Search for direct CP violation in singly Cabibbo-suppressed $D^{\pm}K^{+}K^{-}\pm$ decays

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1103/PhysRevD.87.052010

Publisher
American Physical Society

Version
Final published version

Accessed
Mon Apr 25 01:12:20 EDT 2016

Citable Link
http://hdl.handle.net/1721.1/79766

Terms of Use
Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.

Detailed Terms
Search for direct CP violation in singly Cabibbo-suppressed $D^\pm \rightarrow K^+ K^- \pi^\pm$ decays

¹¹=²¹²¹¹⁰(¹²) ²¹²¹¹⁰-¹
We report on a search for direct CP violation in the singly Cabibbo-suppressed decay $D^+ \rightarrow K^+ K^- \pi^+$ using a data sample of 476 fb$^{-1}$ of $e^+ e^-$ annihilation data accumulated with the BABAR detector at the SLAC PEP-II electron-positron collider, running at and just below the energy of the $\Upsilon(4S)$ resonance. The integrated CP-violating decay rate asymmetry A_{CP} is determined to be $(0.37 \pm 0.30 \pm 0.15)\%$. Model-independent and model-dependent Dalitz plot analysis techniques are used to search for CP-violating asymmetries in the various intermediate states. We find no evidence for CP-violation asymmetry.

DOI: 10.1103/PhysRevD.87.052010

PACS numbers: 11.30.Er, 13.25.Ft, 14.40.Lb

I. INTRODUCTION

Searches for CP violation (CPV) in charm meson decays provide a probe of physics beyond the Standard Model. Singly Cabibbo-suppressed (SCS) decays can exhibit direct CP asymmetries due to interference between tree-level transitions and $|\Delta C| = 1$ penguin-level transitions if there is both a strong and a weak phase difference between the two amplitudes. In the Standard Model, the resulting asymmetries are suppressed by $O(|V_{cb} V_{ub}/V_{cs} V_{us}|) \sim 10^{-3}$, where V_{ij} are elements of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix [1]. A larger measured value of the CP asymmetry could be a consequence of the
enhancement of penguin amplitudes in D meson decays due to final-state interactions [2,3] or of new physics [4,5].

The LHCb and CDF Collaborations recently reported evidence for a nonzero CP asymmetry in the difference of the time-integrated $D^0 \to \pi^+\pi^-$ and $D^0 \to K^+K^-$ decay rates [6,7]. Searches for CPV in other SCS decays with identical transitions $c \to u\bar{d}$ and $c \to u\bar{s}$ are relevant to an understanding of the origin of CPV [8–10].

We present here a study of the SCS decay $D^+ \to K^+K^-\pi^+$ [11], which is dominated by quasi-two-body decays with resonant intermediate states. This allows us to probe the Dalitz-plot substructure for asymmetries in both the magnitudes and phases of the intermediate states. The results of this study include a measurement of the integrated CP asymmetry, the CP asymmetry in four regions of the Dalitz plot, a comparison of the binned D^+ and D^- Dalitz plots, a comparison of the Legendre polynomial moment distributions for the K^+K^- and $K^-\pi^+$ systems, and a comparison of parametrized fits to the Dalitz plots. Previous measurements by the CLEO-c Collaboration found no evidence for CPV in specific two-body amplitudes or for the integrals over the entire phase space [12]. The LHCb Collaboration also finds no evidence for CPV in a model-independent search [13].

II. THE BABAR DETECTOR AND DATA SAMPLE

The analysis is based on a sample of electron-positron annihilation data collected at and just below the energy of the $Y(4S)$ resonance with the BABAR detector at the SLAC PEP-II collider, corresponding to an integrated luminosity of 476 fb$^{-1}$. The BABAR detector is described in detail elsewhere [14]. The following is a brief summary of the detector subsystems important to this analysis. Charged-particle tracks are detected, and their momenta measured, by means of the combination of a 40-layer cylindrical drift chamber (DCH) and a five-layer silicon vertex tracker, both operating within a 1.5-T solenoidal magnetic field. Information from a ring-imaging Cherenkov detector (detector of internally reflected Cherenkov light) and specific energy-loss measurements (dE/dx) in the silicon vertex tracker and DCH are used to identify charged kaon and pion candidates.

For various purposes described below, we use samples of Monte Carlo (MC) simulated events generated using the JETSET [15] program. These events are passed through a detector simulation based on the Geant4 toolkit [16]. Signal MC events refer to $D^+ \to K^+K^-\pi^+$ decays generated using JETSET as well as $D^+ \to K^+K^-\pi^+\gamma$ decays generated using JETSET in combination with the PHOTOS [17] program. In all cases when we simulate particle decays, we include EvtGen [18].

III. EVENT SELECTION AND $D^+ \to K^+K^-\pi^+$ RECONSTRUCTION

The three-body $D^+ \to K^+K^-\pi^+$ decay is reconstructed from events having at least three tracks with net charge +1.

Two oppositely charged tracks must be consistent with the kaon hypothesis. Other charged tracks are assumed to be pions. To improve particle identification performance, there must be at least one photon in the detector of internally reflected Cherenkov light associated with each track. Contamination from electrons is significantly reduced by means of dE/dx information from the DCH. Pion candidates must have transverse momentum $p_T > 300$ MeV/c. For lower p_T values, tracks are poorly reconstructed. Also, for lower p_T, differences in the nuclear cross sections for positively charged and negatively charged particles can lead to asymmetries. We form the invariant mass of $K^+K^-\pi^+$ candidates and require it to lie within 1.82–1.92 GeV/c2. The three tracks must originate from a common vertex, and the vertex-constrained fit probability (P_{vtx}) must be greater than 0.5%. The momentum in the center-of-mass (CM) frame (p_{CM}) of the resulting D candidate must lie within the interval [2.4, 5.0] GeV/c. The lower limit on p_{CM} reduces background from B decays by preferentially selecting $e^+e^- \to c\bar{c}$ events; this has traditionally been the way to reduce combinatoric background due to B decays. To remove background from misidentified $D^{\pm} \to D^{0}\pi^{\pm}$ decays, we require $m(K^+K^-\pi^+) - m(K^-\pi^+) - m(\pi^+) > 15$ MeV/c2, where the pion and kaon masses are set to the nominal values [19]. Finally, for events with multiple D^{\pm} candidates, the combination with the largest value of P_{vtx} is selected. We perform a separate kinematic fit in which the D^{\pm} mass is constrained to its nominal value [19]. The result of the fit is used in the Dalitz plot and moments analyses described below.

To aid in the discrimination between signal and background events, we use the joint probability density function (PDF) for L_{xy}, the distance between the primary event vertex and the D meson decay vertex in the plane transverse to the beam direction, and p_{CM}, to form a likelihood ratio,

$$R_L = \frac{P_s(p_{\text{CM}})P_s(L_{xy})}{P_b(p_{\text{CM}})P_b(L_{xy}) + P_b(p_{\text{CM}})P_b(L_{xy})}. \tag{1}$$

Since the two variables have little correlation, we construct the two-dimensional PDF as simply the product of their one-dimensional PDFs; these one-dimensional PDFs for signal (P_s) and background (P_b) are estimated from data. The background PDFs are determined from events in the D^{\pm} mass sidebands, while those for the signal are estimated from events in the D^+ signal region after background is subtracted using estimates from the sidebands. The signal region is defined by the $m(K^+K^-\pi^+)$ interval 1.86–1.88 GeV/c2, while the sideband regions are the 1.83–1.84 GeV/c2 and 1.90–1.91 GeV/c2 intervals. The selection on R_L is adjusted to maximize signal significance, and the resulting signal is fairly pure (see Fig. 3 in Sec. VI).

The reconstruction efficiency for D^+ decays is determined from a sample of MC events in which the decay is generated according to phase space (i.e., the Dalitz plot is uniformly populated). To parametrize the selection
efficiency, we use the distribution of reconstructed events as a function of the cosine of the polar angle of the D meson in the CM frame [$\cos (\theta_{\text{CM}})$] and the $m^2(K^+\pi^-)$ versus $m^2(K^+\bar{K}^-)$ Dalitz plot. The selection efficiency is determined as the ratio of $N_{\text{Reco}}/N_{\text{Gen}}$ in intervals of $\cos (\theta_{\text{CM}})$ and separately in intervals of the Dalitz plot, where N_{Reco} is the number of selected events in an interval and N_{Gen} is the number of events generated in the same interval. The binned Dalitz-plot efficiency is parametrized to account for known differences between simulated events and data. The differences arise in the reconstruction asymmetry of charged-pion tracks and in the production model and data. The differences between simulated events and data are corrected by using the distribution of reconstructed events before calculating the efficiency. For this procedure the efficiency near the edges of the Dalitz plots is parametrized with a feed-forward artificial neural network (ANN) [20] consisting of two hidden layers with three and five nodes.

To correct for differences in the reconstruction asymmetry of charged-pion tracks and in the production model for charm mesons. Differences in kaon particle identification efficiency have a negligible asymmetry effect since the K^+ and K^- are common to D^+ and D^- decays. To correct the production model used in the simulation, we construct the ratio of the two-dimensional p_{CM} versus $\cos (\theta_{\text{CM}})$ PDFs between data and simulation and apply this ratio as a correction to the reconstructed MC events before calculating the efficiency. For this procedure the signal PDF for data is background subtracted, while the signal MC events are weighted by the Dalitz plot amplitude squared, determined from data (see Sec. VIII).

To correct for differences in the reconstruction asymmetry of charged-pion tracks, we use a sample of $e^+e^- \rightarrow \tau^+\tau^-$ events in which one τ decays leptonically via $\tau^+ \rightarrow \mu^+\nu_\mu\bar{\nu}_\tau$, while the other τ decays hadronically via $\tau^+ \rightarrow h^+h^-h^0\nu_\tau$. We tag events with a single isolated muon on one side of the event and reconstruct the hadronic τ decay in the opposite hemisphere. We refer to this sample as the “Tau31” sample. We further require two of the three hadrons to have an invariant mass consistent with the rho mass to within 100 MeV/c^2. Due to tracking inefficiencies, tau decays to three or more tracks are sometimes reconstructed with only two tracks. We use the two-dimensional distributions of $\cos \theta_{\pi\pi}$ and $p_{T_{\tau\tau}}$ (with respect to the beam axis) of the rho-decay pions for two-hadron and three-hadron events to determine the pion inefficiency and asymmetry. We allow for a different efficiency for positive and negative tracks (e_\pm) by introducing the asymmetry $a(p_{\text{Lab}})$ as a function of pion laboratory momentum (p_{Lab}),

$$a(p_{\text{Lab}}) = \frac{e_+(p_{\text{Lab}}) - e_-(p_{\text{Lab}})}{e_+(p_{\text{Lab}}) + e_-(p_{\text{Lab}})},$$

(2)

The results for $a(p_{\text{Lab}})$ are shown in Fig. 1: the average value for $0 < p_{\text{Lab}} < 4$ GeV/c is $0.10 \pm 0.26\%$, which is consistent with zero [21]. We use linear interpolation between data points, or extrapolation beyond the first and last data points, to obtain the ratio of track-efficiency asymmetries between data and MC as a function of momentum. This ratio is then used to correct track efficiencies determined from signal MC.

V. INTEGRATED CP ASYMMETRY AS A FUNCTION OF $\cos (\theta_{\text{CM}})$

The production of D^+ (and D^-) mesons from the $e^+e^- \rightarrow c\bar{c}$ process is not symmetric in $\cos (\theta_{\text{CM}})$; this forward-backward (FB) asymmetry, coupled with the asymmetric acceptance of the detector, results in different yields for D^+ and D^- events. The FB asymmetry, to first order, arises from the interference of the separate annihilation processes involving a virtual photon and a Z^0 boson. We define the charge asymmetry A in a given interval of $\cos (\theta_{\text{CM}})$ by

$$A(\cos (\theta_{\text{CM}})) \equiv \frac{N_{D^+}/\epsilon_{D^+} - N_{D^-}/\epsilon_{D^-}}{N_{D^+}/\epsilon_{D^+} + N_{D^-}/\epsilon_{D^-}},$$

(3)

where N_{D^\pm} and ϵ_{D^\pm} are the yield and efficiency, respectively, in the given $\cos (\theta_{\text{CM}})$ bin. We remove the FB asymmetry by averaging A over four intervals symmetric in $\cos (\theta_{\text{CM}})$, i.e., by evaluating

$$A_{CP} = \frac{A(\cos (\theta_{\text{CM}})) + A(-\cos (\theta_{\text{CM}}))}{2}.$$

(4)

The interval boundaries in $\cos (\theta_{\text{CM}})$ are defined as 0, 0.2, 0.4, 0.6, 1.0. The D^\pm yields are determined from fits to the reconstructed $K^\pm K^\mp \pi^\pm$ mass distributions, as described in Sec. VI. This technique has been used in previous BABAR measurements in both three-body and two-body decays.
yields \(\frac{N{_{/C27}}/\sqrt{N}}{\sqrt{J}}\) events, respectively. The ratio of efficiency-corrected intervals (Fig. 2).

Separate fits to the first (second) Gaussian component and \(f\) is the standard deviation of the first (second) Gaussian component. \(f_1 = 0.63\) is the fraction of the signal in the first Gaussian component. Separate fits to the \(K^+K^-\pi^+\) and \(K^+K^-\pi^-\) distributions yield \(N_{D^+} = 113037 \pm 469\) and \(N_{D^-} = 110663 \pm 467\) events, respectively. The ratio of efficiency-corrected yields \(N/\epsilon\) is

\[
R = \frac{N_{D^+}/\epsilon_{D^+}}{N_{D^-}/\epsilon_{D^-}} = 1.020 \pm 0.006.
\]

This ratio is used to account for remaining asymmetries that arise from physics- or detector-related processes, such as an insufficiently accurate simulation of the FB asymmetry or a residual detector asymmetry. Also, it is a less accurate measure of the asymmetry when the efficiency varies significantly as a function of \(\cos(\theta_{CM})\), as for our experiment.

VI. \(D^+\) MASS FIT

The \(K^+K^-\pi^+\) mass distribution is fitted with a double-Gaussian function with a common mean and a linear background (Fig. 3), plus a function describing radiative decays \(D^+ \rightarrow K^+K^+\pi^+\gamma\). The PDF for radiative decays is obtained from the reconstructed mass distribution of \(K^+K^-\pi^+\gamma\) events selected at the generator level in our MC additionally convolved with a Gaussian of width \(2.26\ \text{MeV}/c^2\) and accounts for 1.5\% of the signal. The fit to data gives a \(D^+\) mass value of \(1869.70 \pm 0.01\ \text{MeV}/c^2\), where the uncertainty is statistical only. The signal region is defined to lie within \(\pm 2\sigma_{D^+}\) of the peak, where \(\sigma_{D^+} = \sqrt{f_1\sigma_1^2 + (1 - f_1)\sigma_2^2}\) is 5.04 MeV/c², and contains a total of 227874 events; \(\sigma_1(\sigma_2)\) is the standard deviation of the first (second) Gaussian component.

VII. MODEL-INDEPENDENT SEARCHES FOR CP VIOLATION IN THE DALITZ PLOTS

Model-independent techniques to search for \(CP\) violation in the Dalitz plots are presented in Ref. [22]. The techniques include a comparison of the moment distributions and the asymmetry in the \(D^+\) and \(D^-\) yields in various regions of the Dalitz plot. We scale the \(D^-\) yields by the factor \(R\) described in Sec. VI. By applying this correction, we remove residual detector-induced asymmetries and decouple, as far as possible, the search for \(CPV\) in the Dalitz plot from the search for \(CPV\) integrated over the phase space, which was described in Sec. V. We measure the \(CP\) asymmetry in the four regions of the Dalitz plot labeled A, B, C, and D in Fig. 4. We report the fitted yields,
average Dalitz plot efficiencies, and CP asymmetries in Table I.

We pursue a second technique in search of CPV, by measuring normalized residuals Δ for the efficiency-corrected and background-subtracted D^+ and D^- Dalitz plots, where Δ is defined by

$$\Delta = \frac{n(D^+) - Rn(D^-)}{\sqrt{\sigma^2(D^+)} + R^2\sigma^2(D^-)},$$

with $n(D^+)$ and $n(D^-)$ the observed number of D^+ and D^- mesons in an interval of the Dalitz plot, where $\sigma(D^+)$ and $\sigma(D^-)$ are the corresponding statistical uncertainties. The results for Δ are shown in Fig. 5. Note that the intervals for Fig. 5 are adjusted so that each interval contains approximately the same number of events. We calculate the quantity $\chi^2/(\nu - 1) = (\sum_{i=1}^{n} \Delta_i^2)/(\nu - 1)$, where ν is the number of intervals in the Dalitz plot. We fit the distribution of normalized residuals to a Gaussian function, whose mean and root-mean-squared (rms) deviation values we find to be consistent with zero and one, respectively. We obtain $\chi^2 = 90.2$ for 100 intervals with a Gaussian residual mean of 0.08 ± 0.15, rms deviation of 1.11 ± 0.15, and a consistency at the 72% level that the Dalitz plots do not exhibit CP asymmetry.

<table>
<thead>
<tr>
<th>Dalitz plot region</th>
<th>$N(D^+)$</th>
<th>$\epsilon(D^+)$ [%]</th>
<th>$N(D^-)$</th>
<th>$\epsilon(D^-)$ [%]</th>
<th>A_{CP} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Below $K^*(892)^0$</td>
<td>1882 ± 70</td>
<td>7.00</td>
<td>1859 ± 90</td>
<td>6.97</td>
<td>−0.7 ± 1.6 ± 1.7</td>
</tr>
<tr>
<td>(B) $\bar{K}^*(892)^0$</td>
<td>36770 ± 251</td>
<td>7.53</td>
<td>36262 ± 257</td>
<td>7.53</td>
<td>−0.3 ± 0.4 ± 0.2</td>
</tr>
<tr>
<td>(C) $\phi(1020)$</td>
<td>48856 ± 289</td>
<td>8.57</td>
<td>48009 ± 289</td>
<td>8.54</td>
<td>−0.3 ± 0.3 ± 0.5</td>
</tr>
<tr>
<td>(D) Above $K^*(892)^0$ and $\phi(1020)$</td>
<td>25616 ± 244</td>
<td>8.01</td>
<td>24560 ± 242</td>
<td>8.00</td>
<td>1.1 ± 0.5 ± 0.3</td>
</tr>
</tbody>
</table>

TABLE I. Yields, efficiencies, and CP asymmetry in the regions of the Dalitz plot shown in Fig. 4. For the CP asymmetry, the first uncertainty is statistical and the second is systematic.
The Legendre polynomial moment distribution for order \(l \) is defined as the efficiency-corrected and background-subtracted invariant two-body mass distribution \(m^2(K^+K^-) \) or \(m^2(K^-\pi^+) \), weighted by the spherical harmonic \(Y_l^0(\cos(\theta_H)) = \sqrt{2l + 1}/4\pi P_l(\cos(\theta_H)) \), where \(P_l \) is the Legendre polynomial. We define the two-body invariant mass interval weight \(W_{ij}^{(l)} \equiv (\sum_i w_{ij}^{(l)S} - \sum_i w_{ij}^{(l)B})/\langle \epsilon_i \rangle \), where \(w_{ij}^{(l)} \) (\(w_{ij}^{(l)} \)) is the value of \(Y_l \) for the \(j \)th (\(k \)th) event in the \(i \)th interval and \(\langle \epsilon_i \rangle \) is the average efficiency for the \(i \)th interval. The superscripts \(S \) and \(B \) refer to the signal and background components, respectively. The uncertainty on \(W_{ij}^{(l)} \) is \(\sigma_{ij}^{(l)} = \sqrt{\sum_i (w_{ij}^{(l)S})^2 + \sum_i (w_{ij}^{(l)B})^2/\langle \epsilon_i \rangle^2} \). To study differences between the \(D^+ \) and \(D^- \) amplitudes, we calculate the quantities \(X_i^l \) for \(l \), ranging from zero to seven in a two-body invariant mass interval, where

\[
X_i^l = \frac{(W_i^{(l)}(D^*) - RW_i^{(l)}(D^-))}{\sqrt{\sigma_i^{(l)}(D^*) + R^2 \sigma_i^{(l)}(D^-)}}. \tag{6}
\]

We calculate the \(\chi^2/\text{ndof} \) over 36 mass intervals in the \(K^+K^- \) and \(K^-\pi^+ \) moments using

\[
\chi^2 = \sum_i \sum_{i_1} \sum_{i_2} X_{i_1}^{l_1} \rho_{i_1i_2}^{l_1l_2} X_{i_2}^{l_2}, \tag{7}
\]

where \(\rho_{i_1i_2}^{l_1l_2} \) is the correlation coefficient between \(X_{i_1}^{l_1} \) and \(X_{i_2}^{l_2} \)

\[
\rho_{i_1i_2}^{l_1l_2} = \frac{\langle X_{i_1}^{l_1} X_{i_2}^{l_2} \rangle - \langle X_{i_1}^{l_1} \rangle \langle X_{i_2}^{l_2} \rangle}{\sqrt{\langle X_{i_1}^{l_1} \rangle^2 - \langle X_{i_1}^{l_1} \rangle^2} \sqrt{\langle X_{i_2}^{l_2} \rangle^2 - \langle X_{i_2}^{l_2} \rangle^2}}. \tag{8}
\]

and where the number of degrees of freedom is given by the product of the number of mass intervals and the number of moments, minus one due to the constraint that the overall rates of \(D^+ \) and \(D^- \) mesons be equal. We find \(\chi^2/\text{ndof} \) to be 1.10 and 1.09 for the \(K^+K^- \) and \(K^-\pi^+ \) moments, respectively (for \(\text{ndof} = 287 \)), which corresponds to a probability of 11\% and 13\%, again respectively, for the null hypothesis (no \(CP \)).

VIII. MODEL-DEPENDENT SEARCH FOR \(CP \) VIOLATION IN THE DALITZ PLOT

The Dalitz plot amplitude \(\mathcal{A} \) can be described by an isobar model, which is parametrized as a coherent sum of amplitudes for a set of two-body intermediate states \(r \). Each amplitude has a complex coefficient, i.e., \(\mathcal{A}_r[m^2(K^+K^-), m^2(K^-\pi^+)] = \sum \mathcal{M}_r e^{i\phi_r} F_r[m^2(K^+K^-), m^2(K^-\pi^+)] \) \cite{2628}, where \(\mathcal{M}_r \) and \(\phi_r \) are real numbers, and the \(F_r \) are dynamical functions describing the intermediate resonances. The complex coefficient may also be parameterized in Cartesian form, \(x_r = \mathcal{M}_r \cos \phi_r \) and \(y_r = \mathcal{M}_r \sin \phi_r \). We choose the \(K^*(892)^0 \) as the reference amplitude in the \(CP \)-symmetric and \(CP \)-violating fits to the data, such that \(\mathcal{M}_{K^*(892)^0} = 1 \) and \(\phi_{K^*(892)^0} = 0 \).

Using events from the sideband regions (defined in Fig. 3) of the \(D^+ \) mass distribution, we model the \(CP \)-conserving background, which is comprised of the \(K^*(892)^0 \) and \(\phi(1020) \) resonance contributions and combinatorial background. The combinatorial background

![Fig. 5](color online). Normalized residuals of the \(D^+ \) and \(D^- \) Dalitz plots in equally populated intervals (top) and their distribution fitted with a Gaussian function (bottom).
outside the resonant regions has a smooth shape and is modeled with the nonparametric \(k \)-nearest-neighbor density estimator [29]. The \(K^*(892)^0 \) and \(\phi(1020) \) regions are composed of the resonant structure and a linear combinatorial background, which we parametrize as a function of the two-body mass and the cosine of the helicity angle. The model consists of a Breit-Wigner (BW) PDF to describe the resonant line shape, and a first-order polynomial in mass to describe the combinatorial shape. These are further multiplied by a sum over low-order Legendre polynomials to model the angular dependence.

Assuming no CPV, we perform an unbinned maximum-likelihood fit to determine the relative fractions for the following resonances contributing to the decay: \(K^*(892)^0 \), \(\bar{K}^*(1430)^0 \), \(\phi(1020) \), \(a_0(1450) \), \(\phi(1680) \), \(\bar{K}^*(1430)^0 \), \(\bar{K}^*(1680)^0 \), \(\bar{K}^*(1410)^0 \), \(f_2(1270) \), \(f_0(1370) \), \(f_0(1500) \), \(f_2'(1525) \), \(\kappa(800) \), \(f_0(980) \), \(f_0(1710) \), and a nonresonant (NR) constant amplitude over the entire Dalitz plot. We minimize the negative log likelihood function

\[
-2 \ln L = -2 \sum_{i=1}^{N} \ln \left[\frac{S(m_i) \cdot B(x_1, x_2)}{S(m_i) + B(m_i)} \right],
\]

where \(N \) is the number of events. The reconstructed \(D^+ \) mass-dependent probability \(p(m) \) is defined as \(p(m) = \frac{S(m)}{S(m) + B(m)} \), where \(S(m) \) and \(B(m) \) are the signal and background PDFs, whose parameters are determined from the mass fit described in Sec. VI; \(x_1 = m^2(K^+ K^-) \) and \(x_2 = m^2(K^+ \pi^+) \) is the Dalitz plot amplitude-squared, \(\epsilon_{MC} \) is the ANN efficiency, and \(B(x_1, x_2) \) is the CP-symmetric background PDF.

The mass and width values of several resonances, including the \(K^*(892)^0 \) and \(\phi(1020) \), are determined in the fit (Table II). The \(f_0(980) \) resonance is modeled with an effective BW parametrization,

\[
A_{f_0(980)} = \frac{1}{m_0^2 - m^2 - im_0 \Gamma_0 \rho_{KK}},
\]

determined in the partial-wave analysis of \(D^+_s \to K^+ K^- \pi^+ \) decays [30], where \(\rho_{KK} = 2p/m \) with \(p \) the momentum of the \(K^+ \) in the \(K^+ K^- \) rest frame, \(m_0 = 0.922 \text{ GeV}/c^2 \), and \(\Gamma_0 = 0.24 \text{ GeV} \). The remaining resonances (defined as \(r \to AB \)) are modeled as relativistic BWs,

\[
\text{RBW}(M_{AB}) = \frac{F_r F_D}{M_r^2 - M_{AB}^2 - i\Gamma_{AB} M_r},
\]

where \(\Gamma_{AB} \) is a function of the mass \(M_{AB} \), the momentum \(p_{AB} \) of either daughter in the \(AB \) rest frame, the spin of the resonance, and the resonance width \(\Gamma_R \). The form factors \(F_r \) and \(F_D \) model the underlying quark structure of the parent particle of the intermediate resonances. Our model for the \(K^- \pi^+ \) \(S \)-wave term consists of the \(\kappa(800) \), the \(K_0^*(1430)^0 \), and a nonresonant amplitude. Different parametrizations for this term [31, 32] do not provide a better description of data. The resulting fit fractions are summarized in Table III. We define a \(\chi^2 \) value as

\[
\chi^2 = \sum_i \frac{(N_i - N_{MC})^2}{N_{MC}},
\]

where \(N_{\text{bin}} \) denotes 2209 intervals of variable size. The \(i \)-th interval contains \(N_i \) events (around 100), and \(N_{MC} \) denotes the integral of the Dalitz-plot model within the interval. We find \(\chi^2/\text{ndof} = 1.21 \) for \(\text{ndof} = 2165 \). The distribution of the data in the Dalitz plot, the projections of the data and the model of the Dalitz plot variables, and the one-dimensional residuals of the data and the model are shown in Fig. 4.

To allow for the possibility of CPV in the decay, resonances with a fit fraction of at least 1% (see Table III) are permitted to have different \(D^+ \) and \(D^- \) magnitudes and phases.

Table II: Resonance mass and width values determined from the isobar model fit to the combined Dalitz-plot distribution.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Mass (MeV/c^2)</th>
<th>Width (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^*(892)^0)</td>
<td>895.53 ± 0.17</td>
<td>44.90 ± 0.30</td>
</tr>
<tr>
<td>(\phi(1020))</td>
<td>1019.48 ± 0.01</td>
<td>4.37 ± 0.02</td>
</tr>
<tr>
<td>(a_0(1450))</td>
<td>1441.59 ± 3.77</td>
<td>268.58 ± 5.28</td>
</tr>
<tr>
<td>(K_0^*(1430)^0)</td>
<td>1431.88 ± 5.89</td>
<td>293.62 ± 3.83</td>
</tr>
<tr>
<td>(K^*(1680)^0)</td>
<td>1716.88 ± 21.03</td>
<td>319.28 ± 109.07</td>
</tr>
<tr>
<td>(f_0(1370))</td>
<td>1221.59 ± 2.46</td>
<td>281.48 ± 6.6</td>
</tr>
<tr>
<td>(\kappa(800))</td>
<td>798.35 ± 1.79</td>
<td>405.25 ± 5.05</td>
</tr>
</tbody>
</table>

Table III: Fit fractions of the resonant and nonresonant amplitudes in the isobar model fit to the data. The uncertainties are statistical.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^*(892)^0)</td>
<td>21.15 ± 0.20</td>
</tr>
<tr>
<td>(\phi(1020))</td>
<td>28.42 ± 0.13</td>
</tr>
<tr>
<td>(K_0^*(1430)^0)</td>
<td>25.32 ± 2.24</td>
</tr>
<tr>
<td>(\kappa(800))</td>
<td>6.38 ± 1.82</td>
</tr>
<tr>
<td>(a_0(1450)^0)</td>
<td>7.08 ± 0.63</td>
</tr>
<tr>
<td>(f_0(980))</td>
<td>3.84 ± 0.69</td>
</tr>
<tr>
<td>(f_0(1370))</td>
<td>2.47 ± 0.30</td>
</tr>
<tr>
<td>(\phi(1680))</td>
<td>1.17 ± 0.21</td>
</tr>
<tr>
<td>(K_0^*(1410))</td>
<td>0.82 ± 0.12</td>
</tr>
<tr>
<td>(f_0(1500))</td>
<td>0.47 ± 0.37</td>
</tr>
<tr>
<td>(a_2(1320))</td>
<td>0.36 ± 0.08</td>
</tr>
<tr>
<td>(f_2(1270))</td>
<td>0.16 ± 0.03</td>
</tr>
<tr>
<td>(f_0(1710))</td>
<td>0.13 ± 0.03</td>
</tr>
<tr>
<td>(f_2'(1525))</td>
<td>0.04 ± 0.03</td>
</tr>
<tr>
<td>(f_0(1710))</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>Sum</td>
<td>97.92 ± 3.09</td>
</tr>
</tbody>
</table>
phase angles in the decay amplitudes (A or \bar{A}). We perform a simultaneous fit to the D^+ and D^- data, where we parametrize each resonance with four parameters: M_r, ϕ_r, r_{CP}, and $\Delta \phi_{CP}$. The CP-violating parameters are $r_{CP} = |M^+_r| - |M^-_r|$ and $\Delta \phi_{CP} = \phi_r - \phi_r$. In the case of S-wave resonances in the $K^+ K^-\pi^0$ system, which make only small contributions to the model, we use instead the Cartesian form of the CP parameters, Δx and Δy, to parametrize the amplitudes and asymmetries. This choice of parametrization removes or eliminates technical problems with the fit. For these resonances, we therefore introduce the parameters $x_r(D^+) = x_r \pm \Delta x_r/2$ and $y_r(D^+) = y_r \pm \Delta y_r/2$. The masses and widths determined in the initial fit (shown in Table II) are fixed, while the remaining parameters are determined in the fit. In Table IV, we report the CP asymmetries, i.e., either the polar-form pair $(r_{CP}, \Delta \phi_{CP})$ or the Cartesian pair (Δx_r, Δy_r). Figure 6 shows the difference between the Dalitz-plot projections of the D^+ and D^- decays, for both the data and the fit, where we weight the D^- events by the quantity R described in Sec. VI. It is evident from the figure that both the charge asymmetry of the data and fit are consistent with zero and with each other.

TABLE IV. CP-violating parameters from the simultaneous Dalitz plot fit. The first uncertainties are statistical and the second are systematic.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>r_{CP} (%)</th>
<th>$\Delta \phi$ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^*(892)^0$</td>
<td>0. (FIXED)</td>
<td>0. (FIXED)</td>
</tr>
<tr>
<td>$\phi(1020)$</td>
<td>$0.35^{+0.82}_{-0.82} \pm 0.60$</td>
<td>$7.43^{+3.50}_{-3.50} \pm 2.35$</td>
</tr>
<tr>
<td>$K^*_0(1430)^0$</td>
<td>$-9.40^{+5.65}_{-5.36} \pm 4.42$</td>
<td>$-6.11^{+3.29}_{-3.24} \pm 1.39$</td>
</tr>
<tr>
<td>$\kappa(800)$</td>
<td>$2.00^{+5.09}_{-4.96} \pm 1.85$</td>
<td>$2.10^{+2.45}_{-2.42} \pm 1.01$</td>
</tr>
<tr>
<td>$a_0(1450)^0$</td>
<td>$5.07^{+5.84}_{-6.85} \pm 9.39$</td>
<td>$4.00^{+3.96}_{-3.94} \pm 3.83$</td>
</tr>
<tr>
<td>$f_0(980)$</td>
<td>$-0.199^{+0.106}_{-0.110} \pm 0.084$</td>
<td>$-0.231^{+0.100}_{-0.105} \pm 0.079$</td>
</tr>
<tr>
<td>$f_0(1370)$</td>
<td>$0.019^{+0.044}_{-0.048} \pm 0.022$</td>
<td>$-0.004^{+0.037}_{-0.036} \pm 0.016$</td>
</tr>
</tbody>
</table>

IX. SYSTEMATIC UNCERTAINTIES

We consider the following sources of systematic uncertainty: the R_L selection, corrections applied to the MC, binning of the data in $\cos(\theta_{CM})$, and the Dalitz plot model.

To evaluate the uncertainty due to the R_L selection, we vary the selection such that the yield varies by at least ± 1 standard deviation and assign a systematic uncertainty defined by the largest variation with respect to the nominal value of the CP asymmetry.

The uncertainty due to corrections of the production model in the simulation (described in Sec. IV) is evaluated by randomly sampling the correction factors from a Gaussian distribution using their central values and uncertainties as the mean and sigma, respectively. The efficiency is then reevaluated and the fit is reperformed, floating the CP parameters while keeping other parameters fixed. This entire procedure is repeated 50 times. We take the rms deviation of the 50 fit values of the CP parameters to obtain the systematic uncertainty estimate. The uncertainty due to the tracking asymmetry correction is evaluated by comparing the measurement with two different corrections, namely the “Tau3” correction and the correction used in our analysis of $D^+ \rightarrow K_S^0 \pi^+$ decays [24]. The average tracking asymmetry in the latter analysis is $(0.23 \pm 0.05)\%$, which is consistent with the result presented in Sec. IV after accounting for the different momentum spectra. We take the difference between the CP asymmetry central values using the two different tracking asymmetry corrections as the systematic uncertainty.

The integrated measurement results from binning the data in $\cos(\theta_{CM})$. To evaluate the effect of the binning in $\cos(\theta_{CM})$ for the integrated CP measurement, we vary the number of intervals and the interval edges and measure the CP asymmetry as the average asymmetry from a single forward interval and a single backward interval. Systematic uncertainties are determined from the difference between the nominal central value and the value determined from the alternative methods. We report these uncertainties for the integrated measurement in Table V.

FIG. 6 (color online). The difference between the D^+ and D^- Dalitz plot projections of data (points) and of the fit (cyan band). The width of the band represents the ± 1 standard deviation statistical uncertainty expected for the size of our data sample.
ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and the National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Énergie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A.P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel).

[11] All references in this paper to an explicit decay mode imply the use of the charge conjugate decay also, unless otherwise specified.