Size dependence of microprobe dynamics during gelation of a discotic colloidal clay

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1122/1.3532979</td>
</tr>
<tr>
<td>Publisher</td>
<td>Society of Rheology</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Mar 30 02:56:21 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/79768</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Size dependence of microprobe dynamics during gelation of a discotic colloidal clay

Jason P. Rich

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Gareth H. McKinley

Hatsopoulos Microfluids Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Patrick S. Doyle

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 25 August 2010; final revision received 7 December 2010; published 20 January 2011)

Synopsis

Soft materials, such as gels and colloidal glasses, often exhibit different rheological properties at bulk and microscopic scales as a result of their complex microstructure. This phenomenon has recently been demonstrated for a gel-forming aqueous dispersion of Laponite® clay [Oppong et al. Phys. Rev. E 78, 021405 (2008)]. For this material, microrheology reveals a significantly weaker gel and a longer gelation time than bulk measurements. By performing multiple particle tracking microrheology experiments with different probe sizes, we show that length-scale–dependent rheology is a general feature of Laponite® gels. Small changes in probe size are accompanied by order of magnitude differences in the observed rheological properties and gelation time. The probe dynamics also exhibit size-dependent spatial heterogeneities that help to elucidate a microstructural length scale in the system. Through analytical theory and Brownian dynamics simulations, we find that the correlations described by previous authors between successive displacements of individual probes are more directly a result of material elasticity than of microstructural confinement. The apparent gelation times of dispersions with different Laponite® concentrations exhibit a self-similar dependence on probe size, suggesting a superposition of Laponite® concentration and probe size. From these observations, we propose an accordant description of the microstructural evolution of the gel. © 2011 The Society of Rheology. [DOI: 10.1122/1.3532979]

I. INTRODUCTION

Colloidal gels are an important class of soft materials that are found throughout nature and used in many industrial applications. They typically consist of a suspension of col-
loidal particles that undergo dynamical arrest through the formation of an intercon-
ected fractal-like network [Russel et al. (1989)]. This process, called gelation, can occur
via equilibrium or non-equilibrium routes [Zaccarelli (2007)] and results in a soft vis-
coelastic solid called a gel state [Larson (1999)]. Though suspended particles are often
spherical and uncharged, anisotropic charged particles like discotic colloidal clays are
common in nature and are used as rheological modifiers in many applications, such as
paints, drilling fluids, consumer products, and cosmetics [Grim (1968)]. Dispersions of
discotic colloidal clays are attractive for applications because of their ability to form
various types of arrested states with rich rheological behavior even at low clay concen-
trations (around 1 wt %) [Luckham and Rossi (1999)].

In this article, we investigate the gelation and rheological aging of aqueous dispersions
of the synthetic clay Laponite RD® (Rockwood Additives, Gonzales, TX) by tracking the
thermally driven motion of embedded microscopic probe particles [Gardel et al. (2005);
Waigh (2005); Mason and Weitz (1995); Mason (2000)]. Individual Laponite® crystals
consist of colloidal disklike particles about 30 nm in diameter and 1 nm in thickness, with
a reduced molecular formula of Na+0.7(Si8Mg5.5Li0.3O20)(OH)4−0.7 [van Olphen (1977)].
The disk geometry and size have been verified by small-angle x-ray scattering (SAXS)
measurements [Mourchid et al. (1995a); Kroon et al. (1998)]. Due to the molecular
structure of the Laponite® clay, platelets in aqueous dispersions exhibit a negative charge
on each face and for pH less than about 11, appear to be positively charged along the rim
[van Olphen (1977)]. Previous reports have indicated the necessity of the resulting face-
to-rim attractions for inducing aggregation and gelation [Martin et al. (2002); Mongondry
et al. (2004)]. Attractive and repulsive surface charge interactions can be tuned by ad-
justing the ionic strength I in the solution, which affects the extent of the electrical double
layer [Russel et al. (1989)]. Therefore, ionic strength strongly influences the nature and
kinetics of structural arrest as well as the dispersion mechanical properties [Mourchid et
al. (1995a); Mourchid et al. (1995b); Tawari et al. (2001)].

When Laponite® is dispersed in water, the system evolves over time from a liquidlike
state to a nonergodic disordered arrested state. During this process, known generally as
aging, the mechanical properties of the material change over time as the microstructure
develops. Aging in Laponite® dispersions has been studied by a number of authors using
dynamic light scattering (DLS), in which the transition from a liquid to an arrested state
is typically monitored by analyzing the growth over time of a non-ergodicity parameter
[van Megen et al. (1991)]. Though the physical mechanism of the aging process and the
nature of the nonergodic states that develop have been the subject of much debate, the
current status of DLS studies of aging in Laponite® dispersions is well-summarized by
Jabbari-Farouji et al. (2008b). Here the authors also present a state diagram obtained
from DLS measurements that attempts to unify the long age time observations of previ-
ous studies. Different nonergodic states are identified that correspond to regions in the
(ionic strength)−(Laponite® concentration) state diagram: gel, repulsive “Wigner” glass,
and a so-called “attractive glass” or “cluster glass” [Shalkevich et al. (2007)]. Generally,
high values of I result in the screening of repulsive charge interactions between platelets,
leading to the dominance of attractive interactions and the emergence of a gel or attrac-
tive glass state for Laponite® concentrations greater than or equal to about 0.5 wt % [see
also Ruzicka et al. (2006)]. For I > 10 mM, repulsive interactions are screened to the
extent that bulk phase separation via flocculation occurs [Mourchid et al. (1995a); Ruzu-
cka et al. (2006)]. At low I, long-range repulsive interactions dominate, leading to a
repulsive colloidal glass, even for Laponite® concentrations as low as about 1 wt %. In
this work, we use a relatively high ionic strength (I=5.9 mM) and examine dispersions
of low Laponite® concentration (~1 wt %). For this set of parameters, we expect that
attractive interactions will dominate, resulting in either a gel or an attractive glass state. Since an attractive glass shares many structural and mechanical features with a gel, including spatial heterogeneity [Jabbari-Farouji et al. (2008b)], we shall employ the terminology of gelation in our analysis. While we acknowledge that some of our samples might possibly be more accurately characterized as “attractive glasses” in the arrested state, the DLS observations of Jabbari-Farouji et al. (2008b) imply that such a distinction would have negligible effect on our results and analysis, and that the two states would be essentially indistinguishable from a microrheological perspective.

By combining small-angle x-ray and neutron scattering with static light scattering, Pignon et al. (1997) studied the physical structure of Laponite® dispersions in the gel state, obtaining the scattering curve over five orders of magnitude in length scale. Their results indicate that there are two scales of fractal organization. On length scales ranging from about a few clay platelets to about 1 μm, aggregates form that exhibit spatial variations in Laponite® density (“micro-domains” separated by “voids”). These aggregates are themselves loosely connected in a fractal network, with clusters of aggregates exhibiting sizes up to about 5 μm. Beyond this length scale, the dispersion appears homogeneous. Their observations also indicate that the characteristic sizes of aggregates and clusters, as well as their densities and fractal dimensions, are dependent on the Laponite® concentration and the ionic strength [Pignon et al. (1996)].

Motivated by applications of Laponite® and other colloidal clays as rheological modifiers, the aging process in Laponite® dispersions has also been studied using rheology experiments. This work has also been driven by the fact that Laponite® dispersions serve as model soft thixotropic materials. As the system ages and develops structure, the viscosity of the dispersion increases by orders of magnitude and a yield stress emerges, also increasing over time. Early work on Laponite® rheology was performed by Ramsay (1986) who observed that at long age times, both the storage modulus G' and the yield stress of the dispersion increase strongly with Laponite® concentration. At a given age time and Laponite® concentration, Mourchid et al. (1995b) observed that the linear viscoelastic moduli increase with ionic strength up to the point at which bulk phase separation occurs via flocculation. They also found that the bulk storage modulus G' is nearly independent of frequency at long age times, a result confirmed by Ewoldt et al. (2007), who explored the use of an aqueous Laponite® dispersion as a simulant for a mucin gel in robotic mechanical crawlers. In this article, the steady shear viscosity was reported to decrease sharply when the applied stress exceeds the yield stress. Cocard et al. (2000) studied the age time and frequency dependence of the linear viscoelastic moduli at low Laponite® concentration and moderate ionic strength, observing growth in both G' and G'' over time and an approximate power-law frequency dependence. These results are consistent with the formation of a self-similar network structure (i.e., a gel), and the gelation time t_{gel} is defined as the time at which the power-law exponents for the frequency dependence of G' and G'' are equal [Chambon and Winter (1987)]. Bonn et al. (2002a) attempted to fit the rheological behavior of Laponite® dispersions in the repulsive glass state to the “soft glassy rheology” (SGR) model [Sollich et al. (1997); Sollich et al. (1997); Fielding et al. (2000)]. Their findings indicate good agreement in the linear viscoelastic regime. The model also correctly predicts qualitative features of shear-thinning and shear rejuvenation, which refers to the reduction in relaxation time that occurs when shearing motion breaks apart the dispersion microstructure [Bonn et al. (2002b)]. The competition between aging and shear rejuvenation at a constant shear rate, a feature of the SGR model, was demonstrated in glass-forming Laponite® dispersions by Abou et al. (2003). Some deviations from the SGR model were observed at large strains, however, due to shear banding and a viscosity bifurcation, in which the viscosity grows
indefinitely at low applied shear stress but remains orders of magnitude lower when a critical shear stress is exceeded [Bonn et al. (2002a)]. The SGR model has recently been extended to capture these effects [Fielding et al. (2009)].

In the present paper, the method of multiple particle tracking (MPT) is used to study the rheological properties of aqueous Laponite® dispersions at the microscopic scale. As with most microrheology techniques, MPT relates the motion of embedded microscopic probe particles to the rheology of the surrounding fluid [MacKintosh and Schmidt (1999)]. In the case of MPT, probe motion is driven solely by Brownian bombardment, with many probes (~100) being simultaneously visualized via video fluorescence microscopy [Gardel et al. (2005)]. Due to the small Brownian stress acting on the probe particles (usually 0.01–1 Pa), and the limited spatial resolution of optical microscopes, MPT is best suited for fluids with moduli \(G' \leq 1 \) Pa [Waigh (2005)]. Software has been developed by Crocker and Grier (1996) for extracting trajectories from movies of diffusing probe particles, allowing the calculation of the ensemble average mean-squared displacement as a function of lag time. This quantity can be related to the linear viscoelastic moduli \(G'(\omega) \) and \(G''(\omega) \) by a generalized Stokes–Einstein relation [Mason and Weitz (1995); Mason (2000); Squires and Mason (2010)]. If the probes are much larger than any characteristic microstructural length scale in the fluid, then microrheological results will match those on the bulk scale. If, however, there are microstructural length scales on the order of the probe size (as is the case in Laponite® dispersions for probes smaller than about 5 \(\mu m \) [Pignon et al. (1997)]), then the results will reflect the mechanical properties of the material on that length scale and will generally not match bulk measurements [Liu et al. (2006)]. Because individual probe trajectories are available, analysis is not limited to ensemble averages. In particular, significant insight can be gained into the local microenvironments of individual probe particles [Valentine et al. (2001)], although Levine and Lubensky (2001) showed using a two-fluid model that local dynamics cannot be completely decoupled from fluid properties farther from probes. A number of industrially and biologically relevant gel-forming materials have been studied recently with MPT including Carbopol gels [Oppong et al. (2006)], gellan gum [Caggioni et al. (2007)], oligopeptide dispersions [Savin and Doyle (2007a); Larsen and Furst (2008)], and hectorite clay dispersions [Houghton et al. (2008)].

Despite considerable interest in the bulk rheology and phase behavior of Laponite® dispersions, there have been relatively few studies of the rheology on the microscopic scale. Jabbari-Farouji et al. (2007) used an optical tweezer setup to validate the fluctuation-dissipation theorem in an aging Laponite® dispersion by comparing results from passive and active microrheology experiments. In a subsequent publication, the thermal fluctuations of embedded probe particles in an optical trap were monitored in both gel-forming and glass-forming dispersions [Jabbari-Farouji et al. (2008a)]. From a microrheological perspective, the aging behavior of the two types of dispersions was found to be similar, although an examination of particles at various positions revealed differences in the spatial distribution of probe dynamics. Dispersions in the glass state exhibited spatially homogeneous microrheology that matched bulk rheology measurements, while significant heterogeneity and discrepancies with bulk results were observed in the gel state. Using MPT, Oppong et al. (2008) performed a more detailed comparison of the rheology at bulk and microscopic scales during the gelation process, confirming the discrepancies and the spatial heterogeneities reported by Jabbari-Farouji et al. (2008a). Additionally, these authors found that as the system ages, probes exhibit correlations between successive displacements, which were reported to result from microstructural confinement.

The results of Oppong et al. (2008) imply that the local rheology and gelation prop-
erties of the dispersion, and therefore the nature of the probe dynamics, may generally depend on the length scale that is probed: that is, the rheology may be probe-size–dependent. DLS observations by Strachan et al. (2006) of probe-size–dependent diffusive behavior in the repulsive glass state support this notion. Measurements of the average diffusivity of various sized particles by Petit et al. (2009) using fluorescence recovery after photobleaching (FRAP) are also consistent with this hypothesis. FRAP results were interpreted in terms of a scale-dependent effective viscosity that increases with probe size.

In this paper, we use MPT to study the gelation of aqueous Laponite® dispersions at the microscopic scale, expanding on the comparisons of bulk and micro-scale rheology made by Oppong et al. (2008) to explore the probe-size dependence of the microrheology. Based on our observations at different length scales, we propose a description of the microstructural evolution with age time and check the consistency of this scenario with measurements of the heterogeneity of probe dynamics for various probe sizes. Further, by examining correlations between successive probe displacements, we find evidence of a microstructural length scale in the system, although we challenge the interpretation of correlations as necessarily a result of microstructural confinement. Motivated by the probe-size dependence of our microrheological observations, in Sec. III E, we propose a common scaling for the gelation time that collapses data at different Laponite® concentrations and probe sizes.

II. EXPERIMENT

A. Sample preparation

Laponite RD® powder was obtained from Rockwood Additives. To prepare the clay dispersion, dry Laponite® powder is added to an aqueous buffer of pH ≈ 10 consisting of 1.8 mM NaOH and 4.1 mM NaHCO₃. The purpose of the buffer is to avoid the dissolution of Laponite® platelets, which has been observed at lower pH [Thompson and Butterworth (1992)] and to fix the solvent ionic strength at $I = 5.9$ mM. The dispersion is kept under N₂ gas in order to prevent the uptake of CO₂, which would lower the solution pH and contribute to the dissociation of platelets [Mourchid et al. (1995a); Mourchid and Levitz (1998); Martin et al. (2002)]. After mixing vigorously for at least 1.5 h, the clay dispersion is passed through a 0.8 µm filter, breaking apart most of the remaining aggregates with a strong shear [Bonn et al. (1999)]. This filtration marks the point of zero age time t_w, in accordance with previous work on Laponite® dispersions [Abou et al. (2001)], and structuring of the clay begins thereafter as the system ages. Petit et al. (2009) demonstrated that about 7% of the initial Laponite® concentration is lost when dispersions of about 3 wt % Laponite® are passed through 0.45 µm filters. However, since the present study uses filters with larger pores (0.8 µm) and dispersions of lower concentration (presumably reducing the size of aggregates), it is assumed that filtration does not change the nominal concentration of Laponite®.

B. Multiple particle tracking

Immediately following filtering, fluorescent microparticles [Fluoresbrite® Yellow Green (YG) Carboxylate Microspheres from Polysciences, Inc.] are added to a concentration of about $\phi \sim 0.01$ vol % or about 100 particles per microscope view frame depending on the particle size. The fluorescent particle concentration is chosen to achieve a large number of individual particle trajectories with approximately non-interacting particles. After vortex mixing for about 15 s, the fluorescent particles are randomly dispersed.
in the sample. The additional rejuvenation of the sample due to vortex mixing is minimal since it is conducted immediately after filtering.

It is important to consider the electrostatic and van der Waals interactions between probes and Laponite® particles, which could affect microrheological measurements [Valentine et al. (2004)]. Flurosbrate® YG Carboxylate Microspheres were shown to be negatively charged in aqueous solutions close to the pH used in the present work, with a zeta potential of about −40 mV [Wegmann et al. (2008)]. Additionally, Laponite® particles exhibit surface charges of about −700 e per particle in aqueous solution, where e is the elementary charge [Martin et al. (2002)]. In order to determine the significance of probe–clay colloidal interactions, solution microcalorimetry measurements were performed using an Isothermal Titration Calorimeter (Nano ITC from TA Instruments) [O’Brien et al. (2000)]. When titrating a probe dispersion of 0.004 vol % (probe radius \(a=0.161 \, \mu m\)) into 0.04 vol % Laponite®, the probe-clay interaction energy was found to be about 35 mJ/g of Laponite®: less than the Laponite® dilution enthalpy into buffer at the same concentration (200 mJ/g of Laponite®) and below the reliable resolution of the instrument. This result implies that such interactions can be safely neglected.

After incorporating the probe particles, the dispersion is sealed in a sample chamber consisting of two cover slips separated by 250 \(\mu m\) thick spacers and mounted on a microscope (Carl Zeiss Optical, Axiovert 40 CFL). Experiments are performed at room temperature, \(T=23 \pm 0.5 \, ^\circ C\). A 63× water-immersion objective (N.A. = 1.2) is used for all particle sizes except the largest particles, with radius \(a=1.040 \, \mu m\), for which a 20× objective (N.A. = 0.5) is used. An HBO 100 Mercury lamp (Carl Zeiss Optical), with an HBO 103 bulb (Osram) and an XF130-2 filter set (Omega Optical), is used to excite the particles and isolate their fluorescent emission. Movies of particle dynamics are captured with a charge coupled device (CCD) camera (Hitachi KP-M1A) having a variable shutter speed between 1/60 s and 1/10 000 s set to frame integration mode. SCION IMAGE software is used to record movies at a rate of 30 frames/s over the span of 1 min. Each video frame consists of two interlaced fields (the odd or even rows of the CCD matrix) that are exposed 1/60 s apart, requiring each frame to be de-interlaced during the movie analysis. The interlacing also results in a loss of resolution in the spatial direction perpendicular to the interlacing [Crocker and Grier (1996)]; thus, particle displacements in this study are only analyzed in the horizontal direction (the \(x\)-direction). Movies of probe particle diffusion are analyzed to obtain particle trajectories using publically available software developed by Crocker and Grier (1996).^1^ Typical probe particle trajectories in 1 wt % Laponite® at various dispersion age times are shown in Fig. 1(a), from which the decreased mobility of the particles with age is immediately apparent. The most fundamental quantitative result extracted from probe trajectories is the mean-squared displacement \(\langle \Delta x^2(\tau) \rangle = \langle x(t+\tau) - x(t) \rangle \) as a function of the lag time \(\tau\). If the MSD data are smoothly varying, it can generally be fitted to a local power law [Mason (2000)],

\[
\langle \Delta x^2(\tau) \rangle = 2D \tau^{\alpha(\tau)}
\]

Here \(D\) is the probe diffusivity and \(\alpha(\tau)\) is the diffusive exponent, equivalent to the logarithmic slope of the mean-squared displacement:

1^http://www.physics.emory.edu/~weeks/idl/, “Particle Tracking Using IDL,” site maintained by Eric Weeks.
α(τ)=1 for diffusion in a Newtonian fluid, whereas probes in non-Newtonian fluids generally exhibit sub-diffusion with 0<α(τ)<1. Unbiased statistical results for the ensemble average of MSD and the ensemble variance of MSD as a function of lag time τ are calculated using the estimators described by Savin and Doyle (2007b) for multiple particle tracking in heterogeneous systems. Software to implement these calculations in the IDL language is publically available.2 Measured MSD data are corrected for static error by subtracting the apparent MSD of probe particles immobilized in a 3 wt % agarose gel [Savin and Doyle (2005b)]. Typical results for the MSD as a function of τ and dispersion age time t_w are shown in Fig. 1(b). As expected for a system that gels over time, the data exhibit a logarithmic slope α(τ) close to 1 at early age times, with the slope decreasing as the material ages. After gelation, the MSD exhibits a plateau at long lag times.

Measurements of ⟨Δx^2(τ)⟩ can be used to obtain the linear viscoelastic moduli via a generalized Stokes–Einstein relation [Mason and Weitz (1995); Squires and Mason (2010)]. This relation assumes that the probe particle inertia is negligible and that the probes experience a homogeneous continuum local environment. For smoothly varying MSD data capable of being fitted to the form in Eq. (1), the generalized Stokes–Einstein relation simplifies to the expression [Mason (2000)],

$$G^*(\omega = 1/\tau) = \left\{ \frac{1}{a(\Delta x^2(\tau))} \right\} \frac{k_B T \exp[i \pi \alpha(\tau)/2]}{3 \pi \Gamma[1 + \alpha(\tau)]}$$

Here $G^*(\omega)=G'(\omega)+iG''(\omega)$ is the complex modulus, a is the probe radius, k_B is the Boltzmann constant, and T is the temperature. Γ represents the Γ-function. The angular frequency ω is the inverse of the lag time τ that is probed.

FIG. 1. (a) Typical trajectories of fluorescent probe particles with radius $a=0.463$ μm in 1 wt % Laponite® at various age times. Though particles exhibit diffusive motion at early age times, trajectories become increasingly localized as the dispersion ages. At late age times, probe particles fluctuate around a fixed central position. (b) The most fundamental quantitative result of multiple particle tracking is the mean-squared displacement ⟨Δx^2(τ)⟩ as a function of lag time τ, shown here for various age times of a 1 wt % Laponite® dispersion and a probe radius of $a=0.463$ μm. At early age times, the probe motion is approximately diffusive and the logarithmic slope is close to 1. As the dispersion ages, the logarithmic slope decreases, and a plateau that is characteristic of a gel is eventually apparent at long lag times.

C. Bulk rheology

Bulk rheology measurements are made using an ARG-2 stress-controlled rheometer from TA Instruments. In order to obtain reliable data in the pre-gel state at early age times when the viscosity of the Laponite® dispersion is quite low, an aluminum double-gap concentric cylinder Couette geometry is used, maximizing solid-liquid contact. The inner stator of the geometry has a radius of 20.00 mm, and the inner and outer rotor radii are 20.38 and 21.96 mm, respectively. The fluid sits in two gaps on either side of the rotor, both having a thickness of 0.38 mm, with an immersed cylindrical height of 59.5 mm. The Couette cell is equipped with water circulation tubes for temperature control and is maintained at the same temperature as microrheology experiments at $T=23 \pm 0.1 ^\circ C$. The Laponite® dispersion is prepared in the same way as in the microrheology experiments and is introduced into the Couette cell immediately after filtering, which we again mark as the time of zero age. Subsequently, the sample is pre-sheared at a shear rate of $\dot{\gamma}=250$ s$^{-1}$ for 30 s prior to measurement, helping to ensure a reproducible initial condition. Though the pre-shear may keep aggregates from forming and partially rejuvenate the fluid [Bonn et al. (2002a)], we find this additional rejuvenating effect to be negligible when the pre-shear is performed immediately after filtration. Oscillatory time sweep tests are used to measure the linear viscoelastic moduli, G' and G'', as a function of age time at a constant angular frequency of $\omega=1$ rad/s. In order to obtain reliable measurements at early age times, an oscillatory stress of amplitude $\sigma_0=0.02$ Pa is initially applied, with this first step terminating once the strain amplitude γ_0 decreases to $\gamma_0=0.02$. Though strains in this step may initially appear to be in the nonlinear regime, the material is still essentially a viscous liquid, so that results are approximately strain independent. Once the strain amplitude decreases to $\gamma_0=0.02$, a second step applies a continuous oscillatory strain with a constant amplitude of $\gamma_0=0.02$. We have checked that the rheometer feedback mechanism is sufficient to maintain the applied strain within 0.02 \pm 0.001.

III. RESULTS AND DISCUSSION

A. Probe-size effects on rheology

It was previously noted that the diffusive exponent $\alpha(\tau)$ in Eq. (1) describes the nature of the probe diffusion in the fluid (i.e., Newtonian diffusion or sub-diffusion). For a continuum fluid with homogeneous rheological properties across the length scales being probed, $\alpha(\tau)$ is purely a fluid property and thus should be independent of probe size. Therefore, we see from Eq. (3) that if the material exhibits the same properties at all length scales probed, the factor $a(\Delta x^2(\tau))$ will be independent of probe size. In Fig. 2, $a(\Delta x^2(\tau))$ is plotted as a function of lag time τ for four different probe sizes in an aging 1 wt% Laponite® dispersion. Though there is reasonably good agreement between different probe sizes at early age times, significant deviations are observed as the material ages. This is seen more clearly in Fig. 3, where the factor $a(\Delta x^2)$ is plotted as a function of the age time t_w for the four probe sizes at a single value of the lag time, $\tau=0.3$ s. The data show that at 30 min age, for example, values of $a(\Delta x^2)$ differ by more than an order of magnitude between the smallest and largest probes. These results indicate that there are strong probe-size effects and that the Laponite® dispersion is not a continuum fluid with homogeneous properties across the length scales probed.

Because of this scale-dependent behavior, it is necessary to proceed with care when extracting rheological properties from MPT measurements of $\langle \Delta x^2(\tau) \rangle$. We therefore consider rheological properties found from MPT as “effective” or “apparent” properties. The effective linear viscoelasticity at the microscopic scale can be calculated from the
data in Fig. 2 by applying the generalized Stokes–Einstein relation in Eq. 3. When the diffusive exponent $\alpha(\tau)$ satisfies $0.5 < \alpha(\tau) < 1$, the material is dominated by viscous losses, whereas when $0 < \alpha(\tau) < 0.5$, the material is elastically dominated. Figure 4 shows the frequency dependence of the storage and loss moduli calculated from Eq. 3 at four age times for a representative probe size of $a=0.463 \, \mu m$. The loss modulus

FIG. 2. Scaled MSD versus lag time for various probe sizes in an aging 1 wt % Laponite dispersion. Probe radii are (a) $a=0.463 \, \mu m$, (b) $a=0.258 \, \mu m$, (c) $a=0.161 \, \mu m$, and (d) $a=0.11 \, \mu m$. For a homogeneous material with no length-scale dependence, data for all probe sizes should superimpose at a given dispersion age, in contrast to the results above. This non-superposition of data for various probe sizes implies that the dispersion structure and rheology are length-scale–dependent, and that the dispersion is heterogeneous in nature.

FIG. 3. Scaled MSD versus age time for various probe sizes in a 1 wt % Laponite dispersion at a constant lag time of $\tau=0.3 \, s$. Probe-size effects are clearly observed, as the non-superposition of data for different probe sizes indicates a variation in structure and rheology at different length scales. The deviations generally grow with age, signifying that the length-scale dependence of the rheology becomes more pronounced as the microstructure of the dispersion evolves.
$G''(\omega)$ is dominant at early age times, indicating an initially viscous “sol.” Both moduli increase with age time as the material develops structure and forms a gel, with the storage modulus $G'(\omega)$ eventually surpassing $G''(\omega)$. At late age times, $G'(\omega)$ is dominant and only weakly frequency-dependent, while $G''(\omega)$ exhibits a minimum value.

These results are consistent with a system undergoing gelation and are in qualitative agreement with previous observations on both bulk and microscopic scales [Cocard et al. (2000); Jabbari-Farouji et al. (2008a); Oppong et al. (2008)]. We note in Fig. 4(b) that at the time when $G'(\omega) = G''(\omega)$, both moduli exhibit approximately the same power-law frequency dependence. This is a hallmark of the critical gel point [Chambon and Winter (1987)], and indicates that the gelation time t_{gel} can be approximated as the time when the storage and loss moduli are equal. This is seen also in Fig. 5, where the loss tangent $\tan(\delta) = G''/G'$ is plotted as a function of angular frequency ω for various dispersion age times. According to the gelation theory of Chambon and Winter (1987), $\tan(\delta)$ is independent of frequency at the critical gel point. Interpolating between the data in Fig. 5, $\tan(\delta)$ is approximately independent of frequency at an age time of about 17 min; at this time $\tan(\delta) = G''/G' = 1$ for all frequencies. This again indicates that the gel point for this system is determined by the time when $G' \approx G''$. Similar behavior was seen for all probe sizes and Laponite® concentrations, and so we subsequently take the gelation time t_{gel} as the age time when $G' \approx G''$.

Applying Eq. (3) to MSD data for different probe sizes allows the direct comparison

![FIG. 4. Effective viscoelastic moduli calculated from microrheology versus angular frequency for 1 wt % Laponite® and a representative probe size of $a=0.463$ μm at age times of (a) 5 min, (b) 15 min, (c) 25 min, and (d) 45 min. Filled symbols= G'; open symbols= G''. Though the dispersion is originally viscous-dominated, a crossover to elastic-dominated behavior occurs between 15 and 25 min of age. Near this crossover time at 15 min, the moduli have approximately the same frequency dependence, indicative of gelation [Chambon and Winter (1987)].](image-url)
of apparent rheological properties in this heterogeneous clay dispersion at different length scales. Figure 6 shows the evolution of the storage and loss moduli with age time for a 1 wt % Laponite® dispersion at a representative frequency of $\omega = 1 \text{ rad/s}$ (i.e., lag time $\tau = 1 \text{ s}$). Results for two different probe sizes are shown, as well as the bulk response. In agreement with Oppong et al. (2008), we observe significant deviation in the linear viscoelastic measurements between bulk and microscopic scales, with the bulk moduli exhibiting values that are at least an order of magnitude larger than those measured by MPT. The dispersion also reaches the gel point significantly earlier at the bulk scale. As the probe size is decreased from $a = 0.463 \mu m$ to $a = 0.11 \mu m$, these trends continue. At a given age time, smaller probes result in lower measured viscoelastic moduli, sometimes by more than an order of magnitude. This indicates that the material is effectively a weaker gel at the smaller length scale. Additionally, t_{gel} is observed to be about 120 min.

FIG. 5. Loss tangent calculated from microrheology versus angular frequency for 1 wt % Laponite® and a representative probe size of $a = 0.463 \mu m$. $\tan(\delta)$ is approximately independent of frequency when $\tan(\delta) = G''/G' = 1$, indicating that gelation occurs when $G' \approx G''$ [Chambon and Winter (1987)].

FIG. 6. Viscoelastic moduli as a function of age time for 1 wt % Laponite® at a representative frequency of $\omega = 1 \text{ rad/s}$. Bulk rheology data as well as micro rheology data for two different probe sizes are shown. G' = filled symbols; G''=open symbols. Though the trends are similar, at a given age time, probing at smaller length scales using micro rheology results in lower apparent moduli (i.e., a weaker gel). The observed gelation time is also delayed when determined using a local versus a bulk measurement.
with the smaller probes, significantly delayed compared to the measurement of $t_{gel} = 17$ min with the larger probes. Specifically, at $t_{gel}(a=0.463 \, \mu m)=17$ min, the smaller probes are still quite mobile, diffusing as if in a relatively low viscosity fluid with weak elasticity. The probe-size dependence of the apparent t_{gel} is shown in Fig. 7 for a 1 wt % Laponite® dispersion. Almost an order of magnitude increase in t_{gel} is observed as the probe diameter decreases by about an order of magnitude.

B. Microstructural description

We can conclude from these results that the Laponite® dispersion is not a continuum gel with homogeneous viscoelastic properties across the length scales probed; rather, in qualitative agreement with the long age time observations of Pignon et al. (1997), there must be microstructural features in the gel on length scales comparable to the probe particle sizes ($\sim 0.1–1 \, \mu m$). This microstructure could result in different local environments, with different rheological properties, at different length scales. Since probe particle motions are directly related to structure and microrheological properties on the length scale of their size [Gardel et al. (2005)], this microstructure could provide an explanation for the observed phenomena. Because individual Laponite® particles are much smaller than the probes, the microstructure must result from larger aggregates of Laponite® particles, as proposed by Pignon et al. (1997). These aggregations can create gelled regions of relatively high Laponite® concentration, and regions where the Laponite® has been depleted, resulting in a type of porous network structure.

Based on our observations and those of previous authors, we propose the following scenario for the evolution of the microstructure with age time t_w. At early age times $t_w \ll t_{gel}$, the dispersion is homogeneous at the microscopic scale, with Laponite crystals (or small clusters of crystals) randomly distributed throughout the medium and diffusing freely. However, as the crystals diffuse, they encounter one another and occasionally aggregate due to van der Waals forces and electrostatic attraction. These aggregates grow more extended over time and eventually some span the container; this percolation characterizes the bulk gelation time. At this point, however, most of the dispersion still appears relatively homogeneous and viscous on the microscopic scale, and probe particles still diffuse through the sol with only slight hindrance [Oppong et al. (2008)]. As

FIG. 7. Apparent gelation time versus probe diameter for a 1 wt % Laponite® dispersion. The bulk gelation time is denoted by the dashed line. From the bulk value to that observed for the smallest probe size, the gelation time changes by over an order of magnitude.
the microstructure continues to develop, interconnected elastic clusters take up more and more of the dispersion volume, eventually trapping most of the larger probe particles in a viscoelastic gel network. Smaller probe particles, however, are not as restricted, and though some may have been trapped in gelled regions, most are still able to diffuse in non-gelled, or more weakly gelled pores in the aggregate structure. After a longer period of time, the smaller probes also become trapped by the shrinking pores in the gel network, leading eventually to the observation of a gelation time even at the length scale of the smallest probes.

If the proposed microstructural description is accurate, there are a number of indicators we would expect to observe. First, we would expect to see evidence of a spatially heterogeneous medium. That is, for intermediate t_w, probe particle trajectories should reflect the fact that some probes are trapped in more strongly gelled regions while others diffuse more freely in pores and weakly gelled regions. At a given t_w, we expect the microstructure will appear more or less heterogeneous at different length scales, so that the heterogeneity of the probe dynamics will also depend on the probe size. Second, we would expect probe trajectories to reflect the confinement due to the microstructure of the surrounding gel. Specifically, for particles diffusing in pores or other confined regions, we expect successive probe displacements over a sufficiently long lag time to be negatively correlated—having moved along a confined path over one time step, the probe will have a higher probability of rebounding in the opposite direction over the subsequent time step than a probe particle that is not confined, for which displacements would be uncorrelated [Doliwa and Heuer (1998); Weeks and Weitz (2002); Oppong et al. (2006); Oppong and de Bruyn (2007); Oppong et al. (2008)]. Lastly, analysis of these correlations and the spatial heterogeneity for different probe sizes should reveal a characteristic length scale (characteristic pore size, cluster size, etc.) for the microstructure at a given age time t_w.

C. Heterogeneity

Savin and Doyle (2007b) described a method for obtaining unbiased quantitative measures of spatial heterogeneity in a multiple particle tracking experiment. Briefly, the result of the finite depth of tracking in MPT (i.e., the fact that particles diffuse in and out of focus in the z-direction) is that simple ensemble averaging of individual trajectory MSD’s in a system with spatially heterogeneous rheology produces a statistical bias toward more mobile particles—these particles leave and enter the trackable depth more often, registering many short, mobile trajectories. If each trajectory is weighted by a factor proportional to its duration in time, however, unbiased estimators for the ensemble average of MSD and the ensemble variance of MSD can be calculated. From these estimators, a quantitative dimensionless measure of the spatial heterogeneity can be defined, which we shall call the heterogeneity ratio, HR:

$$HR = \frac{M_2(\tau)}{M_1(\tau)^2}$$

Here $M_1(\tau)$ is the estimator for the ensemble average of MSD, and $M_2(\tau)$ is the estimator for the ensemble variance of MSD, both functions of the lag time τ. As a point of reference, in a theoretical situation of MPT in an equally-weighted bimodal fluid where half the microscope view frame is water ($\eta_1=0.9$ mPa s), and half is a Newtonian fluid with viscosity $\eta_2=10\eta_1$, the result is a heterogeneity ratio of $HR \approx 0.6$. Additionally,

3 Additional info available at http://web.mit.edu/savin/Public/Tutorial/.
exploratory calculations show that the maximum value of HR for an equally weighted bimodal Newtonian fluid is 3.

In Fig. 8(a), the heterogeneity ratio HR is plotted as a function of t_w for a 1 wt % Laponite® dispersion and four probe sizes at a lag time of $\tau=0.33$ s. The Laponite® dispersion does exhibit significant heterogeneity and HR generally increases with t_w, consistent with our hypothesis for the microstructural evolution. Further, there is a non-monotonic dependence of HR on the probe size. This is highlighted in Fig. 8(b) where HR is plotted as a function of probe radius. For $t_w \geq 30$ min, HR is peaked at the intermediate probe size of $a=0.161 \ \mu$m. To understand why this occurs, we examine the particle trajectories in further detail to elucidate the nature of the heterogeneous probe dynamics.

Representative probe particle trajectories are shown in Fig. 9 for a 1 wt % Laponite® dispersion at $t_w=90$ min. Twenty discrete trajectories are shown for probes with radii (a)
a = 0.258 μm and (b) a = 0.161 μm, which exhibit heterogeneity ratios of HR = 0.99 and HR = 1.72, respectively. All of the larger probe particles seem to be immobilized to varying degrees, diffusing around fixed locations. In contrast, some of the 0.161 μm radius particles are immobilized, while others exhibit tortuous paths, as if exploring pores in the dispersion microstructure or “hopping” between adjacent distinct regions. As an approximation, it is possible to group these two types of trajectories into two populations, mobile and immobile, corresponding to spatial regions of two different average rheological properties. This is demonstrated in Fig. 10(a), where for each trajectory we plot the product of the range \[\text{max}(r_x) - \text{min}(r_x) \] and the standard deviation \(\sigma_x \) of the x-coordinate position of the particle. The ordinate is therefore a simple measure of the mobility of a particle in a trajectory. Identifying an approximate cutoff, we designate the mobile particles as those falling above the dotted line, and the immobile particles as those falling below the dotted line. In Fig. 10(b), the probability distribution of displacements \(P(\Delta x) \) over a lag time \(\tau = 0.33 \) s is plotted for the mobile and immobile populations, as well as for the full data set with all trajectories. Displacements are taken over a lag time of \(\tau = 0.33 \) s. The immobile population is in good agreement with the full data set for small displacements, while the mobile population characterizes the region of large displacements. This demonstrates that the majority of small displacements come from immobile particles, while mobile particles contribute most of the large displacements.

In Fig. 11, van Hove correlation data are shown for three different probe sizes in a 1 wt % Laponite® dispersion at an age time of \(t_w = 90 \) min. Probe particle displacements are again taken over a lag time of \(\tau = 0.33 \) s. If the material was homogeneous, the van Hove correlation function would exhibit a characteristic single Gaussian shape; deviations from single Gaussian behavior indicate heterogeneous probe dynamics. We note also that the heterogeneity ratio HR is similar to the non-Gaussian parameter \(N \) reported by previous authors [Oppong et al. (2008); Weeks et al. (2000); Kegel and van Blaaderen (2000)] except that statistical biases introduced by the finite depth of tracking in MPT are corrected. As expected based on the values of HR shown in Fig. 8 and the heterogeneous dynamics seen in Fig. 9, deviations from single Gaussian behavior are observed, with
probes of radius $a = 0.161\ \mu m$ exhibiting the most significant deviations. Motivated by the results from Fig. 10, each of the van Hove correlation functions are fitted with two Gaussian distributions \cite{Kegel2000, Kegel2000b}: one capturing the small displacements contributed mostly by immobile particles and one capturing the large displacements contributed mostly by mobile particles. The cutoff $|\Delta x|$ between these two regions identifies a characteristic length scale in the system. Probe particle displacements begin to deviate from single Gaussian behavior very close to $|\Delta x| = 0.161\ \mu m$, which is equal to the intermediate probe size exhibiting a peak in heterogeneity in Fig. 8(b). The experimental data for all probe sizes begin to deviate from single Gaussian behavior very close to this value of $|\Delta x|$, suggesting that it may correspond to a characteristic microstructural length scale.

D. Correlations between successive probe displacements

The study of correlations between successive particle displacements has been adopted from examinations of cage effects in colloidal glasses \cite{Doliwa1998, Weeks2002} and applied to multiple particle tracking experiments, in which correlations yield insight into the confinement of probe particles by the surrounding fluid microstructure \cite{Oppong2006, Oppong2007, Oppong2008}. Let \mathbf{r}_{01} and \mathbf{r}_{12} represent successive two-dimensional displacement vectors of a probe particle over a lag time τ. That is, between time t_0 and $t_1 = t_0 + \tau$, the probe’s
displacement in the plane of focus is given by \(r_{01} \), and between time \(t_1 \) and \(t_2 = t_1 + \tau \), the probe’s subsequent displacement is given by \(r_{12} \). If the probes are executing a random walk, as in a viscous Newtonian fluid, then \(r_{01} \) and \(r_{12} \) will be uncorrelated. Successive displacements will be correlated, however, if probes are confined by the fluid microstructure. The correlation between successive displacements \(\langle x_{12} \rangle \) is defined as

\[
\langle x_{12} \rangle = \left\langle \frac{r_{01} \cdot r_{12}}{r_{01}} \right\rangle
\]

Here \(r_{01} \) is the magnitude of the initial displacement, \(r_{01} = ||r_{01}|| \), and angular brackets represent ensemble averages. To gain a better physical understanding of \(\langle x_{12} \rangle \), consider a probe particle confined in a pore and assume its displacement over an initial lag time \(\tau \) is \(r_{01} = r(t_0 + \tau) - r(t_0) \). Therefore, \(r_{01} \) represents an accessible path for the confined probe, and in the subsequent time step \(\tau \) there is an increased probability that the probe will retrace its steps through that known accessible path. In that case, \(r_{12} \) would be in the opposite direction of \(r_{01} \), so that \(r_{01} \) and \(r_{12} \) are negatively correlated. We therefore expect \(\langle x_{12} \rangle \) to be negative when microstructural confinement affects probe motion.

\(\langle x_{12} \rangle \) is plotted as a function of \(r_{01} \) in Fig. 12(a) at four age times for 1 wt % Laponite and a representative probe size of \(a=0.258 \ \mu m \). Correlations between successive displacements of duration \(\tau = 0.5 \ s \) are shown. While values of \(\langle x_{12} \rangle \) are scattered around 0 at \(t_w = 10 \ min \), the correlations grow in magnitude as the system ages. The degree of correlation also grows with the size of the initial displacement \(r_{01} \), and we observe a linear relationship of the form \(\langle x_{12} \rangle = -br_{01} \). The coefficient \(b \), which grows with \(t_w \) as the microstructure develops, is reported to represent the ability of the fluid microstructure to restrict the motion of the probe particles [Oppong et al. (2008)].

\(b \) is plotted as a function of \(t_w \) for four probe sizes in Fig. 12(b). Though \(b \) is probe-size–dependent at a given \(t_w \), data for different probe sizes exhibit self-similar age time dependence, suggesting a common scaling. At late age times, \(b \) seems to plateau at \(b = 0.5 \) for all probe sizes. The fact that correlations become increasingly significant as the dispersion ages implies that microstructural confinement effects on probe motion are

FIG. 12. (a) The degree of correlation between successive probe particle displacements at four age times in 1 wt % Laponite. Data are shown for a representative probe size of \(a=0.258 \ \mu m \) and a lag time of \(\tau = 0.5 \ s \). Dashed lines show linear fits of the form \(\langle x_{12} \rangle = -br_{01} \) to the first 10 points of data. The negative slope of the dashed lines gives the parameter \(b \), which increases with the dispersion age time. The displacement magnitude \(r_{01} \) at which correlations deviate from linear behavior indicates a microstructural length scale in the system. (b) Evolution of the \(b \) parameter with age time for four probe sizes in 1 wt % Laponite, over a lag time of \(\tau = 0.5 \ s \). The \(b \) parameter grows with age and exhibits probe-size dependence, though self-similar behavior is seen between all probe sizes. The data reach a plateau value of \(b \) slightly less than 0.5.
important, which is consistent with our hypothesis for the microstructural evolution in Sec. III B.

In Fig. 12(a), the degree of correlation is seen to deviate from linear behavior past a critical value of \(r_{01} \) for \(t_w > 10 \) min. This value of \(r_{01} \) represents a microstructural length scale in the system. Though these results are in contrast to the results of Oppong et al. (2008), these authors use only a larger probe size \((a=0.50 \, \mu m) \), so that initial displacements \(r_{01} \) large enough to observe the deviation from linearity are inaccessible. Upon measuring this critical displacement \(r_{01,crit} \) for various probe sizes and age times, we find \(r_{01,crit} \approx 0.33 \, \mu m \), approximately twice the length scale observed in Sec. III C from heterogeneity measurements. We propose that these two independent measurements actually reflect the same microstructural length scale, and that the difference by a factor of 2 is a result of the different methods of probing it.

Having examined the evolution of the \(b \) parameter and its probe-size dependence in an aging Laponite® dispersion, we now consider in more detail the physical meaning of \(r_{01} \). Such a displacement \(r_{01} \) large enough to observe the deviation from linearity is therefore given by

\[
\lambda_{V}r_{01,crit} = -\frac{1}{2}[1 - \exp(-\tau/\lambda_{V})]r_{01}
\]

where \(\lambda_{V} = \eta/G \) and the dashpot has a Newtonian viscosity \(\eta \). The relaxation time of the material is therefore given by \(\lambda_{V} = \eta/G \). The equation of motion for a Brownian probe particle diffusing in such a material is [Savin and Doyle (2005a)]

\[
\lambda_{V} \frac{\partial^{2} r}{\partial t^{2}} + \lambda_{V} \frac{\partial r}{\partial t} + r = \frac{f(t)}{6 \pi a G}
\]

(6)

where \(\lambda_{V} = m/6 \pi a G \lambda_{V} \) is an inertial time scale (with \(m \) being the mass of the probe particle) and \(f(t) \) is the stochastic Brownian force [Volkov and Leonov (1996)]. By taking the Fourier transform of both sides of Eq. (6), we obtain an expression for the power spectral density of the position \(S_{r}^{\omega}(\omega) = \langle |r^{2}(\omega)| \rangle \) [Savin and Doyle (2005a)],

\[
S_{r}^{\omega}(\omega) = \frac{\lambda_{V} k_{B} T \pi a G}{(1 + \lambda_{V}^{2} \omega^{2})(1 + \lambda_{V}^{2} \omega^{2})}
\]

(7)

where the roots \(\lambda_{\pm} \) are given by

\[
\lambda_{\pm} = \frac{\lambda_{V}}{2} \left(1 \pm \sqrt{1 - 4 \lambda_{V}/\lambda_{V}} \right)
\]

(8)

In writing Eq. (7), we have applied the fluctuation-dissipation theorem \(S_{r}^{\omega}(\omega) = \langle |r^{2}(\omega)| \rangle = 36 \pi a G \lambda_{V} k_{B} T \). Using the method detailed in Appendix A, we can obtain the relationship between \(\langle x_{12} \rangle \) and \(r_{01} \),

\[
\langle x_{12} \rangle = -\frac{1}{2}[1 - \exp(-\tau/\lambda_{V})]r_{01}
\]

(9)

where \(\tau/\lambda_{V} \) is the ratio between the lag time and the material relaxation time. Comparing this expression to \(\langle x_{12} \rangle = -br_{01} \), we find a simple expression for \(b \) for probe particles embedded in a Kelvin–Voigt material,

\[
b = \frac{1}{2}[1 - \exp(-\tau/\lambda_{V})]
\]

(10)

This expression is plotted in Fig. 13. In order to validate the approximations that were made to derive Eq. (10) (see Appendix A), we perform a Brownian dynamics (BD) simulation of a probe particle undergoing Brownian motion in a Kelvin–Voigt material.
The details of the simulation are given in Appendix B. Figure 13 shows that the simulation and the theoretical results match quantitatively. The fact that \(b/H \) for the Kelvin–Voigt material demonstrates that if there is elasticity present, even a continuum material with no microstructural features can exhibit correlations between successive probe displacements. Furthermore, if the relaxation time \(\tau/V \) is spatially homogeneous, i.e., independent of \(r_0 \), \(b \) is a constant at a given lag time \(\tau/V \), so that there is a linear relationship between \(\langle x_{12} \rangle \) and \(r_0 \) for all \(r_0 \). This indicates that the departure from linearity observed in Laponite © results from microstructural heterogeneities.

The connection between \(b \) and elasticity implies that the common scaling between the data for different probe sizes in Fig. 12 may be related to the development of elasticity in the material. That is, if \(b \) is plotted as a function of some measure of the local elasticity, the data for different probe sizes may collapse. With this motivation, we plot \(b \) as a function of the apparent storage modulus \(G'(\omega) \) in Fig. 14, where \(\omega \) is evaluated at the inverse of the correlation lag time \(\omega=1/\tau \). The data for all probe sizes collapse onto a single curve. This suggests that \(b \) is more directly related to apparent elasticity than to microstructural confinement in Laponite © dispersions, though the observed elasticity is undoubtedly a result of the structural development in the material. The observation that \(\langle x_{12} \rangle \) deviates from a linear variation with \(r_0 \) beyond a critical displacement remains a strong indicator of a microstructural length scale.

E. Concentration effects

All of the experimental results presented thus far have been for a 1 wt % Laponite © dispersion. The observed probe size effects could be interpreted as indicating that at a given age time \(t_w \), the dispersion “appears” more concentrated in Laponite © as the probe size increases. That is, at a given age time, smaller probes experience local environments that are on average like a relatively dilute dispersion, whereas larger probes experience local environments that are more characteristic of the bulk concentration. Recognizing this, we investigate the connection between probe size effects and Laponite © concentration. Specifically, we examine whether a superposition can be found between concentration and probe size.
Figure 15(a) shows the observed gelation time t_{gel} as a function of probe diameter for three different Laponite® concentrations. The gelation time t_{gel} exhibits a similar trend with probe size for all three dispersions, though the value of t_{gel} is highly sensitive to Laponite® concentration, decreasing rapidly as the concentration is increased by just 0.5 wt %.

We seek a relationship describing the scaling of t_{gel} with the probe radius a and the Laponite® concentration c, expressed in wt %. From Fig. 15(a), it appears that t_{gel} follows approximately a power-law scaling with probe size a for each concentration. Kroon et al. (1996) used dynamic light scattering to investigate the sol-gel transition of aqueous Laponite® dispersions with various concentrations. For dispersions with 2.2 wt % $\leq c \leq 3.4$ wt % and no added salt, they found that the gelation time scales exponentially with...
where A, β, and κ are constants determined by fitting this expression to the experimental data in Fig. 15(a). Using a nonlinear least-squares regression, we find the best-fit values to be $A=3613.7$, $\beta=-1.0$, and $\kappa=5.9$, for t_{gel} expressed in minutes and a expressed in micrometers. The fitted value of κ is indicative of the strong inverse relationship between gelation time and Laponite® concentration. That is, t_{gel} decreases rapidly even for slight increases in c. The discrepancy in the value of κ as compared to the result of Kroon et al. (1996) is likely due to the different experimental conditions and sample preparation procedure. In particular, in the present study we control the ionic strength I through the use of added salt, since it is known that the gelation dynamics are sensitive to I [Mourchid et al. (1995a); Mourchid et al. (1995b); Tawari et al. (2001)]. The nearly integer value of β suggests that there may be a relatively simple mechanism underlying the observed scaling, though we reserve a detailed mechanistic description for future communication. The ability of Eq. (11) to describe the experimental results is demonstrated in Fig. 15(b), where the gelation time data in Fig. 15(a) have been scaled by the exponential factor $A \exp(-5.9c)$. Data for the three different Laponite® concentrations collapse reasonably well onto a single curve with a scaling $\sim a^{-1.0}$, validating Eq. (11) and the values of the constants given above. The collapse also suggests a superposition between probe size and Laponite® concentration, with the product at_{gel} remaining essentially constant for a given Laponite® concentration over the range of probe sizes studied here.

IV. CONCLUSIONS

Many commercially and biologically relevant fluids exhibit different rheological properties at different length scales as a result of complex microstructure. In this communication, we have used multiple particle tracking microrheologies to explore how rheological properties vary with probe size in an aqueous dispersion of Laponite®, a discotic colloidal clay that forms an aging colloidal gel under appropriate conditions. We have shown that the microrheological properties are dependent on the probe particle size, implying that the dispersion is heterogeneous across different length scales. Probing at smaller length scales results in the observation of lower viscoelastic moduli and a delay in gelation time. We have also proposed a microstructural explanation for these phenomena: as the material ages, a porous network structure develops that traps larger probe particles, while smaller probes generally have more time to diffuse relatively unhindered through pores and more weakly gelled regions. In support of this hypothesis, we observed that the probe dynamics develop significant spatial heterogeneity as the system ages. Analysis of these heterogeneities for different probe sizes indicates a microstructural length scale in the system that is similar to the length scales measured previously by light scattering [Mourchid et al. (1995a); Pignon et al. (1997)]. In light of these results, it would be interesting to further investigate the microstructural heterogeneities and their associated length scales with two-point microrheology [Crocker et al. (2000)]. With this method, the viscoelastic moduli could be explored as a function of probe separation, although we reserve this study for future work. In addition to heterogeneities, we find that as the system ages the probe particles exhibit correlations between successive displacements, which has been reported to be evidence of microstructural confinement. However, by analyzing trajectories of a Brownian particle in a continuum Kelvin–Voigt material,
we find that correlations between successive probe displacements are more directly re-
tioned to the apparent local elasticity. We propose that a better measure of the microstruc-
tural confinement is the length scale at which deviations from a simple linear scaling are
observed in these successive correlations. An interesting problem for future work would
be to determine the corresponding correlations for probes diffusing in a Newtonian fluid
confined by solid walls, which provides a simple model of a porous microstructure.
Finally, motivated by the observed probe-size dependence of rheological properties and
the proposed microstructural description, we identify a concentration–probe-size super-
position, obtaining approximate scalings for the observed gelation time as a function of
probe size and Laponite® concentration.

The results presented in this article will aid in the understanding of the structure and
rheology of aqueous Laponite® dispersions. Furthermore, the methods used here may also
find broader general application to other structured complex fluids and gels. The methods
are particularly suitable for analyzing materials that serve different functions at different
length scales, and that as a result must have different rheological properties across length
scales. Possible examples include the cell cytoskeleton, which provides structural stabil-
ity on the length scale of the entire cell, but must also allow macromolecules and vesicles
to diffuse within the pores. Finally, the results of this article show that multiple particle
tracking can provide insight into the structure of evolving materials, even when the
system is inhomogeneous at the probe length scale.

ACKNOWLEDGMENTS

Acknowledgment is made to the Donors of the American Chemical Society Petroleum
Research Fund (ACS-PRF Grant No. 49956-ND9) for support of this research. J.P.R.
acknowledges financial support from a National Defense Science and Engineering Graduate
Fellowship (NDSEG) from the American Society of Engineering Education. The
authors thank Matthew Helgeson for help with solution microcalorimetry experiments,
and Thierry Savin and Daniel Trahan for useful discussions.

APPENDIX A: CORRELATIONS IN A KELVIN–VOIGT MATERIAL

To derive expressions for the correlations between successive displacements \(\langle x_{12} \rangle \) and
the \(b \) parameter for probe particles undergoing Brownian motion in a Kelvin–Voigt ma-
terial, we begin with the autocorrelation function of the probe position \(r(t) \) over a lag
time \(\tau \):

\[
C_r(\tau) = \langle r(t + \tau) \cdot r(t) \rangle - \langle r(t) \rangle^2
\]

Here brackets represent time averages. For successive probe displacements \(r_{01} \) and \(r_{12} \),
each over a lag time \(\tau \), it can be shown that

\[
\langle r_{01} \cdot r_{12} \rangle = 2C_r(\tau) - C_r(2\tau) - C_r(0)
\]

\[
\langle r_{01} \cdot r_{01} \rangle = 2C_r(0) - 2C_r(\tau)
\]

Here we have used the fact that \(\langle r(t) \rangle = 0 \) in a Kelvin–Voigt material (i.e., the material is
a viscoelastic solid). In order to proceed, we make the following approximations. First,
we approximate \(\langle \|r_{01}\| \rangle = \langle \sqrt{r_{01} \cdot r_{01}} \rangle \approx \sqrt{\langle r_{01} \cdot r_{01} \rangle} \) where we have taken the square root
outside of the average. Second, noting the form of \(\langle x_{12} \rangle \) versus \(r_{01} \) in Eq. (5), we make the
so-called “Peterlin approximation” that the average of a quotient is approximately equal
to the quotient of the averages:
The expression for b, where the roots λ_+, λ_- form of the power spectral density of the probe position constant V_0, the autocorrelation function of the probe position decays with a characteristic time τ. This expression shows a linear variation between r_{12} and r_{01}, which matches Eq. (9).

This expression can be simplified by recognizing that $C_r(\tau)$ is the inverse Fourier transform of the power spectral density of the probe position $S_r(\omega)$, given in Eq. (7) for Brownian probes embedded in a Kelvin–Voigt material:

$$C_r(\tau) = \frac{(\lambda_+ + \lambda_-)k_BT}{4\pi aG} \left[e^{-\pi\lambda_+} + e^{-\pi\lambda_-} \right]$$

where the roots λ_+, λ_- are given in Eq. (8). In realistic situations, the inertial time scale for the probe is many orders of magnitude less than the relaxation time of the material, so that $\lambda_+ / \lambda_+ \ll 1$. In this limit, $\lambda_+ \approx \lambda_+ \approx 0$. Applying the inertia-less limit to Eq. (A7), we obtain

$$C_r(\tau) = \frac{k_BT}{2\pi aG} \exp(-\pi\lambda_v)$$

The autocorrelation function of the probe position decays with a characteristic time constant λ_v. Finally, substituting this equation into Eq. (A6) yields a simple expression for b that matches Eq. (10):

$$b = \frac{1}{2} [1 - \exp(-\pi\lambda_v)]$$

$\langle x_{12} \rangle$ is then given by

$$\langle x_{12} \rangle = -\frac{1}{2} [1 - \exp(-\pi\lambda_v)] r_{01}$$

which matches Eq. (9). In the limit $\pi/\lambda_v \ll 1$, $b \to 0$, and there are no correlations between successive probe particle displacements. The lag time is not long enough for probe motions to be affected by the elasticity of the material. In the limit $\pi/\lambda_v \gg 1$, $b \to 0.5$, and the successive displacements of probe particles are significantly correlated. In this case, probe motions are highly influenced by the elasticity of the material over the time scale of the lag time τ.

Since a number of approximations were made to obtain these expressions, a BD simulation was conducted in order to check the theoretical results. The details of the simulation are given below in Appendix B.

APPENDIX B: BROWNIAN DYNAMICS SIMULATIONS IN A KELVIN–VOIGT MATERIAL

The equation of motion for a Brownian probe particle in a Kelvin–Voigt material is given in Eq. (6). We wish to solve this stochastic differential equation using BD. Physical
insight and computational efficiency can be gained by first using appropriate length and
time scales to make the equation of motion dimensionless. We invoke the equipartition
theorem for a tethered Brownian spring to obtain the scaling relationship,

$$GL^2 \sim \frac{k_B T}{a}$$ \hspace{1cm} (B1)

where L is the characteristic length scale at which Brownian and elastic forces on the
probe particle balance. Rearranging this expression and substituting $G = \eta/\lambda_Y$ and $D = k_B T/6 \pi \eta a$ give the length scale L to be

$$L = \sqrt{\frac{D}{\lambda_Y}}$$ \hspace{1cm} (B2)

If we now take the characteristic time scale $t^*=t/\lambda_Y$ to be the characteristic time for the probe to diffuse the distance L, we see from Eq. (B2) that $t^*=\lambda_Y$. Applying this scaling, we obtain a dimensionless equation of motion:

$$\frac{\lambda_I}{\lambda_Y} \ddot{\hat{r}}(i) + \dot{\hat{r}}(i) + \hat{f}(i) = \frac{f(t)}{6 \pi a G} \sqrt{\frac{1}{\lambda_Y D}}$$ \hspace{1cm} (B3)

where $\hat{r}(i) = r(t)/L$ and over-dots represent derivatives with respect to the dimensionless
time variable $\hat{t} = t/\lambda_Y$. The right-hand side of Eq. (B3) is a dimensionless Brownian force
$\hat{f}(i)$:

$$\hat{f}(i) = \frac{f(t)}{6 \pi a G} \sqrt{\frac{1}{\lambda_Y D}} = \frac{f(t)}{k_B T/L}$$ \hspace{1cm} (B4)

This stochastic force is expressed at each dimensionless time step $\hat{t} = \hat{t}_n$ in terms of a random number $[r_n]$ taken from a uniform distribution with $[r_n] \in [-1/2, 1/2]$.

$$\hat{f}(\hat{t}_n) = \sqrt{\frac{24}{\Delta \hat{t}}} [r_n]$$ \hspace{1cm} (B5)

Here $\Delta \hat{t} = \Delta t/\lambda_Y$ is the dimensionless time increment. Substituting this expression into the right-hand side of Eq. (B3), we obtain a dimensionless equation of motion that can be solved numerically in Euler integration steps:

$$\frac{\lambda_I}{\lambda_Y} \ddot{\hat{r}} + \dot{\hat{r}} + \hat{\mathbf{f}} = \sqrt{\frac{24}{\Delta \hat{t}}} [r_n]$$ \hspace{1cm} (B6)

If we now take the inertialess limit $\lambda_I/\lambda_Y \ll 1$, then the resulting equation of motion is

$$\dot{\hat{r}} + \hat{\mathbf{f}} = \sqrt{\frac{24}{\Delta \hat{t}}} [r_n]$$ \hspace{1cm} (B7)

There are no free parameters in this equation, indicating that the simulation needs only to be performed once in dimensionless coordinates in order to obtain a probe particle trajectory that can subsequently be analyzed for specific correlations. Therefore, correlations between successive displacements should only depend on the dimensionless lag time τ/λ_Y. We run the simulation with a time step of $\Delta \hat{t} = 0.001$ and a total of 5.0×10^8 time steps, exploring values of τ/λ_Y from 10^{-2} to 10^3.
References

