, we require $\Delta > 25$ GeV for each of the two dijets in the event. This requirement reduces the QCD background by more than an order of magnitude while retaining approximately 25% of the signal.

Figure 2 shows the paired dijet mass spectrum in data with all the selection criteria applied. The observed mass spectrum extends up to 1200 GeV. We obtain a prediction for the QCD background by fitting the data to a smooth parametrization:

$$\frac{d\sigma}{dm_{\text{avg}}} = P_0 (1 - \frac{m_{\text{avg}}}{\sqrt{s}})^{P_1} (\frac{m_{\text{avg}}}{\sqrt{s}})^{P_2} + P_3 \ln(\frac{m_{\text{avg}}}{\sqrt{s}})$$

Figure 2 (color online). The average paired dijet mass distribution (black points) in data compared with a smooth background fit using Eq. (1) (blue solid curve) and the result of the fit of the same function (dash-dotted red curve) to QCD simulated data (not shown). Also shown are examples of simulation of hypothetical coloron resonances decaying 100% to $q\bar{q}$ (dashed green curves) with masses $m_c = 400$ and 800 GeV. The bin-by-bin fitpulls are shown below.
resonances [4]. The fit to the data and the normalized QCD simulation are given in Fig. 2 by solid and dashed-dotted curves, respectively. The fit has a \(\chi^2/\text{d.o.f} \) of 0.94 over the full \(m_{\text{avg}} \) mass range. Although there is an apparent bias toward positive pull values in the low mass region, such a bias would result in the quoted limits being conservative in this region.

The signal shapes from colorons and stops have negligible difference and we use a single parametrization for both. It is modeled by the sum of two separate Gaussian functions: one Gaussian describes the core and the other the tails, with widths and normalizations determined from a fit to simulated signal events at each assumed mass value. The dijet mass resolution described by the rms of the core Gaussian is approximately 4.5\%, the dijet mass tail described by the rms of the other Gaussian is between 150 and 250 GeV, and the fraction of the core Gaussian varies from 85\% at 300 GeV to 45\% at 1000 GeV. The signal acceptance, listed in Table I, varies from 0.4\% for a coloron with mass 200 GeV to 12.1\% for a coloron with mass 1000 GeV. The acceptance for the stop signal is larger than that for the coloron signal because the stop production model includes \(q\bar{q} \) interactions and has a different final state angular distribution.

We search for pair production of dijet resonances by fitting the background parametrization in Eq. (1) plus a signal hypothesis at an assumed mass to the data. The signal magnitude is a free parameter in the fit for each fixed value of signal mass. We restrict the fit to dijet masses above 220 GeV in order to avoid the threshold due to the jet \(p_T \) requirement. With this requirement the dijet mass spectrum is described by both the simulation and the background parametrization. The maximum value of the likelihood obtained from a background-only fit is denoted by \(L_0 \) and the likelihood from a background plus signal fit by \(L_s \). The local significance is defined as \(\sqrt{2 \ln(L_0/L_s)} \). The results of this analysis are shown in Fig. 2. We find that the largest fluctuation in the pair-produced dijet mass spectrum occurs for a hypothetical resonance mass of 1130 GeV and has a local statistical significance of 2.6\sigma. The global significance is reduced to 1.2\sigma after taking into account the trials factor [29] within the full mass range of this search. We conclude that there is no evidence for pair-produced narrow dijet resonances in the data.

Upper limits are placed on the product of the production cross section of the pair-produced resonances, the square of the branching fraction to dijets, and the detector acceptance. The dijet mass for the limit is required to be above 250 GeV to ensure a full coverage of the low mass tail of the resonance between 220 and 250 GeV. To set upper limits we use a modified-frequentist method (CLs) [30,31]. We fit the signal + background hypothesis to the data, allowing both the signal strength and the background parameters free to vary. The sources of systematic uncertainties consist of a luminosity uncertainty of 2.2\% [32] and a signal acceptance uncertainty of 10\%. The latter is determined by the jet energy scale uncertainty (2.2\%) and the jet energy resolution uncertainty (10\%) [19]. The variation in expected signal yields due to PDF uncertainties is negligible. The uncertainties in the luminosity, the signal acceptance due to jet energy scale and resolution, and the parameters of the background function are all treated as nuisance parameters and expressed as log-normal distributions with their central values and uncertainties. The observed and expected limits are calculated using the CLs method with a one-sided profile likelihood test statistic.

Figure 3 shows the observed and expected 95\% C.L. limits, the 1\(\sigma \) and 2\(\sigma \) uncertainty bands around the expected limits, and predictions from the coloron and SUSY models. The observed limit on the product of the resonance pair production cross section, the branching fractions into dijets, and the acceptance varies from 0.22 to 0.005 pb for resonance masses between 250 and 1200 GeV. The limits are generally applicable for pair-produced resonances, each decaying to dijets, and they are compared with calculations for the coloron model [8] described above. At 95\% C.L. we exclude pair production of colorons with mass \(m_C \) in the range 250 < \(m_C \) < 740 GeV, assuming that colorons have flavor-universal couplings and decay only into \(q\bar{q} \) [10]. Assuming the branching fraction of colorons into \(q\bar{q} \) is reduced due to competition with a \(C \rightarrow S_8 S_8 \) channel where \(m_{S_8} = 150 \) GeV and \(\tan\theta = 0.3 \) (the suppression factor of gluon coupling to \(q\bar{q} \) compared with the analogous QCD coupling) [10], we exclude pair production in the range 250 < \(m_C \) < 580 GeV. This analysis is not sensitive to the pair-produced \(S_8 \), where the color-octet scalars decay exclusively to \(q\bar{q} \). We also compare the results with those of a SUSY model for pair-produced stops, where the stops decay exclusively to \(q\bar{q} \) and \(R \) parity is violated [13,14]. The calculation is done at next-to-leading order with next-to-next-to-leading order corrections [33–37].

In summary, a search for pair production of a narrow dijet resonance has been performed with the CMS detector using 5.0 fb\(^{-1}\) of \(\sqrt{s} = 7 \) TeV \(pp \) collisions produced at

<table>
<thead>
<tr>
<th>Mass [GeV]</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coloron acceptance</td>
<td>0.4%</td>
<td>2.2%</td>
<td>5.2%</td>
<td>8.0%</td>
<td>9.6%</td>
<td>10.6%</td>
<td>11.6%</td>
<td>11.8%</td>
<td>12.1%</td>
</tr>
<tr>
<td>Stop acceptance</td>
<td>0.9%</td>
<td>3.6%</td>
<td>7.9%</td>
<td>10.7%</td>
<td>12.9%</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
</tbody>
</table>
FIG. 3 (color online). The observed and expected 95% C.L. limits on the product of the resonance pair production cross section, the square of the branching fraction to dijets, and detector acceptance, given by the solid and dot-dashed black curves, respectively. The shaded regions indicate the 1σ and 2σ bands around the expected limits. Predictions of a coloron model and a SUSY model are also shown.

...the LHC. The paired dijet mass spectrum is found to be a smooth distribution and is in agreement with the predictions of the standard model. Upper limits are reported on the product of the production cross section, the branching fractions into dijets, and the acceptance of a pair-produced dijet resonance having a width negligible compared to the LHC. The paired dijet mass spectrum is found to be a smooth distribution and is in agreement with the predictions of the standard model. Upper limits are reported on the product of the production cross section, the branching fractions into dijets, and the acceptance of a pair-produced dijet resonance having a width negligible compared to the production cross section, the square of the branching fraction to dijets, and detector acceptance, given by the solid and dot-dashed black curves, respectively. The shaded regions indicate the 1σ and 2σ bands around the expected limits. Predictions of a coloron model and a SUSY model are also shown.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSF (Taipei); ThEPC, IPST, and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

141802-5
(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der ÖAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12aUniversidade Estadual Paulista, São Paulo, Brazil
12bUniversidade Federal do ABC, São Paulo, Brazil
13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14University of Sofia, Sofia, Bulgaria
15Institute of High Energy Physics, Beijing, China
16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17Universidad de Los Andes, Bogota, Colombia
18Technical University of Split, Split, Croatia
19University of Split, Split, Croatia
20Institute Rudjer Boskovic, Zagreb, Croatia
21University of Cyprus, Nicosia, Cyprus
22Charles University, Prague, Czech Republic
23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25Department of Physics, University of Helsinki, Helsinki, Finland
26Helsinki Institute of Physics, Helsinki, Finland
27Lappeenranta University of Technology, Lappeenranta, Finland
28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
32Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
33RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
34RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
35RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
36Deutsches Elektronen-Synchrotron, Hamburg, Germany
37University of Hamburg, Hamburg, Germany
38Institut für Experimentelle Kernphysik, Karlsruhe, Germany
39Institute of Nuclear Physics “Demokritos,” Aghia Paraskevi, Greece
40University of Athens, Athens, Greece
41University of Ioannina, Ioannina, Greece
42KKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
43Institute of Nuclear Research ATOMKI, Debrecen, Hungary
44University of Debrecen, Debrecen, Hungary
45Panjab University, Chandigarh, India
46University of Delhi, Delhi, India
Saha Institute of Nuclear Physics, Kolkata, India
Bhabha Atomic Research Centre, Mumbai, India
Tata Institute of Fundamental Research-EHEP, Mumbai, India
Tata Institute of Fundamental Research-HECR, Mumbai, India
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
INFN Sezione di Bari, Bari, Italy
Università di Bari, Bari, Italy
Politecnico di Bari, Bari, Italy
INFN Sezione di Bologna, Bologna, Italy
Università di Bologna, Bologna, Italy
INFN Sezione di Catania, Catania, Italy
Università di Catania, Catania, Italy
INFN Sezione di Firenze, Firenze, Italy
Università di Firenze, Firenze, Italy
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Genova, Italy
Università di Genova, Genova, Italy
INFN Sezione di Milano-Bicocca, Milano, Italy
Università di Milano-Bicocca, Milano, Italy
INFN Sezione di Napoli, Napoli, Italy
Università di Napoli "Federico II," Napoli, Italy
Università della Basilicata (Potenza), Napoli, Italy
Università G. Marconi (Roma), Napoli, Italy
INFN Sezione di Padova, Padova, Italy
Università di Padova, Padova, Italy
Università di Trento (Trento), Padova, Italy
INFN Sezione di Pavia, Pavia, Italy
Università di Pavia, Pavia, Italy
INFN Sezione di Perugia, Perugia, Italy
Università di Perugia, Perugia, Italy
INFN Sezione di Pisa, Pisa, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore di Pisa, Pisa, Italy
INFN Sezione di Roma, Roma, Italy
Università di Roma, Roma, Italy
INFN Sezione di Torino, Torino, Italy
Università di Torino, Torino, Italy
Università del Piemonte Orientale (Novara), Torino, Italy
INFN Sezione di Trieste, Trieste, Italy
Università di Trieste, Trieste, Italy
Kangwon National University, Chunchon, Korea
Kyungpook National University, Daegu, Korea
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
Korea University, Seoul, Korea
University of Seoul, Seoul, Korea
Sungkyunkwan University, Suwon, Korea
Vilnius University, Vilnius, Lithuania
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Universidad Iberoamericana, Mexico City, Mexico
Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
University of Auckland, Auckland, New Zealand
University of Canterbury, Christchurch, New Zealand
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
National Centre for Nuclear Research, Swierk, Poland
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
Joint Institute for Nuclear Research, Dubna, Russia
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Institute for Nuclear Research, Moscow, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia