Domain wall induced magnetoresistance in a superconductor/ferromagnet nanowire

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

As Published	http://dx.doi.org/10.1063/1.3610947
Publisher	American Institute of Physics (AIP)
Version	Final published version
Accessed	Fri Dec 07 12:01:30 EST 2018
Citable Link	http://hdl.handle.net/1721.1/79742
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Detailed Terms	

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Domain wall induced magneto resistance in a superconductor/ferromagnet nanowire
G. X. Miao, M. D. Mascaro, C. H. Nam, C. A. Ross, and J. S. Moodera

Citation: Appl. Phys. Lett. 99, 032501 (2011); doi: 10.1063/1.3610947
View online: http://dx.doi.org/10.1063/1.3610947
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v99/i3
Published by the AIP Publishing LLC.

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Domain wall induced magnetoresistance in a superconductor/ferromagnet nanowire

G. X. Miao,1,a) M. D. Mascaro,2 C. H. Nam,2 C. A. Ross,2 and J. S. Moodera1

1Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 14 April 2011; accepted 29 April 2011; published online 18 July 2011)

In a nanowire consisting of a ferromagnet/insulator/superconductor multilayer structure, the superconductivity is shown to depend strongly on the configuration of the magnetic domain walls in the neighboring ferromagnetic layer, yielding a high magnetoresistance within a temperature range near the superconducting transition temperature T_C. Micromagnetic simulations confirmed that out-of-plane stray magnetic fields from uncompensated magnetic poles play a dominant role in inducing magnetoresistance in this particular system. © 2011 American Institute of Physics.

A superconductor shows great tunability in its behavior when placed in the vicinity of a ferromagnet and thus has been of intense scientific interest for decades. The two phenomena, ferromagnetism (FM) and superconductivity (SC), are usually incompatible: in a ferromagnetic material, adjacent electron spins align parallel to each other, while in a superconductor, the spins are aligned antiparallel in order to form Cooper pairs. The competition between these two types of spin ordering provides the opportunity to create devices with unique functionalities, for examples to achieve very large magnetoresistance.

In a ferromagnet, the magnetic configuration can be easily tuned with an external magnetic field, making magnetic devices suitable for memory and logic applications. On the other hand, local control of superconductivity is less straightforward, usually involving more complicated approaches such as an interaction with a ferromagnet. The influence of a ferromagnet on an adjacent superconductor can be three-fold. When the materials are sufficiently close, Cooper pairs from the superconductor can penetrate into the ferromagnet and experience the exchange field. This proximity effect arises from direct electron-electron correlations and is extremely strong yet short ranged, typically extending no more than a couple of coherence lengths. Conversely, spin polarized carriers from the ferromagnet can also penetrate the superconductor and induce a finite magnetization inside, which results in a net imbalance between the two spin channels and thus suppresses superconductivity. The third influence of the ferromagnet is indirect but longer range, originating from the stray magnetic fields generated around magnetic poles which tend to locally suppress superconductivity due to the competition between the Cooper paring energy and the Zeeman energy.

Superconducting spin valve structures consisting of superlattices of ferromagnets and superconductors can be constructed, and extremely large magnetoresistance has been obtained and attributed to proximity effects and spin accumulation, as well as to nucleation of magnetic domain walls. In this letter, we demonstrate the controllable creation and motion of magnetic domain walls in narrow magnetic stripes and study their influence on a neighboring superconductor. We see that such bilayer superconducting spin valves respond to the formation of domain walls by generating a very large positive magnetoresistance along the wires, as a result of partial suppression of superconductivity in regions near the domain walls. In our system, an Al$_2$O$_3$ insulating barrier is present between the ferromagnet and the superconductor, which prevents direct electronic communication between the layers, precluding proximity effects and spin accumulation. This implies that the stray magnetic fields are the origin of the observed magnetoresistance in this particular system.

The narrow strips were fabricated by depositing the layers onto Si substrates with pre-patterned electron-beam resist, followed by lift-off processes. A scanning electron microscope (SEM) image of an actual device is shown in Fig. 1(a). The sample stack is (thicknesses in nm): 3 Cr/6 Ni$_{80}$Fe$_{20}$/1 Al$_2$O$_3$/20 Al/0.7 Al$_2$O$_3$/3 Cr/5 Au. A 1 nm Al$_2$O$_3$ layer was introduced between the NiFe and Al layers in order to suppress the proximity effect and to maintain a suitable T_C. Another 0.7 nm Al$_2$O$_3$ placed above the Al layer cuts down the proximity influence from the top electrode while still allowing good electrical contacts from the top. The wire width was 1 μm and the length between the contacts was 13 μm. The wire contained double-notches ~250 nm deep (forming narrow constrictions with ~500 nm width) placed 1 μm apart. The samples were deposited onto liquid nitrogen cooled substrates through thermal and electron-beam evaporation at a system base pressure of 6×10^{-8} Torr. Electrical contacts of 5 Cr/40 Cu (in nm) were formed by magnetron sputtering after a second step electron-beam lithography. The transport measurement was performed using a standard four terminal method with a fixed dc current of 10 μA, and the samples were fully submerged in a pumped liquid He reservoir during the measurements with precise temperature control (± 2 mK) achieved by varying the vapor pressure above the liquid.

The principle of operation in these devices is illustrated in Fig. 1(b). When the wire is magnetically saturated in the negative direction and held below the superconducting...
critical temperature, the system is in a low resistance state. As the applied magnetic field increases in the positive direction to a field H_1, two domain walls are injected from the pads at the ends of the wire and traverse the wire until they reach the notched region, where they are pinned. The stray fields from the walls locally destroy the superconductivity and the system goes into a stable higher resistance state. The domain wall velocity in NiFe wires can reach hundreds of m/s (Ref. 23) and is too fast to detect in the dc measurements. When the applied field reaches H_2, it is sufficient to unpin the domain walls from the notches and saturate the wire, and the system returns to the low resistance state.

Figure 2 shows the resistance as a function of the applied field. The corresponding measurement temperatures are labeled on the right side. Colored curves are from the notched device while the black curves are from the accompanying control device. The two sets of data were recorded simultaneously at each temperature. (b) An example of the presence of a significantly higher switching field H_2 in the ascending branch of a cycle measured at 1.47 K.

To quantify the domain wall stray field, the object oriented micromagnetic framework (OOMMF) code was used to calculate the magnetization and the stray field distributions around a model of the wire. The simulation was based on the actual shape of the device taken from a SEM image, into which two 180° domain walls were placed and allowed to equilibrate at remanence. The simulation was carried out with an in-plane cell size of 4 nm and a cell size of 2 nm in the out-of-plane direction and used standard parameters for NiFe. The model shows that the walls are transverse in type and have a core region that is magnetized perpendicular to the wire length. The cores of the two walls can be oriented parallel or antiparallel. Fig. 3(a) illustrates the magnetization distribution in the case where the cores are parallel, which is the expected configuration if there is any misalignment between the field direction and the length of the wire leading to an in-plane field component perpendicular to the wire. Figs. 3(b) and 3(c) illustrate the stray field produced by the pinned domain walls, showing the out-of-plane and in-plane field magnitude at a height of 14 nm above the mid-thickness of the NiFe layer, corresponding to mid-thickness of the Al layer, i.e., the calculated field strength approximates the average field inside the Al layer.

The stray field from the domain walls has its most dramatic effect at temperatures in the range of 1.38 to 1.6 K, close to T_C, where the superconductivity is most vulnerable to magnetic fields. The maximum observed resistance change is as large as 15 Ω or 35% of the normal state resistance. This is equivalent to suppressing superconductivity over a 4.5 μm long portion of the wire. The behavior of the critical field in thin Al films is well documented. The in-plane critical field H_C for a 20 nm thick Al film is around 6 kOe at 0.4 K, much larger than its bulk value (100 Oe) because of the thin film geometry.
cores of the domain walls are antiparallel. The injected walls
netoresistance. Similarly, any stray fields originating from film
walls hence is not expected to contribute to the observed mag-
terials on 500 nm wide wires, for which the
path is also limited by the film thickness
exceeds
that are present near a domain wall in a NiFe film. Fig.3(b)
spatial extent of the Cooper pairs (\(\xi\) exceeds
H
in the device. For thin films, the in-plane
H
plane magnetic field magnitude at a height corresponding to mid-thickness
directions of the above figures correspond to the actual lateral dimen-
sions of the device, and the colors map out the magnetic field intensity.

We can make an order of magnitude estimate of the value
of \(H_C\) in the devices in order to compare with the stray field
from the domain walls. Fig. 2 suggests that \(T_C\) is around 1.5 K
in the device. For thin films, the in-plane \(H_C\) varies as
\(\sqrt{1-T/T_C}\) with temperature. This means that, for the
temperatures examined in this experiment, for example 1.47 K,
\(H_C\) is still on the order of 1 kOe for an in-plane field, while
only about 50 Oe for an out-of-plane field (lowered by a factor of
\(\xi(T)/d\) due to geometrical reasons). The out-of-plane critical
field in particular is modest compared to the stray fields
that are present near a domain wall in a NiFe film. Fig. 3(b)
shows that the out-of-plane component of the stray field exceeds ~50 Oe over a distance of about 3 \(\mu\)m. Because of the spatial extent of the Cooper pairs (\(\xi \sim 400 \text{ nm}\) with the above parameters, significantly shorter than the bulk superconducting
coherence length of 1200 nm because the electron mean free path is also limited by the film thickness \(d\)), the stray fields can suppress superconductivity in a region greater than this 3 \(\mu\)m length. This result is consistent with the estimated length over which superconductivity is suppressed in the presence of the domain walls. On the other hand, the in-plane field component (Fig. 3(c)) is not strong enough to induce significant change of superconductivity (and hence resistance) in these devices.

The OOMMF simulations show that the stray fields are
not only present at the notched area, but they also appear at the
wire edges due to edge roughness. These fields can suppress superconductivity near the edges of the wires, leading to a reduction in \(T_C\) with wire width. This is supported by measurements on 500 nm wide wires, for which the \(T_C\) was below 1 K, the limit of temperature control of the experimental apparatus. This edge effect is independent of the presence of domain walls hence is not expected to contribute to the observed magneto-resistance. Similarly, any stray fields originating from film roughness also would not contribute to the magneto-resistance.

Finally, it is interesting to consider the case in which the
cores of the domain walls are antiparallel. The injected walls
form a structure analogous to a 360° domain wall at the

notches, which is magnetostatically stabilized and is more diffi-
cult to annihilate. During multiple field cycles, we did occa-
sionally (once in ~30 cycles) observe the high resistance state
persisting to a significantly higher field of over 150 Oe. An
example of this is shown in the ascending branch of Fig. 2(b).
It is notable that the resistance drops gradually before the revers-
sal is completed, which may be a result of compression of the
coupled pair of domain walls by the field prior to annihilation.

In summary, the injection and annihilation of magnetic
domain walls was used to induce a large magnetoresistance in Al/alumina/NiFe wires held near the superconducting critical
temperature. The stray fields generated by the domain
walls in the NiFe penetrate the superconducting film and
drive it towards its normal state, leading to a large positive MR. The possibility of using controllable domain wall
motion to manipulate superconductivity makes it plausible to
combine the advantages of superconductor- and domain-
wall-based devices with simultaneous control by temperature and field, for future spintronic as well as quantum computing
applications.

Support from the NRI INDEX Program and NSF DMR 0504158 are gratefully acknowledged.