Counting primary loops in polymer gels

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.1213169109</td>
</tr>
<tr>
<td>Publisher</td>
<td>National Academy of Sciences (U.S.)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Dec 27 03:03:10 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/79617</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Counting primary loops in polymer gels
Huaxing Zhoua, Jiyeon Woob, Alexandra M. Coka, Muzhou Wangc, Bradley D. Olsenb, and Jeremiah A. Johnson1,a,2

Departments of aChemistry and bChemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved October 9, 2012 (received for review July 31, 2012)

Much of our fundamental knowledge related to polymer networks is built on an assumption of ideal end-linked network structure. Real networks invariably possess topological imperfections that negatively affect mechanical properties; modifications of classical network theories have been developed to account for these defects. Despite decades of effort, there are no known experimental protocols for precise quantification of even the simplest topological network imperfections: primary loops. Here we present a simple conceptual framework that enables primary loop quantification in polymeric materials. We apply this framework to measure the fraction of primary loop junctions in trifunctional PEG-based hydrogels. We anticipate that the concepts described here will open new avenues of theoretical and experimental research related to polymer network structure.

The properties of all known polymer networks, from commodity materials like nylon, rubber, and plastics, to biological tissues such as the extracellular matrix (ECM) and cartilage, are defined by the network’s chemical composition and structural topology (1–3). Much of our fundamental knowledge related to polymer materials, e.g., theories of elasticity and gelation, was built more than half a century ago upon an assumption of ideal end-linked network structure (Fig. 1A) (4, 7–11). Real networks invariably possess imperfections such as first-order elastically inactive dangling chains and primary loops (Fig. 1B), and higher-order elastic loop structures and chain entanglements; modifications of classical network theories have been developed to account for these defects (8–11).

First-order network imperfections (Fig. 1B) have the most direct negative impact on the mechanical properties of materials. Dangling chains can be minimized if efficient end-linking reactions are used between functional groups present at 1:1 ratio. In contrast, kinetic constraints demand that primary loops exist regardless of functional group conversion (12). Unlike dangling chains, which can be readily quantified via titration or spectroscopy, there are no known methods for quantification of primary loops. Their prevalence is estimated from pregel measurements or variations between the properties of a given material and theoretical model networks (2, 4, 7–9, 12–17). These molecular-level mechanical imperfections could critically impact modern applications of polymer networks and gels (18–28), especially those built on an end-linked network architecture (29–33).

Here we present a simple conceptual framework called network disassembly spectrometry (NDS) that enables facile, simultaneous quantification of the fraction of primary loops and the numbers and structures of dangling chains in end-linked materials via site-selective network disassembly. We apply this framework to degradable PEG hydrogels, which are similar to materials frequently used in tissue engineering applications (29, 32).

NDS Concepts
Site-specific polymer cleavage is one of nature’s ubiquitous strategies for modulating biopolymer properties and controlling cellular interactions with the ECM (34). The same concept is commonly used to study the structures of macromolecules and control the mechanical properties of synthetic polymer networks (29, 32, 35–39). Consider a general end-linked network comprised of R-A and R-B monomers where f represents the network branch functionality. The fraction of primary loops, np, in this network can be measured if R-A and R-B satisfy two constraints: all A2 and B2 groups must be equally reactive, or their relative reactivities must be known, and one of the network precursors must contain an appropriately placed cleavable group or groups such that cleavage yields distinct, identifiable products.

There are many possible ways to meet the latter criterion. For simplicity, we demonstrate the NDS concept by using an R-A2 monomer that cleaves along the R backbone to generate products with distinct masses: “short” (S) and “long” (L; Fig. 2A). Such a species is referred to as an “asymmetrically-degradable” monomer (ADM). Fig. 2B shows a schematic network that would result from coupling this R-A2 ADM and a hypothetical R-B3 monomer. The possible network junctions can be identified by the orientations of S and L chains. In the case of 100% functional group conversion, there are four possible junctions: three S chains (i.e., SSS junction), two S and one L chain (i.e., SSL junction), one S and two L chains (i.e., SLL junction), and three L chains (i.e., LLL junctions). Because of the asymmetric nature of the ADM, primary loops cannot exist at SSS or LLL junctions. Therefore, as np increases, the fraction of SSS and LLL junctions must decrease.

Network disassembly via cleavage of the R-A2 ADM yields soluble products whose masses are unique for each junction orientation (Fig. 2C). This collection of disassembly products constitutes a “network disassembly spectrum” that contains the dangling chain content and the primary loop fraction. The ratio of LLL or SSS to SLL or SSL quantifies primary loops in terms of a “loop ratio,” λp, where the subscript “3” refers to the network functionality f. A simple statistical analysis reveals that λp varies from one third to zero as np increases from zero (ideal network) to one (only primary loops) according to Eq. 1 in Fig. 2D.

The same concept outlined here for trifunctional networks applies to networks of higher branch functionality (i.e., f > 3), to networks with polydisperse branch functionality, and to linear step-growth polymerizations (i.e., f = 2). Namely, the ratio of the largest disassembly product to the next largest disassembly product (or the smallest to the next smallest) for each f will always vary directly with the fraction of primary loops within the material. The general loop ratio, λp, as a function of np, is given in SI Appendix, Eq. S1.

Gel Precursor Design and Synthesis
To demonstrate NDS, hydrogels were prepared via Diels–Alder end-linking of norbornene-telechelic PEG oligomer M (R-A3 ADM) and tris-tetrazine T (R-B3; Fig. 3A; SI Appendix describes synthetic procedures) (40–42). M possesses a single ester group, which when cleaved yields S and L products. The norbornene and tetrazine functional groups from M and T, respectively, should react randomly to avoid a biased distribution of network junction structures. Pseudo-first-order kinetic plots for the reaction of M with excess of...
was End-linked networks. (A) Schematic depiction of a general end-linked polymer network obtained from coupling a linear, bifunctional monomer (R-A$_2$) and a branched, trifunctional monomer (R-B$_3$). (B) Two-dimensional projections of common first-order network imperfections.

Fig. 1. End-linked networks. (A) Schematic depiction of a general end-linked polymer network obtained from coupling a linear, bifunctional monomer (R-A$_2$) and a branched, trifunctional monomer (R-B$_3$). (B) Two-dimensional projections of common first-order network imperfections.

a monotetrazine derivative (SI Appendix, Fig. S1) were linear through complete norbornene conversion. Similarly, pseudo-first-order kinetic plots for reaction of T with a monofunctional norbornene-tetraethylene glycol (SI Appendix, Fig. S2) were linear through complete tetrazine conversion. These data strongly suggest that reactions of functional groups within M and T are random.

End-linking reactions between M and T were prepared with equimolar concentrations of functional groups (1:1 norbornene:tetrazine) in DMSO solvent at room temperature. The initial concentration of M, [M]$_0$, was varied from 2 mM to 80 mM (examples shown in Fig. 3A). Immediately after mixing M and T, the reaction solutions possessed a deep red color as a result of tetrazine absorbance (Fig. 3A). As tetrazine groups were consumed, the reactions turned from red to orange and then to light yellow; the reactions were allowed to proceed until no further color change was observed (SI Appendix, Fig. S3).

When [M]$_0$ was < 60 mM, soluble network polymers were obtained. This observation suggested that at least 29.3% of the functional groups from M and T were consumed in cyclization reactions (2). These materials were characterized by liquid chromatography(LC)/MS and gel permeation chromatography (SI Appendix, Fig. S4). Low mass primary loop products (e.g., dumbbell polymers) were directly observed in these soluble materials prior to disassembly; quantification of the ratio of primary loop junctions to ideal network junctions was impossible as a result of the intractable number of high mass products that must also possess primary loops.

Reactions performed at [M]$_0$ of ≥ 60 mM formed gels that swelled extensively without dissolution. Fig. 3B shows the chemical structure of an SSS network junction. There are three possible dipyrindil-dihydropyridazined (DPDPHP) isomers at each reaction site. These junctions were converted to a single aromatic dipyrindilpyridazined isomer via treatment with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ; Fig. 3C and SI Appendix, Fig. S4). This oxidation has no impact on the orientations of S and L chains; it was performed to enable facile quantification of the network disassembly products via absorbance. The resulting oxidized networks, referred to as gel(O), were studied via NDS as outlined below.

Network Disassembly and Measurement of Loop Ratio

To measure the ratios of SSS, SSL, SLL, and LLL junctions (Fig. 4A), gel(O) networks were hydrolyzed under basic conditions (Fig. 3C). Samples of an M+T end-linking reaction were taken at various time points, oxidized with DDQ, hydrolyzed, and subjected to LC/MS. The corresponding network disassembly spectra show the evolution of junction structures before and after the gel point (Fig. 4B; gelation occurs at ~30 min). These kinetic NDS studies provide snapshots of junction structure evolution during a gelation reaction as it proceeds from mostly dangling chain species to trifunctional junctions.

Fig. 4C shows a typical network disassembly spectrum after 100% conversion and removal of sol fractions. Four products are observed in the absorbance trace (A$_{SS}$: Fig. 4C; green dashed line). Six species were observed in the mass trace; they correspond to SSS, SSL, SLL, and LLL, along with S and L molecular ions from dangling chains (extracted ion count traces; Fig. 4C). Mass spectra for each of the trifunctional products are shown in SI Appendix, Fig. S5. The observation of three to four multiply charged ions for each

![Fig. 1](image1.png)

![Fig. 2](image2.png)

Fig. 2. NDS. (A) Schematic depiction of an R-A$_2$ ADM. Placement of a degradable group (orange star) at a noncentral position along the R-A backbone leads to an S chain (blue) and an L chain (black) after cleavage. (B) End-linking of R-A$_2$ and R-B$_3$ yields a network in which each network junction is unique in terms of the orientation of S and L chains. Primary loops (asterisks) cannot reside at SSS or LLL junctions. (C) Disassembly of the network yields products whose masses depend on the junction source of that product. (Product size, or relative mass, does not include the mass of R-B$_3$, which is assumed to be constant.) The probabilities for formation of each trifunctional product at ideal or loop junctions are listed as p$_{ideal}$ and p$_{loop}$, respectively. The number of primary loops is captured in the ratio [LLL][SSL] or as. (D) Plot of the loop ratio, s_L, vs. fraction of loop junctions, n_L, for a trifunctional network; s_L varies with n_L according to Eq. 1. Fully looped “dumbbell” polymers have loop-linear-loop architectures.
product allows unambiguous assignment to SSS, SSL, SLL, and LLL. We did not observe any products from unreacted tetrazine junctions. The observed S and L products arise from a very small fraction of norbornene dangling chain ends within the parent network, which are the result of a slight norbornene/tetrazine stoichiometry imbalance.

Loop Ratios and Loop Fractions

Increased M dilution during end-linking should yield a greater number of primary loops. Fig. 5A shows network disassembly spectra obtained for varied [M]₀. The two peaks correspond to SLL and LLL; they are normalized to the height of the SLL peak. The LLL peak is clearly diminished with increased dilution. The most dilute samples (2 mM) yielded no LLL in the A₃₅₀ chromatogram and only a trace amount in the A₂₅₄, which indicates that loop structures are formed almost exclusively at this concentration. LC/MS of this sample confirms that it is composed primarily of cyclic dumbbell polymer structures (SI Appendix, Fig. S4E).

The UV absorbance peaks for SLL and LLL from four or five samples of each [M]₀ were integrated to yield λ₃ as a function of [M]₀ (Fig. 5B and SI Appendix, Table S1). For [M]₀ values that yielded gels, three different λ₃ values were collected: one “average” (λ₃,ave) obtained without separation of sol and gel, a gel value (λ₃,gel) obtained after extensive extraction of the sol, and a sol value (λ₃,sol) derived from the extracted soluble material. As shown in Fig. 5B, the λ₃,ave values approach the ideal network value of one third as [M]₀ increases, whereas λ₃,sol values are consistently ∼0.18.

Eq. 1 (Fig. 2D) was used to convert the measured loop ratios to n₃ values. Fig. 5C shows a plot of n₃ vs. [M]₀. Regions of the plots from Fig. 5B and C are shaded to reflect the nature of the network products: orange and blue regions correspond to soluble networks and sol fractions, respectively, whereas the green regions correspond to gels. The fraction of unreacted functionality at the gel point in ideal trifunctional networks as defined by Flory–Stockmayer theory is 0.293 (2, 4). This value is shown in Fig. 5C as a green dotted line. All the soluble materials have n₃ of ≥ 0.30, whereas gel samples have average n₃ values less than 0.30. The
results provide convincing evidence that primary loop formation defines the outcome of the gelation reaction; higher-order loops and/or chain entanglements, which cannot be measured, are negligible. The gels alone, after sol extraction, all have loop fractions less than 0.20. Surprisingly, even the gels prepared at the highest concentration experimentally accessible (80 mM) possessed 9% primary loop junctions. These data highlight the pervasive nature of elastic inactive loops in polymeric materials.

If the principle of equal reactivity (2) holds for a given set of network formation conditions, the rates of loop formation and ideal junction formation should vary equally as a function of temperature; λ_3 should remain constant. The values of λ_3 for $[M]_0$ of 30-mM and 60-mM networks prepared at 70 °C were 0.16 ± 0.01 and 0.26 ± 0.01, respectively. These values are identical to those obtained for the same $[M]_0$ at room temperature, which provides direct support for the principle of equal reactivity in this system.

Comparison of Loop Fractions vs. Theoretical Predictions

The loop fraction values shown in Fig. 5C were compared with rate theory (10, 43) and Monte Carlo (MC) simulation (44) methods developed by Stepto. For both theories, M was modeled as a linear, bivalent, telechelic Gaussian chain R-A2 with a mean-square end-to-end distance of $<r^2>_0$ and T was modeled as a trivalent point particle R’-B3. In all cases, A and B groups are present in equimolar amounts and reactions are carried to 100% conversion.

Fig. 5C shows the calculated loop fractions vs. concentration. The theories predict similar dependences of primary loop fraction on concentration that are in excellent agreement with the experimental $\lambda_{3,ave}$ values. Both theories contain a single variable parameter of $<r^2>_0$, which can be estimated by using published values (45) of PEG chain dimensions: for M of 1,085 Da, $<r^2>_0$ is 8.7 nm2. A least-squares fit of the MC simulation results to the experimental primary loop fractions yielded $<r^2>_0$ of 9.2 nm2, whereas a least-squares fit of the rate theory to the experimental primary loop fractions resulted in a value of 9.0 nm2. Both of these fits are in excellent agreement with the theoretically predicted size of the polymer chain, suggesting that the models provide satisfactory predictive capacity for this data set with no adjustable parameters. The theories do not, however, readily generate loop fraction values for the separate sol ($\lambda_{3,ave}$) and gel ($\lambda_{3,gel}$) components, which are the relevant values for applications of gels. To obtain these values, extensive further theoretical analysis would be required.

Junction connectivities obtained from MC simulation were visualized by using molecular dynamics. A simulated gel is shown in Fig. 5D. To generate this image, 100 junctions (B3) were modeled as single beads whereas 150 chains (A2) were modeled as beads connected by 10 finite-extensible nonlinear-elastic springs for each chain. Excluded volume interactions and periodic boundary conditions were enforced (46). In the simulated gel shown (Fig. 5D), n_1 is 0.12; primary loop chains are shown in red. In analogy to the decades-old problem for real networks, loop structures in this simulated material would be impossible to identify without labels. NDS provides such a labeling method for real materials.

Conclusions

NDS directly provides the fraction of primary loops in end-linked networks. We use NDS to quantify the primary loop fraction in PEG gels prepared via Diels–Alder end-linking. We find that loop formation defines the outcome of the gelation reaction: gels cannot form if more than 30% of network junctions contain loops. Our results show that loop formation cannot be ignored in any application, from commercial to niche, that relies on the mechanical properties of a polymer network. We anticipate that the concepts

Fig. 4. Network disassembly spectra for gel(O). (A) Structures and calculated masses of the SSS, SSL, SLL, and LLL products expected for gel(O) networks. (B) Network disassembly spectra as a function of end-linking time. Each of the possible products from Fig. 2 are observed. With time, the fraction of trifunctional products (black traces) begins to dominate. (C) Network disassembly spectrum after 100% tetrazine conversion. Four peaks were observed in the absorbance trace (green dotted line; A_{350}). Extracted ion traces are shown for observed disassembly products. The key SSS, SSL, SLL, and LLL products elute in order of their masses; the ratio [LLL]:[SLL] can be readily obtained via integration of the last two A_{350} peaks. The S and L peaks result from dangling chains.
described here will open new avenues of theoretical and experimental research related to network materials.

Materials and Methods

Procedure for Formation of Gel(O) Networks. The following procedure refers to a sample with an [M]₀ of 80 mM. For reactions at lower [M]₀ values, additional DMSO was added before mixing M and T to achieve the desired final concentration. M (4.6 mg, 4.2 μmol) was carefully weighed in a small vial. A total of 53 μL of a stock solution of T in DMSO (63 mg/mL) was added. The mixture was allowed to react at room temperature for 48 h. After this time, excess (10 equiv to 1 equiv T) of a norbornene-ethanol derivative was added to consume any potentially unreacted tetrazine groups (SI Appendix, Scheme S4). Ethyl vinyl ether can also be used for this quenching step. The added mass from the norbornene derivative was taken into account while searching for partially reacted junctions (observed in Fig. 4B). Last, excess DDQ (spatula tip) was added, and the materials were left overnight to fully oxidize.

Procedure for Gel(O) Disassembly. Gel(O) samples were swollen in fresh DMSO for 3 d. After every ~12 h, the DMSO layer was removed and fresh DMSO was added. The DMSO extracts were combined and represent the sol fraction.

The gels were then broken into small pieces for easier handling. A total of 20 μL of gel(O)/DMSO mixture and 40 μL THF were transferred and mixed in an LC/MS vial. Hydrogen peroxide solution [30% (wt/wt) in H₂O, 40 μL] was added, and the mixture was vortexed for 10 s. Then, 20 μL of LiOH (2 M in water) was added, and the reaction was vortexed for 10 s. The hydrolysis was allowed to proceed for 20 min before quenching with one drop of 1 M HCl. The resulting solution was analyzed directly via LC/MS.

General Procedure for Obtaining λ.L. The integration function in Agilent ChemStation was used to automatically output the areas of each peak in the LC absorbance traces obtained from disassembled gel(O)s. The loop ratio, λ.L, was calculated from the integration ratio of the areas of SLL peak and LLL peak. Synthetic procedures, theoretical methods, and other relevant data are provided in SI Appendix.

ACKNOWLEDGMENTS. We thank T. A. Hatton for the use of computational resources. This work was supported by the Massachusetts Institute of Technology Department of Chemistry, Institute for Soldier Nanotechnologies US Army Research Office Contract W911NF-07-D-0004 (to B.O.), and a National Defense Science and Engineering Graduate Fellowship (to M.W.).

