Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3'UTRs

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Conserved microRNA targeting in *Drosophila* is as widespread in coding regions as in 3′UTRs

Michael Schnall-Levin*ab*, Yong Zhao†, Norbert Perrimon*bc*, and Bonnie Berger*ab,†

*Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; †Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; and *Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115

Edited* by Phillip A. Sharp, Massachusetts Institute of Technology, Cambridge, MA, and approved July 13, 2010 (received for review May 4, 2010)

MicroRNAs (miRNAs) are a class of short noncoding RNAs that regulate protein-coding genes posttranscriptionally. In animals, most known miRNA targeting occurs within the 3′ UTR of miRNAs, but the extent of biologically relevant targeting in the ORF or 5′ UTR of miRNAs remains unknown. Here, we develop an algorithm (MinoTar—miRNA ORF Targets) to identify conserved regulatory motifs within protein-coding regions and use it to estimate the number of preferentially conserved miRNA-target sites in ORFs. We show that, in *Drosophila*, preferentially conserved miRNA targeting in ORFs is as widespread as it is in 3′ UTRs and that, while far less abundant, conserved targets in *Drosophila* 5′ UTRs number in the hundreds. Using our algorithm, we predicted a set of high-confidence ORF targets and selected seven miRNA-target pairs from among these for experimental validation. We observed downregulation by the miRNA in five out of seven cases, indicating our approach can recover functional sites with high confidence. Additionally, we observed additive targeting by multiple sites within a single ORF. Altogether, our results demonstrate that the scale of biologically important miRNA targeting in ORFs is extensive and that computational tools such as ours can aid in the identification of such targets. Further evidence suggests that our results extend to mammals, but that the extent of ORF and 5′ UTR targeting relative to 3′ UTR targeting may be greater in *Drosophila*.

Author contributions: M.S.-L., N.P., and B.B. designed research; M.S.-L. and Y.Z. performed research; M.S.-L. and Y.Z. analyzed data; and M.S.-L., Y.Z., N.P., and B.B. wrote the paper.

This article contains supporting information online at www.pnas.org/lookup/suppl/ doi:10.1073/pnas.1006172107/-/DCSupplemental.

Results

miRNA Seed Sites in Coding Regions Are Highly Conserved. To assess the evidence for selection on putative miRNA binding sites within coding regions, we developed an algorithm (MinoTar) to score sequences within coding DNA for evidence of preferential
conservation. Searching for preferentially conserved regulatory sequences within coding regions presents a unique challenge: Coding DNA is already highly conserved due to selective pressures at the protein level, and such selection may in general be far stronger than any additional selection at the nucleotide level. Furthermore, selection at the protein level causes highly biased conservation patterns, influenced both by the form of the genetic code and by codon bias.

In order to handle this challenge, our approach automatically accounts for and removes bias introduced by conservation at the protein level to find sequences under strong selection at the nucleotide level (for details, see Methods). In brief, our algorithm begins with a multiple species alignment of coding genes from which we remove all overlapping noncoding features that could confound analysis (including overlapping 3′UTRs and 5′UTRs from any transcript). Using this alignment, our algorithm first computes the empirical conservation rates of all codons and partial codons, conditioned on the conservation of the amino acid encoded. The algorithm then uses these empirical rates to build a background model for the nucleotide conservation of any k-mer within coding DNA. By using such conditional conservation rates, the background model automatically takes into account the amino acid context of the k-mer and the observed amino acid conservation, as well as the effects of codon bias. In order to also account for and remove gene-region specific variations in conservation rates, the algorithm first bins regions of coding DNA by conservation level and learns a different background model for each bin. Using this background model, the algorithm then produces a p value for every instance of a k-mer in the alignment, giving the probability under the background model that this k-mer would be conserved in as many species as observed. The algorithm also calculates the minimum possible p value, giving the probability that the k-mer would be conserved in as many species as is possible given the amino acid sequence. This second score gives a measure of the limit of information that can be inferred from conservation at that location and allows for the exclusion of sites where nothing can be inferred: for example, when there is no freedom of codon choice and nucleotide conservation is completely accounted for by amino acid conservation.

We began by running our algorithm on every instance of all 8-mers within Drosophila protein-coding genes and found that miRNA seeds accounted for the majority of the most highly conserved 8-mers. To evaluate this, we formed a conservation score for each 8-mer, given by the fraction of instances with p value below 0.05. Most 8-mers had scores close to 0.05 expected by chance, but a small group showed significantly more conservation (Fig. 1A). By grouping the top 26 most conserved 8-mers into 10 motifs, we observed that 8 of these 10 motifs correspond to miRNA seeds and 2 to other unknown motifs (Table S1).

We next verified that the increased conservation observed for miRNA seeds could not be explained by other sequence characteristics of these seeds. To do this, we formed five sets of 8-mers: seeds for “conserved” miRNAs (those miRNAs largely present across all 12 Drosophila species), and four control sets, (i) reverse complements of these seeds, (ii) 8-mers with identical dinucleotide content as these seeds, (iii) seeds for “nonconserved” miRNAs (those not found beyond the melanogaster subgroup), and (iv) seeds for human miRNAs. We plotted the cumulative distribution of conservation scores for these five sets, as well as the set of all 8-mers (Fig. 1B). Although seeds for conserved miRNAs showed a very significant bias to be highly conserved, the four control sets all behaved similarly to the set of all 8-mers, providing further evidence that the increased conservation seen was indeed evidence of selection on miRNA-target sites.

We next found that our algorithm could produce very high-confidence target predictions. To test this, we investigated the effect of an increasingly stringent cutoff on the confidence of predicted sites at that cutoff. We pooled seeds for all conserved miRNAs together and calculated the fraction of instances of these seeds with p values below each cutoff, repeating the same for the four control sets of 8-mers defined above. For each cutoff, we then calculated the signal-to-background ratio by dividing by the background fraction of instances reaching each cutoff (Fig. 1C). At the most stringent cutoffs, a signal-to-background ratio of over 10 (confidence > 90%) could be achieved, producing a set of hundreds of very high-confidence targets. The four control sets showed signal-to-background ratios near 1 at all cutoffs.

Finally, we evaluated the evidence for increased functionality of miRNA seed sites, when such sites are accompanied by additional 3′ pairing to the miRNA. Following ref. 13, we grouped seed sites according to the extent of additional 3′ pairing at different positions within the miRNA and calculated the fraction of such sites with p value below a cutoff of 0.05. Signal to background was computed by comparing this fraction to the
expected fraction of seed sites reaching such a cutoff (see Methods). We found that although the majority of conserved seed sites are not accompanied by extensive additional 3’ pairing, those sites with such pairing showed some evidence of increased conservation (Fig. 1D). In particular, as has been observed in 3’ UTRs (13), those seed sites with contiguous 4-mer or 5-mer base pairing beginning at positions 12–14 of the miRNA showed a statistically significant increase in conservation (number of conserved seed sites: 2,094 total; 4-mers: 178 vs. 145 expected, $p < 0.002$; 5-mers: 51 vs. 38 expected, $p < 0.01$; χ^2 test).

The Extent of miRNA Targeting in ORFs, 3’ UTRs, and 5’ UTRs. We next compared the extent of evidence for miRNA targeting in ORFs, 3’ UTRs, and 5’ UTRs. For 3’ UTRs and 5’ UTRs, we performed an analysis similar to that done previously in 3’ UTRs (25): Conservation of a miRNA seed site was judged by the number of species within the alignment the site was conserved to, and background conservation rates were estimated by nucleotide-matched background sets (see Methods).

We characterized the level of conservation by the fraction of potentially conserved sites that showed conservation above background level (Fig. 2A). The fraction of ORF sites preferentially conserved was about 60% that in 3’ UTRs, whereas the fraction of sites in 5’ UTRs was about 60% that in ORFs. Though miRNA seed sites are denser in AT-rich 3’ UTRs than in ORFs, because of the significantly larger size of ORFs and smaller size of 5’ UTRs (roughly 2×10^5 total bases in ORFs, 7×10^4 total bases in 3’ UTRs, and 2.5×10^4 total bases in 5’ UTRs), the number of preferentially conserved sites in ORFs and 3’ UTRs was very similar ($\sim 7,000$ sites within 3’ UTRs vs. $\sim 6,500$ in ORFs), whereas the number in 5’ UTRs was significantly smaller (~ 700 sites) (Fig. 2B).

The extent of conservation of miRNA seed sites in ORFs varied considerably between different miRNAs. Those with the most conserved sites tended to be well known and highly expressed miRNAs, whereas those with few conserved sites tended to be more recently discovered and expressed at lower levels. This suggested that the levels of conservation correlate with the number of targets each miRNA has acquired, with more widely and highly expressed miRNAs tending to have acquired more targets. To provide support for this, we compared the level of conservation of individual miRNA seeds within ORFs, 3’ UTRs, and 5’ UTRs. If conservation levels reflect the number of acquired targets, then we surmised that the miRNAs with the most conserved targets in each region should largely agree. We looked at 8-mer seeds and chose a cutoff for ORFs and 3’ UTRs that gave predictions at 60% confidence ($p = 0.05$ for ORFs, conservation to 8 out of 12 species for 3’ UTRs). For 5’ UTRs, we used the same cutoff as for 3’ UTRs, as 60% confidence was not possible to achieve. For each seed, we compared the fraction of instances with conservation above background in the different regions (Fig. 3A and B). The level of conservation in both ORFs and 5’ UTRs was highly correlated to those in 3’ UTRs: Mean conservation above background in ORFs and 5’ UTRs was significantly higher for the top 50% most conserved miRNA seeds in the 3’ UTR than for the bottom 50% (ORFs: 0.14 vs. 0.02, $p < 10^{-2}$; 5’ UTRs: 0.10 vs. 0.01, $p < 3 \times 10^{-4}$; Mann–Whitney U test). To ensure that we were not observing biases in conservation independent of selection due to miRNA targeting or conservation due to overlap with unannotated 3’ UTRs, we repeated the same procedure with promoter sequences (500 nucleotides upstream of the transcription start site) (Fig. 3C). Within promoters, miRNA seed sites overall showed no preferential conservation and the top 50% most highly conserved sites in the 3’ UTR showed no tendency to be more conserved than the bottom 50% ($0.01 vs. 0.014$, $p = 0.32$; Mann–Whitney U test).

To further analyze the set of predicted ORF targets, we formed a set of genes for each miRNA that had either a 7-mer or 8-mer conserved to the 60% confidence level. We compared these target lists to the set of predicted 3’ UTR targets from the TargetScan Web site (25). Although most (>97%) of our predicted ORF target genes were not predicted by TargetScan to be targeted in their 3’ UTR by the same miRNA, genes with a predicted ORF target for one miRNA were significantly more likely to contain a predicted site in their 3’ UTR for that miRNA than for any other miRNA (1.7-fold more likely, $p < 2 \times 10^{-10}$, χ^2 test), providing evidence for some degree of simultaneous targeting by sites in both the 3’ UTR and ORF. For each of the predicted ORF target sets, we searched for significantly enriched Gene Ontology (GO) terms using Amigo Term Enrichment software (26). We found that 37 out of 94 miRNAs had target sets with significantly enriched terms (vs. 70 out of 94 for 3’ UTRs), including 21 of the top 25 miRNAs with the most conserved ORF targets. Enrichment terms were significantly more likely to be shared by predicted targets of the same miRNA in ORFs and 3’ UTRs than by two different miRNAs (1.9-fold more likely, $p < 10^{-13}$, χ^2 test). Target predictions are available on the MinoTar Web site (www.minotar.csail.mit.edu).

ORF Predictions Recover Functional miRNA Targets with High Confidence. To test whether predicted ORF target sites could confer substantial down-regulation, we selected six genes with highly conserved seed sites for three different miRNAs: mir-1, mir-8, and mir-6 (a member of the K-Box family). Because one of the genes, Arp87c, was predicted to be targeted by both mir-1 and mir-8, in total we tested seven miRNA-target pairs. For each of these genes, we cloned the ORF into a reporter plasmid and measured down-regulation upon coexpression with the targeting miRNA in S2R+ cells. Briefly, each ORF was fused with one of either a Myc or FLAG epitope tag, while the same ORF with

![Fig. 2.](image) The scale of conserved miRNA targeting in 3’ UTRs, ORFs, and 5’ UTRs. (A) Fraction of sites conserved above background for both 8-mers and 7-mers in 3’ UTRs, ORFs, and 5’ UTRs. (B) Number of predicted sites above background for 8-mers and 7-mers in 3’ UTRs, ORFs, and 5’ UTRs. Error bars show standard deviation in the estimates obtained from sampling of background sets (see Methods).
synonymous point mutations in the miRNA seed site was fused with the other tag (Fig. 4A). This allowed for the ORF with wild-type miRNA seed site (ORF-WT) and with the mutated site (ORF-Mut) to be cotransfected and simultaneously visualized on a Western blot using two different secondary antibodies. For quantification, the ratio of ORF-WT to ORF-Mut when transfected with miRNA was compared to the ratio when transfected with a control plasmid. As an additional control, all ORFs were cotransfected with nontargeting miRNAs. All experiments were repeated at least twice under each epitope tag.

Down-regulation was detectable in five out of seven miRNA-target pairs, whereas no nontargeting miRNAs caused down-regulation of any of the genes (Fig. 4B). Four out of seven miRNA-target pairs showed down-regulation greater than 25%, and two out of seven showed greater than 50% down-regulation. The strongest effect was seen for one of the mir-1 targets (CG8494) that contained three seed sites for mir-1 (one 8-mer and two 7-mers). In order to observe the effect of multiple sites within a single gene, we systematically mutated away all three and two 7-mers). In order to observe the effect of multiple sites within a single gene, we systematically mutated away all three and two 7-mers). In order to observe the effect of multiple sites within a single gene, we systematically mutated away all three and two 7-mers).

Predicted ORF Targets Are Preferentially Down-Regulated. In order to examine the scale of miRNA targeting in ORFs on endogenous targets, we transfected S2R+ cells with either mir-1 or a control plasmid and compared expression levels using a whole genome microarray. Although microarray analysis allows one to observe changes at the mRNA level capture a significant portion of the effects caused by miRNA targeting (8, 9). We looked at the effect of mir-1 overexpression on four categories of genes: (i) genes with a mir-1 ORF site predicted by our algorithm, (ii) genes with any mir-1 seed site in the ORF, (iii) genes predicted to be targeted by mir-1 in the 3’ UTR by TargetScan, and (iv) genes with any mir-1 seed site in the 3’ UTR (Fig. 5). Predicted ORF targets were significantly down-regulated vs. the set of all genes (12%, \(p = 2 \times 10^{-16}; \) K-S test), significantly more down-regulated than genes with a nonconserved seed in their ORF (12% versus 6%, \(p < 2 \times 10^{-4}; \) K-S test) and showed mean down-regulation about half as strong as predicted 3’ UTR sites (12% vs. 24%). These results suggest that, although weaker than 3’ UTR targeting, targeting in ORFs is widespread and that conservation can preferentially recover functional ORF sites. Additionally, we looked at the down-regulation of genes with a mir-1 seed site in their 5’ UTR. These genes showed mean down-regulation of a similar scale to those with nonconserved seed sites in their ORF (6%, \(p < 4 \times 10^{-5}; \) K-S test).

Extent of Conserved miRNA Targeting in Mammalian ORFs. We next applied our algorithm to a multiple alignment of vertebrate species with human. As in *Drosophila*, miRNA seed sites in ORFs accounted for most of the top-conserved 8-mers, were highly conserved overall, and highly conserved sites could be discriminated above background with high (>90%) confidence, whereas control sets all behaved similarly to the set of all 8-mers (Fig. S1A–C and Table S2). We also compared our predicted conservation of miRNA seed sites in human ORFs to the conservation observed in multiple species alignments of human 3’UTRs and 5’UTRs (Fig. S2A and B). Interestingly, compared to *Drosophila*, there was a larger drop-off in the level of conserved targeting between 3’UTRs and ORFs and between ORFs and 5’UTRs. The fraction of conserved sites above background in ORFs was about 40% that in 3’UTRs, whereas the fraction of conserved sites above background in 5’UTRs was low, and not reliably above zero. The level of conservation was again highly correlated between miRNA sites in 3’UTRs and ORFs, and to a small extent between 3’UTRs and 5’UTRs, but sites in the promoter region showed no similar relationship (Fig. S3A–C).

Discussion

We have shown that conserved miRNA targeting in *Drosophila* ORFs occurs at a similar scale to conserved targeting in 3’UTRs. As in 3’UTRs, not all of the contextual features that make some target sites more effective than others are known. However, we have seen that by seeking highly conserved seed matches, our method can recover functional ORF sites with high confidence. Additionally, our results suggest that factors indicative of stronger targeting in 3’UTRs, particularly the presence of multiple seed sites, should also be helpful in finding the most effective ORF sites. And while most predicted ORF targets are not predicted to be 3’UTR targets, the set of genes targeted in both regions show significantly more overlap than expected, suggesting that simultaneous targeting of genes in both regions occurs in some cases.

In general, targeting in ORFs appears to be weaker than 3’ UTR targeting. However, given the scale of conserved ORF targeting we observe, it seems likely that a large number of important ORF targets remain to be discovered. For both 3’ UTR and ORF targets, it remains an open question how to interpret the vast scale of conserved miRNA targeting observed. With
tens to hundreds of preferentially conserved targets per miRNA in the 3' UTR alone, a similar number in ORFs, and the potential for species-specific (27) as well as noncanonical targets (28), the scale of targeting by miRNAs is daunting. It has been suggested for species-specific (27) as well as noncanonical targets (28), the number of exceptions (for example, see refs. 31 and 32), most computational tools for analyzing regulatory signals in DNA have been divided into coding and noncoding DNA and, with a small number of exceptions (for example, see refs. 31 and 32), most computational tools for analyzing regulatory signals in DNA have been designed to work within noncoding DNA. In cases where regions of DNA are serving both a coding and noncoding function, new approaches may need to be developed.

Methods

Alignments and miRNA Sequences Multiple species alignments and genome annotations for *Drosophila* (12-way) and human (17-way) were downloaded from the University of California at Santa Cruz (UCSC) genome browser (http://genome.ucsc.edu). Three fish species were excluded from analysis because of significant nonaligned sequence. For coding regions, genome annotations were used to exclude all regions overlapping a 3' UTR or 5' UTR for any transcript. In all statistical calculations, regions overlapping more than one transcript were used only once to avoid overcounting. For analysis of 5' UTRs, annotations were used to remove all regions overlapping ORFs or 3' UTRs. Alignments of 3' UTRs for both *Drosophila* and humans were taken from the TargetScan Web site (http://www.targetscan.org). Alignments of promoters (taken as the 500 bp upstream of Transcription Start Sites) were downloaded from the UCSC genome browser. Regions overlapping ORFs, 5' UTRs, or 5' UTRs may be blocked by translation initiation factors (12, 13). If interference from the translational machinery is indeed what weakens targeting in ORFs and 5' UTRs, it may turn out that the strength of this effect differs across species. It may also be that the strength of such an effect can be modulated by cellular state, so that ORF and 5' UTR targeting are of greater strength in some contexts than in others.

An intriguing implication of our results is that a significant fraction of coding DNA may be serving noncoding regulatory functions as well. Although miRNA-target sites seem to account for a large part of such “dual-purpose” regions, our results suggest that many important regulatory signals in coding DNA unrelated to miRNAs exist. It has recently been suggested that the genetic code is, in fact, optimal for encoding additional noncoding information (30). Traditionally, genomes have been largely viewed as divided into coding and noncoding DNA and, with a small number of exceptions (for example, see refs. 31 and 32), most computational tools for analyzing regulatory signals in DNA have been designed to work within noncoding DNA. In cases where regions of DNA are serving both a coding and noncoding function, new approaches may need to be developed.
Background Model for Conservation of k-Mers in ORFs. Our approach scores conservation of k-mers under a null model where codon conservation at adjacent positions is independent, but is conditioned on the observed amino acid conservation. This approach only scores nucleotide conservation level highly if the codon choice across species for a given k-mer is significantly more conserved than expected by empirically measured codon conservation rates.

The null model is based on empirical codon conservation rates within an N-species alignment. We denote by \(n_i \) one of the 64 possible codons, \(AA(A(n)) \) the amino acid encoded for by \(n_i \) by \(S_j \) one of the \(2^i \) possible subsets of the N species, and by \(Cons(S_i) \) the subset of species to which the feature x is conserved. For all \(n_i \) and all possible pairs of subsets of species, \(S_i \) and \(S_j \), we first calculate the fraction of instances of codons perfectly conserved across the subset \(S_i \) and those with the encoded amino acid being conserved across the subset \(S_j \): \(Prob\{Cons(n_i) \subseteq S_i, Cons\{AA(A(n))\} = S_j \} \). Similarly, we record these probabilities when only a portion of the codon is considered (for instance, only the last two nucleotides rather than all three nucleotides of the codon), for which we also use the label \(Cons(S_i) \) below. Given a k-mer, the probability under the null model of observing perfect conservation of the k-mer over a subset \(S_j \) of species is then given by the probability that all overlapping or partially overlapping codons were simultaneously conserved on \(S_j \): \(Prob\{Cons\{k-mer\} \subseteq S_j, \text{null model} \} = \prod_{k\text{-mer}} Prob\{Cons(S_i) \subseteq S_j, Cons\{AA(A(n))\} = S_j \} \), where the product is taken over all overlapping or partial codons. In cases where there is partial overlap with a codon, it is possible for the partial codon to be conserved even when the encoded amino acid is not.

In this case the conditional probability \(Prob\{Cons(S_i) \subseteq S_j, Cons\{AA(A(n))\} = S_j \} \) is taken as the product over terms for subsets of \(S_i \) within which the k-mer is contained. From \(Prob\{Cons\{k-mer\} \subseteq S_j, \text{null model} \} \) for all subsets \(S_j \), we calculate the probability under the null model (p value) of conservation of the k-mer to M out of N species. Given a k-mer, we find the p value (p), calculated for the actual number of species to which that k-mer is conserved, and the smallest achievable p value (p_{min}), calculated for the maximum number of species to which the k-mer could have been conserved given the observed amino acid sequences.

Binning Gene Regions by Conservation Level. A background model for codon conservation was first trained on all ORF sequences, which was used to produce a p value at every codon instance in all genes. Every codon instance was then assigned a region conservation score given by the mean of the p values in a window of 120 nucleotides (40 amino acids) centered at that codon. Codons were then sorted by their region conservation scores and placed according to these scores into five equally spaced bins. A set of background models was relearned separately for each of these bins. When evaluating k-mer conservation, a region conservation score was evaluated for the 120 nucleotides centered at that k-mer, and the bin corresponding to that score was used as the background model.

Assessing Conservation Levels in ORFs and Noncoding Regions. In ORFs, the conservation rate of a set of k-mers for a given cutoff value \(P_{\text{null}} \) was determined by the fraction of instances achieving \(p < P_{\text{null}} \) among those instances with \(P_{\text{null}} < P_{\text{null}} \). Similarly, in noncoding regions the conservation rate of a set of k-mers was assessed by the fraction of instances conserved to at least M out of N species among those instances with aligned sequence in at least M out of N-species. In both cases, background sets of k-mers, consisting of all k-mers with identical nucleotide content as each of the k-mers in the true set, were used to judge expected background levels of conservation. Conservation above background was measured by the signal-to-background ratio, defined by \(Sig-Bgd = \frac{\text{(fraction conserved true set) - (fraction conserved background set)}}{\text{(fraction conserved background set)}} \). Confidence at a given cutoff was calculated as \(\text{Sig-Bgd} - 1 \text{Sig-Bgd} \). Errors for fractions and numbers of sites above background were estimated by repeating the analysis 50 times with background sets of size equal to the set of miRNA seeds.

3 Binding to miRNAs. miRNA seed sites were grouped based on their potential binding to the 3’ end of corresponding miRNAs following ref. 13 (defined by contiguous base-pairing starting at positions 9–16 within the miRNA, and allowing for shifts of up to two nucleotides of such matches within the miRNA). In cases of seed families with multiple miRNAs, the member with greatest potential base pairing was chosen. Signal to background was defined as the fraction of seed sites with given 3’ binding conserved to the 60% Cons threshold defined by the expected fraction conserved to this threshold. Expected conservation was found by repeating the above procedure while swapping miRNA seed sites with the 3’ ends of all other miRNAs.

GO-term enrichment. The AmiGO GO-term enrichment tool (http://amigo.geneontology.org/cgi-bin/amigo/term_enrichment) was used to search for statistically enriched GO terms in sets of genes. Thresholds were corrected p-value of 0.05, minimum of two gene products.

Experimental Methods. Experimental methods are described in SI Methods.

ACKNOWLEDGMENTS. We thank Dave Bartel, Carl Novina, and members of the Perrimon and Berger labs for helpful discussions. M.S.L. was supported by a Hertz Foundation Fellowship and an National Defense Science and Engineering fellowship. N.P. is an investigator of the Howard Hughes Medical Institute. This work was partially supported by funding from the Starr Foundation.