Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide

Dihua Wang, a,b Andrew J. Gmitter, a,c,* and Donald R. Sadoway, a,** b,***

aDepartment of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
bSchool of Resource and Environmental Sciences, Wuhan University, China

C 2011 The Electrochemical Society. [DOI: 10.1149/1.3560477] All rights reserved.

Manuscript submitted October 25, 2010; revised manuscript received January 31, 2011. Published April 4, 2011.

Modern metals extraction technologies face difficult environmental challenges. With worldwide steel production exceeding $1 \times 10^7$ tonnes annually, 1 the amount of byproduct carbon dioxide that accompanies steelmaking ($>1.5$ tonnes CO$_2$ per tonne of steel) is noteworthy on the scale of anthropogenic greenhouse gas (GHG) emissions. 2 The electrolytic production of aluminum also leads to generation of GHGs in the form of CO$_2$, C$_2$F$_6$, and C$_2$F$_4$ owing to the use of a consumable carbon anode ($\sim1.5$ tonnes CO$_2$ per tonne of aluminum). In response, Sadoway has advocated molten oxide electrolysis (MOE) as a carbon-free alternative to existing metals extraction technology. 3 MOE is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. Early efforts to produce metal by oxide electrolysis go back more than 100 years, 4 but with few exceptions the process has not succeeded in moving beyond the confines of the laboratory. 5 More recently, variants of MOE have been studied with the intention of exploiting indigenous resources on the moon and on Mars for the generation of oxygen along with the production of structural metals such as iron and photovoltaic materials such as silicon. 6–13 At this point, the success of MOE hinges upon the existence of an inert anode capable of sustained oxygen evolution.

Previous work in this laboratory on inert anodes for aluminum-producing Hall–Héroult cells led to the enunciation of a set of selection criteria for the identification of materials for use as anodes in the fluoride-based electrolyte. 14 By analogy, in a molten oxide electrolyte an oxygen-evolving inert anode would desirably be composed of a material with the following attributes:

- physically stable (preferably solid) at service temperature.
- resistant to chemical attack by the molten oxide electrolyte.
- resistant to chemical attack by pure oxygen.
- electrochemically stable.
- electronically conductive.
- resistant to thermal shock.
- mechanically robust.

In addition, the material should be easy to deploy at industrial scale; for example, practicalities such as electrical connection to the bus, cell startup, response to loss of electrical power, etc., should be straightforward. Application of these selection criteria resulted in the choice of iridium. The performance of this material as an inert anode for MOE was assessed in the context of iron production by electrolysis of FeO dissolved in an alumino-silicate supporting electrolyte of composition MgO(16 wt %)–CaO(18 wt %)–Al$_2$O$_3$(20 wt %)–SiO$_2$ (46 wt %).

** Electrochemical Society Active Member.
*** Electrochemical Society Student Member.
* Present address: Rutgers University, New Brunswick, NJ.
E-mail: dsadoway@mit.edu

Experimental

Chemicals and equipment.—Powders of lime, magnesia, alumina, and silica (all from Alfa Aesar) were stored at 100°C with desiccant to prevent adsorption of water and agglomeration. 200 g batches were dry milled with no milling media in 500 mL Nalgene jars for roughly 24 h to thoroughly mix. The dry, mixed powders were poured into an alumina crucible (80 mm OD) or a molybdenum crucible (60 mm OD). The crucible was set into another alumina crucible and then placed into the bottom of a vertical closed-one-end alumina tube reactor (113 mm OD x 105 mm ID x 750 mm L, McDanel) in a vertical tube furnace heated by molybdenum disilicide elements (Mellen). The electrolyte was blanketed by flowing argon introduced via a mullite tube positioned in the hot zone of the furnace. The furnace was ramped at 85°C/h to 1575°C, and the contents were allowed to equilibrate for roughly one hour prior to electrochemical measurements.

Cyclic voltammetry.—The reference electrode was a 3.17 mm diameter Mo rod shrouded in a mullite tube. The counter electrode was identically prepared. Two kinds of working electrodes were used: (1) 0.5 mm diameter Ir wire connected to a 0.368 mm diameter Pt wire; (2) 3.17 mm diameter Mo rod. The exact electrode area exposed to the electrolyte was determined by a relation between current increment and electrode area increment (can be controlled from the top of the working electrode) at a specific electrode potential. Cyclic voltammetry with 70% IR compensation was used for all electrochemical measurements. Higher compensation values resulted in instability of the system.

Electrolysis and materials characterization.—Constant current electrolysis was conducted with an electrolyte of composition MgO (26 wt %)–CaO (25 wt %)–SiO$_2$ (49 wt %) (S1) or MgO (16 wt %)–CaO (18 wt %)–Al$_2$O$_3$ (20 wt %)–SiO$_2$ (46 wt %) (S1A) to which was added either 5 or 10 wt % FeO. A Mo rod (3.17 or 6.34 mm in diameter) was used as the cathode; an Ir plate (5 x 1 x 40 mm) or Ir wire (0.5 mm in diameter, 9.5 mm in length) served as the anode. The Ir plate was welded to a Mo rod which served as the current lead. The Ir wire anode was connected to a Pt wire, which served as the current lead. The Ir that served as the active anode was weighed before and after electrolysis. The entrained electrolyte on the anode was removed by immersing it in 47–51% HF aqueous solution. After electrolysis the Ir anode and the cathode metal product were examined by SEM and EDS (JEOL 5910).

Results

Figure 1 shows the results of cyclic voltammetry on an iridium wire, 0.5 mm diameter, at oxidizing potentials capable of generating oxygen gas. The blue trace represents data taken in the supporting
electrolyte (S1A), while the red trace represents data taken in the same melt to which 5 wt % FeO has been added. At potentials less than 0.75 V (vs. MoO3/Mo)\textsuperscript{d}, the blue trace shows near zero current indicating that iridium is electrochemically stable and that the electronic conductivity of the melt is negligible. At potentials exceeding 1.05 V the current grows measurably, and exhibits significant fluctuation on the order of 10 s of millivolts, which is consistent with gas evolution, i.e., formation, coalescence, and detachment of bubbles. In addition, there is a feature between 0.75 and 1.05 V, for which the peak current was found to be scan-rate dependent. This feature is assigned to the electrochemical formation of iridium oxide, which will be discussed below. Such putative behavior is similar to that observed during anodic oxidation of platinum in molten silicates as reported by Higgins\textsuperscript{15,16} where he suggests the formation of an intermediate platinum oxide. The red trace in Fig.1 shows that even upon addition of FeO to the alumino-silicate supporting electrolyte the electrical signatures of both oxygen evolution and putative iridium oxide formation are present. The positive slope in the current response at potentials lower than 0.75 V may be due to increasing electronic conductivity of the melt or oxidation of some Fe\textsuperscript{2+} which could result in polaron hopping between Fe\textsuperscript{2+} and Fe\textsuperscript{3+}. The higher oxygen evolution current is attributed to the greater concentration of free oxide ions in the FeO-bearing melt.

In contrast, the red trace representing the voltammogram of the electrolyte containing 5 wt % FeO shows a strong reduction current on the cathodic sweep at potentials as high as ~0.05 V, in excellent agreement with the ~0.08 V value from thermodynamic calculation, and in conformity with the electroreduction of Fe\textsuperscript{2+}.

Galvanostatic electrolysis was performed at a current density of 0.55 A cm\textsuperscript{-2} for a period of 6.35 h on a melt composed of the alumino-silicate supporting electrolyte containing 5 wt % FeO. An iridium wire, 0.5 mm diameter, 9.5 cm long, immersed 1.4 cm into the melt, served as the anode, while a molybdenum rod, 3.17 mm diameter, served as the cathode. The cell was also fitted with a reference electrode consisting of a molybdenum rod, 3.17 mm diameter. Temperature was set at 1575°C. The black trace of Fig. 3 shows that the potential on the anode as measured between it and the reference electrode remained nearly constant. The condition of the iridium

---

\textsuperscript{d} All potentials are reported against a MoO\textsubscript{3}/Mo pseudo-reference electrode.

---

Figure 1. (Color online) CVs of an Ir wire (diameter 0.5 mm) working electrode in molten S1A [MgO (16 wt %)–CaO (18 wt %)–Al\textsubscript{2}O\textsubscript{3} (20 wt %)–SiO\textsubscript{2} (46 wt %)] without (blue line) and with 5 wt % FeO (red line) at 1575°C with a potential scan rate of 100 mV/s, reference electrode and counter electrode: Mo rods (3.17 mm in diameter).

Figure 2. (Color online) CVs of a Mo working electrode in molten S1 [SiO\textsubscript{2} (49 wt %)–CaO (25 wt %)–MgO (26 wt %)] with (red line) and without (green line) 5 wt % FeO 1575°C in a Mo crucible with a potential scan rate of 50 mV/s, reference electrode and counter electrode: Mo rods (3.17 mm in diameter).

Figure 3. (Color online) Variation of potential with time of an Ir wire anode (black line, 0.5 mm diameter, 1.4 cm in melt) in S1A with 5 wt % FeO at 1575°C and of an Ir plate anode (red line, area: 2.52 cm\textsuperscript{2}) in S1A with 10 wt % FeO at 1575°C during constant current electrolysis.
anode is depicted before and after electrolysis (the entrained electrolyte was removed by immersing the iridium wire in 47–51% HF aqueous solution for 45 min) in Figs. 4a and 4b, respectively, showing a change in surface finish but no perceptible change in diameter. The mass of the iridium wire was 440.13 and 437.12 mg before and after electrolysis, respectively. The 3.01 mg weight loss of the entire iridium wire is equivalent to a consumption rate of \( \frac{7.7 \text{ mm}}{\text{year}} \), confirmed the initial findings. In this section, we put forth the following schemes to explain the performance of iridium as an oxygen-evolving inert anode (IMIA). Alternatively, if \( k_3 \gg k_i \), where \( i = 3–6 \), we should expect the same outcome.

**Discussion**

On the basis of these experimental data we put forth the following scheme to explain the performance of iridium as an oxygen-evolving inert anode in iron-bearing alumino-silicate melts. The overall half-cell reactions during the electrolysis of FeO are

\[
\text{cathode : } \quad \text{Fe}^{2+} + 2e^- \rightarrow \text{Fe}(l) \quad [1]
\]

\[
\text{anode : } \quad \text{O}^{2-} \rightarrow \frac{1}{2}\text{O}_2(g) + 2e^- \quad [2]
\]

At the anode, we speculate that the mechanisms at work include the following, where the term, melt, refers to the molten oxide electrolyte

- electrochemical oxidation of iridium to form molten oxide (iri-dia), which is a gas at this temperature

\[
\text{Ir} + y \text{O}^{2-} \rightarrow \text{IrO}_y(g) + 2ye^-, \quad (y = 1.5, 2, or 3) \quad [3]
\]

- dissolution of iridium in the molten oxide electrolyte

\[
\text{IrO}_y(g) + \text{MO}_z(\text{melt}) \rightarrow \text{MIrO}_{y+z}(\text{melt}) \quad [4]
\]

- decomposition of iridium into its constituent elements

\[
\text{IrO}_y(g) \rightarrow \text{Ir(electrode)} + 0.5y\text{O}_2(g) \quad [5]
\]

\[
\text{IrO}_y(g) \rightarrow \text{Ir (dispersed in the melt)} + 0.5y\text{O}_2(g) \quad [5']
\]

- electrochemical dissolution of iridium, i.e., electrostripping

\[
\text{Ir} \rightarrow \text{Ir}^{4+}(\text{melt}) + 4e^- \quad [6]
\]

In Fig. 1, we see in the figure between 0.75 and 1.05 V possible evidence for Reaction 3 or Reaction 6. If Reaction 3 is operative then the rate of such electrochemically generated iridium on the anode surface determines the utility of the anode. Any of the following reactions would consume iridium and thereby deplete the anode of material: dissolution (Reactions 4 and 4'), decomposition (Reaction 5'), or fugitive emission (Reaction 3). The exception is Reaction 5 which does not result in the removal of iridium from the anode. In fact, if the rate of thermal decomposition of iridium according to Reaction 5 occurs at a rate that exceeds the rate of iridium generation by Reaction 3, this will result in the continuous release of oxygen gas which bubbles away and the continuous release of iridium metal which remains on the anode. Evidence for the latter can be seen in Fig. 4b which reveals surface reconstruction of the iridium without loss of material. Such an iridium electrode would be termed an iridium-mediated inert anode (IMIA), or more generally an oxide-mediated inert anode (OMIA). Alternatively, if \( k_3 \gg k_i \), where \( i = 3–6 \), we should expect the same outcome.
The concept of an oxide-mediated inert anode should not be limited to iridium metal and molten oxide melts; in principle, the anodic behavior of other noble metals including Pt, Rh, Au, and Ag may be explained to the extent that they form an intermediate compound by chemical combination with a constituent of the electrolyte in conformity with the set of reactions set forth above. Thus, one might possibly be able to obtain an inert anode by adjusting relative rates of Reactions 3–6 through control of temperature, electrolyte composition, and metal alloy composition. Given that in halide melts oxygen evolution occurs at less extreme potentials than does halogen evolution, we speculate on the potential utility of an oxide-mediated inert anode for other metallurgical processes of interest.

In summary, by presenting results for electrochemical decomposition of FeO dissolved in an alumino-silicate melt to produce oxygen gas and liquid metal at 1575°C we have demonstrated that iridium can serve as an oxygen-evolving anode in an oxide melt at extremely high temperature. Several mechanisms have been put forth to explain the performance of iridium and to provide guidance to future efforts at inert anode development in other electrolytic systems. While iridium is far too costly and its natural abundance in the earth’s crust is far too low to meet the needs of the world steel industry, iridium has an important role to play in laboratory-scale studies of electrolytic cells evolving oxygen and in specialized settings such as in situ generation of oxygen in extraterrestrial venues.

Acknowledgments

The authors are grateful to the American Iron and Steel Institute (AISI) for financial support. DHW thanks the Chinese Scholarship Council (CSC) for affording him the opportunity to work at MIT and Dr. Bing Li for her assistance and discussion during bench work. AJG thanks Dr. Aislinn Sirk who entertained helpful discussions. The authors thank Guenther Arndt for machining the anodes and dissecting the crucibles. The authors thank Drs. Antoine Alla-nore, Hojong Kim, and Luis A. Ortiz for their careful review of the manuscript and many suggestions for improvement of same.

Massachusetts Institute of Technology assisted in meeting the publication costs of this article.

References

1. World Steel in Figures, World Steel Association, Brussels (2010).