Zeeman relaxation induced by spin-orbit coupling in cold antimony-helium collisions

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Zeeman relaxation induced by spin-orbit coupling in cold antimony-helium collisions

Colin B. Connolly,1,3 Yat Shan Au,1,3 Eunmi Chae,1,3 Timur V. Tscherbul,3,4,5 Alexei A. Buchachenko,6,7
Wolfgang Ketterle,2,3 and John M. Doyle1,3

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, MIT, Cambridge, Massachusetts 02139, USA
3Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
4Institute for Theoretical Atomic, Molecular, and Optical Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
5Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
6Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
7Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow District 142432, Russia

(Received 29 April 2013; published 15 July 2013)

We investigate Zeeman relaxation in cold Sb(4S1/2–He) collisions in a magnetic field. Ensembles of $>10^{11}$ laser-ablated Sb atoms are cooled in cryogenic 4He buffer gas to 800 mK and inelastic collisions are observed to equilibrate the m_J-state distribution to the translational temperature. The ratio γ of momentum transfer to inelastic collision rates is measured to be $< 9.1 \times 10^{-2}$. We also perform quantum scattering calculations of Sb–4He collisions, based on ab initio interaction potentials, that demonstrate significant anisotropy of the ground state induced by the spin-orbit interaction. Agreement is obtained between theory and experiment with a $\approx 10\%$ increase in the ab initio potential depth. This work suggests that buffer-gas-cooled pnictogen atoms lighter than Sb can be loaded into a magnetic trap.

DOI: 10.1103/PhysRevA.88.012707

PACS number(s): 34.50.Cx, 34.20.Cf

I. INTRODUCTION

The study of inelastic collisions between atoms at low temperatures has expanded over the last decade to include a wide range of atomic systems exhibiting a range of atomic structures and interactions. Cold collisions of atoms with structureless rare gas targets, in particular, are a useful tool for studying anisotropy in the electron-density distribution (see Ref. [1] for a review). This anisotropy is explicit for studying anisotropy in the electron-density distribution structureless rare gas targets, in particular, are a useful tool for studying anisotropy in the electron-density distribution. Cold collisions of atoms with structureless rare gas targets, in particular, are a useful tool for studying anisotropy in the electron-density distribution structureless rare gas targets, in particular, are a useful tool for studying anisotropy in the electron-density distribution. Cold collisions of atoms with structureless rare gas targets, in particular, are a useful tool for studying anisotropy in the electron-density distribution.
II. EXPERIMENT

To measure the rate of spin relaxation in Sb–He collisions, we prepare a buffer-gas-cooled sample of Sb atoms in a magnetic field and observe decay from the low-field-seeking (LFS) stretched state ($m_J = J = 3/2$) to lower-energy high-field seeking (HFS) states. The experiment takes place inside a double-walled G-10 CR fiberglass-epoxy composite cell. Superfluid helium fills the space between the two walls to surround the cell and maintain a uniform temperature over its length. A superfluid helium link anchors the cell to a dilution refrigerator to maintain a cell temperature of 800 mK. 4He buffer gas is added and removed via a small impedance to achieve a variable gas density that remains effectively constant for the duration of a single measurement ($\sim 1 \text{ s}$). The cell sits inside the bore of a pair of superconducting Helmholtz magnetic field coils.

We produce $>10^{11}$ cold Sb atoms by ablating a solid Sb metal target into the buffer gas. The atoms are produced in an equal distribution across all electronic and nuclear spin states of the ground $^4S_{1/2}$ manifold. After cooling to the cell temperature, the Sb atoms diffuse to the cell walls and stick there, undergoing $10^6–10^8$ collisions with the helium buffer gas. The magnetic field is uniform over most of the cell and does not significantly affect the diffusive transport.

We probe the atomic Sb ensemble by laser absorption on the $^4S_{3/2} \rightarrow ^4P_{3/2}$ transition at 206.9 nm. The probe light is generated by single harmonic generation (SHG) in a beta barium borate (BBO) crystal using a resonant cavity. Approximately 80 mW of light from an injection-locked diode laser at the 413.8-nm fundamental wavelength results in ≈ 100 nW of UV. We note that the doubling cavity lock is not optimized and an order of magnitude greater SHG conversion efficiency is likely possible with the same input power in this system. The UV beam is split into an intensity reference beam and a probe beam that enters the cryogenic diffusive cell. Dielectric mirrors mounted in long tubes provide spectral and spatial filtering of unwanted light, after which both beams are incident upon photomultiplier tubes.

The hyperfine spectrum of the $^4S_{3/2} \rightarrow ^4P_{3/2}$ transition at 206.9 nm spans 30 GHz; we are unable to scan our laser across the entire spectrum within the diffusion time. Instead, we hold the laser frequency constant, resonant with a transition from either the stretched LFS or HFS states ($m_J = \pm J$), and monitor the optical depth (OD) over time. The two transitions used are closely spaced in frequency with the relative LFS and HFS state populations coming to thermal equilibrium through inelastic Sb–4He collisions. Indeed, we initially observe rapid LFS decay and a corresponding increase in the HFS population. Once in equilibrium, the two states decay in tandem due to diffusion to the cell walls. From the HFS data at late times, we use this diffusive decay to determine the Sb–4He collision rate. Interpolating between HFS state decay measurements provides the collision rate at the times at which LFS state measurements are made.

III. DECAY MODEL

We describe here a simplified version of the relaxation model developed in Ref. [19]. For a gas of Sb atoms with equal m_J state populations, we expect the time evolution of the $m_J = J$ state to be driven by a combination of diffusion in the buffer gas and Zeeman relaxation to states of lower m_J. The lowest-order diffusion mode decays exponentially with time constant τ_d, given by [20]

$$\tau_d = \frac{n_b \sigma_d}{\bar{v} G},$$

in a cylindrical cell of radius r and length L, where n_b is the buffer gas density, σ_d is the thermally averaged momentum transfer cross section, $\bar{v} = (8k_B T / \pi \mu)^{1/2}$ is the mean Sb–4He collision velocity at temperature T with reduced mass μ, and $j_{01} \approx 2.405$ is the first root of the Bessel function $J_0(x)$. Higher-order diffusion modes decay much more rapidly and can be ignored at late times.

As an Sb atom diffuses through the buffer gas, an inelastic collision with 4He can cause a transition to a state of different m_J. For the stretched LFS state with $m_J = J$, this transition only occurs to states of lower m_J, which is energetically favorable. The time constant for this process, τ_R, is found by including all possible spin relaxation transitions:

$$\tau_R = \frac{1}{k_R},$$

$$k_R = \sum_{m_J \neq J} k_{m_J \rightarrow m_J'},$$

where k_R is the total Zeeman relaxation rate constant. At zero temperature, the low-field-seeking state decays

$$\approx \frac{1}{10^0} \text{ time after ablation (ms)}$$

FIG. 1. (Color online) Decay of low- and high-field seeking (LFS and HFS) states ($m_J = +3/2$ and $-3/2$) of Sb at $T = 800$ mK and $B = 0.86$ T.
exponentially under the combined effect of diffusion and relaxation. However, at finite temperature there are two important modifications to the time dependence.

First, atoms with \(m_J < J \) will also experience \(m_J \)-changing collisions, and the collision energy will sometimes be sufficient to promote an atom to a state of higher \(m_J \), thus repopulating the stretched state [19]. These thermal excitations will alter the relaxation to equilibrium, an effect that is amplified at higher temperatures and in atoms with large \(J \) and thus small sublevel splitting. We have numerically modeled this effect for our experimental conditions and we find that it leads to a \(<10\% \) underestimation of \(k_R \).

Second, at finite temperature there will remain a thermal population in the \(m_J = J \) state, even at equilibrium. Thus the time dependence of this state’s population \(N_J \), neglecting thermal excitations, will be

\[
N_J(t) = \bar{N} e^{-\gamma t/\tau} \left(f_{eq} + \left(\frac{1}{2J + 1} - f_{eq} \right) e^{-\gamma t/\tau} \right),
\]

where \(\bar{N} \) is the total initial atom population,

\[
f_{eq} = \frac{\exp[-g_J/J_\mu B]}{\sum_{m_J} \exp[-g_{m_J}/J_\mu B]},
\]

is the thermal equilibrium fraction of the total population in the \(m_J = J \) state at temperature \(T \) and magnetic field \(B \), \(k_B \) is the Boltzmann constant, and \(g_J \) is the Landé \(g \) factor. Note that at zero temperature, \(f_{eq} \rightarrow 0 \) and Eq. (5) simplifies to the appropriate simple exponential.

The elasticity of the colliding system is described by the dimensionless ratio \(\gamma = k_d/k_B \) of the elastic and inelastic collision rates, where \(k_d = \sigma_d \bar{v} \). Large values of \(\gamma \) imply that many collisions can occur before a \(m_J \)-changing transition occurs. We can compute \(\gamma \) directly from Eqs. (1) and (3) to yield

\[
\gamma = \bar{v}^2 G \tau_d \tau_R.
\]

While it is in principle possible to extract \(\gamma \) from a single measurement, we make many measurements over a range of \(^4\text{He} \) densities (i.e., a range of \(\tau_d \)) and compare the results to the form of Eq. (7), which predicts \(\tau_R \propto \tau_d^{-1} \) at constant \(\gamma \). This provides a check against systematic error. In particular, there may be other processes affecting the decay of the LFS state or of all states—such as molecule formation [21] or temperature variation—which exhibit a different dependence on buffer gas density.

IV. RESULTS AND ANALYSIS

We fit the HFS decay at late times to exponential decay to extract the diffusion time \(\tau_d \) and fit the LFS decay to Eq. (5) to extract \(\tau_R \) (Fig. 1). The LFS data are fit on the interval after \(t = 6 \text{ ms} \) to allow for decay of higher-order diffusion modes and of unwanted fluorescence in the cell caused by ablation. To reduce statistical uncertainty and minimize systematic error, we constrain the LFS fit by fixing the value of \(\tau_d \) to be the same as that of the HFS state. Since only one state is monitored during any single measurement, all values of \(\tau_d \) determined from HFS measurements are first fit to the exponential decay expected due to buffer gas being slowly pumped (over tens of minutes) back through the filling impedance. The fitted function for the exponential decay of \(\tau_d \) is evaluated at the times when LFS measurements are made to fix \(\tau_d \), in turn, for fitting the LFS state decay using Eq. (5). In addition, we constrain \(f_{eq} \) to its minimum \(\chi^2 \) value across all measurements made at the same temperature and magnetic field, since \(f_{eq} \) is not a function of buffer gas density.

The fitting results are plotted in Fig. 2. There is no statistically significant dependence of the apparent relaxation time on buffer gas density. Therefore the decay of the LFS state is not a direct observation of the Zeeman relaxation rate. Instead, the decay is most likely a combination of Zeeman relaxation and cooling of the cell and buffer gas after heating caused by ablation. The reason for this is as follows: if the cell temperature is not stable on the time scale of the decay, then the form of the decay predicted by Eq. (5) will be modified by the temperature dependence of \(f_{eq} \) (and to a lesser extent, that of \(\tau_d \)). In the limit of extremely rapid relaxation (\(\tau_R \rightarrow 0 \)), the magnetic sublevel distribution will be in equilibrium with the translational temperature, and the LFS state decay will closely follow the cell’s cooling profile. Since we do not have sufficient knowledge of the temporal and spatial thermal profile of the cell and buffer gas to separate translational cooling from Zeeman relaxation, the experiment is only able to bound the relaxation rate as being at least as fast as the observed equilibration.

We set an upper bound on the collision ratio \(\gamma \) using Eq. (7) and the data with the shortest value of the product \(\tau_d \times \tau_R \). In doing so, we consider only data for which \(\tau_d > 25 \text{ ms} \), for which the absorption signal strength and lifetime are large enough to allow for confirmation that the buffer gas density is constant over the fitting interval. To be conservative, we do not
use data with shorter diffusion times because of the possibility that a short-lived pulse of helium desorbed from the cell walls by the ablation pulse could cause the early-time buffer gas density to differ from the late-time density where \(\tau_d \) is measured—such a discrepancy could cause an underestimation of \(\gamma \). At higher buffer gas densities, the effect of this pulse is negligible. The best constraint on \(\gamma \) is therefore obtained from the red (square) point in Fig. 2, which yields \(\gamma \lesssim 9.1 \times 10^2 \).

V. ELECTRONIC STRUCTURE

In this section, we investigate the electronic structure of the Sb–He complex that determines collision dynamics. We consider the states of the complex correlating to the three lowest asymptotic limits that corresponds to the \(^{4}S^{\circ}, ^{2}D^{\circ} \), and \(^{2}P^{\circ} \) terms (given as \(^{25+1}L^{\rho} \)) of the Sb(5s\(^{2}\)p\(^{3}\)) atom. In the standard LS coupling notation, \(^{25+1}\Lambda^{\rho} \), these are \(^{4}\Sigma^{-}(^{5}\Sigma^{\circ}) \), \(^{2}\Delta(^{2}D^{\circ}) \), \(^{2}\Pi(^{2}F^{\circ}) \), \(^{2}\Sigma^{-}(^{2}D^{\circ}) \), \(^{2}\Pi(^{2}P^{\circ}) \), and \(^{2}\Sigma^{+}(^{2}P^{\circ}) \). Here \(S \) is the total electronic spin angular momentum, \(L \) is the total electronic angular momentum of an atom, \(\Lambda \) is the projection of \(L \) onto the interatomic axis \(R \), and \(p \) and \(\sigma \) designate the parities of the electronic wave functions.

The LS potential energy curves are computed in the scalar-relativistic approximation within the internally contracted multireference configuration interaction (MRCI) method [22], MRCI, as well as the preceding state-averaged complete active space multiconfigurational self-consistent field (CASSCF) [23,24], distributes seven electrons over the five active orbitals representing the 5s5p shells of Sb and the 1s shell of He. For the Sb atom, we employ the small-core (28-electron) relativistic effective core potential ECP28MDF by Metz et al. [25] together with the corresponding augmented quintuple-\(\zeta \)-correlation-consistent polarized valence (aug-cc-pV5Z) basis set [26]. For the He atom, we adopt an equivalent aug-cc-pV5Z set [27].

To provide better description of the ground \(^{4}\Sigma^{-} \) electronic state, we also compute its potential energy curve using the coupled cluster method with single, double, and noniterative triple excitations, CCSD(T) [28,29], with the standard counterpoise correction to the basis set superposition error [30]. To saturate the dominant dispersion contributions to interaction energy, the 3s3p2d2f1g set of the bond functions [31] is added to the atom-centered basis set described above at the midpoint of the Sb–He interatomic distance \(R \).

The MRCI excitation energies are added to the CCSD(T) ground-state potential energy curve and shifted in energy to reproduce the experimental centers of the \(^{2}P^{\circ} \) and \(^{2}D^{\circ} \) fine-structure multiplets [32] \(E_P \) and \(E_D \) at large (50 Å) internuclear distance.

Since the energy splittings between the states correlating to the asymptotes with different \(L \) are much larger than weak atom-atom interaction, the differential radial and angular nonadiabatic couplings are neglected.

Vectorial spin-orbit (SO) interaction is treated using the full Breit-Pauli SO operator at the CASSCF level of theory. The full SO matrix spanned by all 23 components of the six LS states is obtained and used to extract five independent SO coupling matrix elements, defined as in Ref. [9], after its transformation to the pure \((LM_{\Sigma}SM_{\Lambda}) \) angular momentum representation. In the limit of separated atoms, \(A_D \) and \(A_P \) elements are related to the internal splittings of isolated \(^{2}D^{\circ} \) and \(^{2}P^{\circ} \) multiplets, respectively, whereas \(B_{SP} \) and \(B_{PD} \) describe the couplings between states of \(^{4}\Sigma^{-} \) and \(^{2}\Pi(^{2}D^{\circ}) \) states, \(B_{SD} \).

Diagonalization of the electronic Hamiltonian matrix at the separated atom limit gives the following energies for the fine-structure atomic levels (relative to the \(^{5}\Sigma^{\circ}\) level in cm\(^{-1}\), with experimental values [32] in parentheses): \(^{2}D_{5/2} \) 8731 (8512), \(^{2}D_{3/2} \) 9636 (9854), \(^{2}P_{3/2} \) 16454 (16395), and \(^{2}P_{1/2} \) 18100 (18464). The deviations do not exceed 400 cm\(^{-1}\) and are generally smaller than are found in the Bi–He calculations [9]. Table I compares the asymptotic parameters obtained here for Sb–He with those computed for Bi–He in Ref. [9]. It is evident that while the Coulomb excitation energies vary from Bi to Sb insignificantly, the SO matrix elements decrease dramatically; the dominant intermultilevel couplings \(B_{SP} \) and \(B_{PD} \) both decrease by a factor of 3.12.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(E_D)</th>
<th>(E_P)</th>
<th>(B_{SP})</th>
<th>(B_{PD})</th>
<th>(A_D)</th>
<th>(A_P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb, this work</td>
<td>9224</td>
<td>16047</td>
<td>2747</td>
<td>3081</td>
<td>73</td>
<td>14</td>
</tr>
<tr>
<td>Bi [9]</td>
<td>8944</td>
<td>15769</td>
<td>8610</td>
<td>9637</td>
<td>92</td>
<td>131</td>
</tr>
</tbody>
</table>

Excited scalar-relativistic potentials are also similar for the two systems. In particular, the \(^{2}\Pi \) and \(^{2}\Sigma^{+} \) states of Sb–He correlating to the \(^{2}P^{\circ} \) atomic term have \(D_{e} = 7.5 \text{ cm}^{-1} \), \(R_{e} = 4.83 \text{ Å} \) and \(D_{e} = 11.0 \text{ cm}^{-1} \), \(R_{e} = 4.53 \text{ Å} \), respectively (\(D_{e} = 6.9 \text{ cm}^{-1} \), \(R_{e} = 4.96 \text{ Å} \) and \(D_{e} = 11.5 \text{ cm}^{-1} \), \(R_{e} = 4.44 \text{ Å} \) for Bi–He [9]). This indicates that the anisotropy of the \(^{2}P^{\circ} \) state is slightly larger for the Bi atom, in accord with the behavior of static dipole polarizabilities [17]. Similarity of the potential energy curves of all the molecular states arising from the \(ns^{5}np^{3} \) configuration of Sb or Bi likely reflects the similarity in the scalar dipole polarizabilities of the corresponding atomic states.

The SO interaction does not affect the ground \(^{4}\Sigma^{-} \) state to the first order of perturbation theory. At higher orders, however, SO couples the ground state with the excited \(^{2}A \) states split by the interaction anisotropy. As a result, the degeneracy of the \(\Omega = 3/2 \) and \(1/2 \) components of the ground state is lifted, as shown in Fig. 3. \(\Omega \) is the projection of the total (orbital plus spin) electronic angular momentum onto the interatomic axis.] As shown in Ref. [17], this is the source of anisotropy in the static dipole polarizability of \(^{4}S^{\circ} \) states of the pnicogens.
FIG. 3. (Color online) Sb–He interaction potentials of the lowest-energy non-relativistic and SO-coupled states. The inset enlarges the region near the potential minima.

To the second order of perturbation theory, only the coupling to the excited $^2\Pi(^3P^o)$ and $^2\Sigma^+ (^3P^o)$ states given by the B_{SP} parameter contributes to the splitting. The same conclusion was inferred from the analysis of Bi–He interactions [9], which found that the splitting ΔE_Σ between the $\Omega = 3/2$ and $1/2$ SO components of the ground state (i.e., the interaction anisotropy) can be approximated to second order as [9]

$$\Delta E_\Sigma = \frac{2}{3} \left[\frac{B_{SP}(R)}{E_P} \right]^2 \left[V_{P\Pi}(R) - V_{P\Sigma}(R) \right],$$

(8)

where $V_{P\Pi}$ and $V_{P\Sigma}$ are the potential energy curves of the excited $^2\Pi$ and $^2\Sigma^+$ states, respectively. Figure 4 shows that Eq. (8) closely reproduces the results of numerical diagonalization of the $ab\ initio$ coupling matrices for both the Sb–He and Bi–He systems. Comparing $ab\ initio$ results for the two systems indicates that each of the factors in Eq. (8)—the energy and anisotropy of the $^3P^o$ state and its SO coupling to the ground state—vary with increasing pnictogen mass such that interaction anisotropy is increased, although the coupling B_{SP} plays by far the dominant role. It should also be noted that B_{SP} varies with R very weakly, so that the ground-state splitting is perfectly reproduced with the asymptotic B_{SP} value. The A_P and B_{SD} SO couplings show more pronounced dependence on R but affect the ground state only in the third and fourth orders of perturbation theory. In accord with this reasoning, the effect of their radial dependence on Bi–He collision dynamics was found to be small [9].

VI. SCATTERING CALCULATIONS

In order to interpret our measurement and draw comparisons to other pnictogen systems, we performed rigorous quantum scattering calculations [2] based on the $ab\ initio$ interaction potentials and matrix elements presented in the previous section. Our theoretical approach closely resembles that implemented before for the Bi–He system in Ref. [9]. The Sb–He interaction Hamiltonian is written in atomic units as [9]

$$\hat{H} = -\frac{1}{2\mu R} \frac{\beta^2}{R^2} + \frac{\hat{L}^2}{2\mu R^2} + \hat{V}(R) + \hat{H}_{as},$$

(9)

where μ is the reduced mass and \hat{L} is the rotational angular momentum of the nuclei. The asymptotic Hamiltonian describing the electrostatic, SO, and external field-induced interactions in the isolated Sb atom is given by

$$\hat{H}_{as} = \hat{H}_{SI} + \hat{H}_{SO} + \hat{H}_{B},$$

(10)

where

$$\hat{H}_{SI} = \sum_{L,L'} H_{SI,L,L'}^L |L\rangle \langle L'|$$

(11)

accumulates the terms of the electronic Hamiltonian of the free atom that do not depend explicitly on the spin. Its diagonal matrix elements $H_{SI,L}^L$, with $L = 0, 1, 2$, are the electronic excitation energies E_S, E_P, and E_D, respectively, with $E_S = 0$. Non-diagonal matrix elements correspond to the interstate couplings, $H_{SI,L}^L = B_{SP}$ and $H_{SO}^L = B_{SD}$. The remaining diagonal part of the SO interaction is described by the SO Hamiltonian,

$$\hat{H}_{SO} = \sum_{LS} \hat{H}_{SO,LS}^L |LS\rangle \langle LS|,$$

(12)

for which we use the mean-field approximation,

$$\hat{H}_{SO,LS}^L = A_L \hat{L} \cdot \hat{S},$$

(13)

justified by the weakness of intramultiplet SO couplings A_P ($L = 1$) and A_D ($L = 2$) as compared with the splittings between the different LS states (Table I). The use of R-independent asymptotic values of the coupling terms is justified in the previous section. The Hamiltonian \hat{H}_B describes the interaction of the atom with an external magnetic field of strength B and is given by Eq. (5) of Ref. [9].

The Sb–He interaction potential operator in Eq. (9) is given by

$$\hat{V}(r) = \sum_{L,L'} \hat{V}_{LL}^L (R)|L\rangle \langle L'|,$$

(14)

The diagonal part of the operator

$$\hat{V}_{LL}^L = \sum_{\mu} V_{LL}^{L,\mu} (R) P_{\mu}(r \cdot r),$$

(15)
where P_ν is a Legendre polynomial \[2\], describes the interaction of an atom in a state with orbital angular momentum L with a structureless atom. The off-diagonal part ($V^{LL'}$ with $L' \neq L$) describes the coupling induced by the interatomic interaction between states of different L. The matrix elements of Eq. (14) in the direct-product scattering basis $|(LS)Jm_j\rangle$ are given by

\[
\langle (LS)Jm_j|(m_{\ell}\ell)(L'S')J'm'_{\ell})|\ell'm'_{\ell}\rangle
= \delta_{SS'}(-1)^{L+S'+J+J'-m_{\ell}-m'_{\ell}}[(2L+1)(2L'+1)]^{1/2}
\times (2J+1)(2J'+1)(2\ell+1)(2\ell'+1)]^{1/2}
\times \sum_{\lambda} V^{LL'}_{\lambda}(R) \left\{ \begin{array}{ccc} L & J & S \\ J' & L' & \lambda \end{array} \right\}
\times \left(\begin{array}{ccc} J & \lambda & m_J' \\ -m_j & m_j' & J' \end{array} \right) \left(\begin{array}{ccc} \ell & \lambda & m_{\ell} \\ -m_{\ell} & m_{\ell} & \ell' \end{array} \right)
\times \left(\begin{array}{ccc} L & \lambda & L' \\ 0 & 0 & 0 \end{array} \right) \left(\begin{array}{ccc} \ell & \lambda & \ell' \end{array} \right),
\] (16)

where the symbols in figure brackets and parentheses are $3-j$ and $6-j$ symbols, respectively. This expression generalizes Eq. (3) of Ref. [3] to collision-induced transitions between the different L states.

The details of scattering calculations have been presented elsewhere [9]. In brief, the wave function of the Sb–He collision complex is expanded in a direct-product basis set (Eq. (16) here and Eq. (2) of Ref. [9]), and the radial expansion coefficients were obtained by solving the coupled differential equations given by Eq. (4) of Ref. [9]. The scattering basis included the $|(LS)Jm_j\rangle$ states of Sb with $L = 0, 1, 2$ (S, P, and D states) [9] augmented with seven partial waves ($\ell = 0–6$). The coupled equations were integrated on a grid of $R \in [1,100]$ Å with a grid spacing of 0.02 Bohr radii using the scattering code developed previously for Bi–He by Krems [9]. Scattering calculations were performed at 200 collision energies between 0.02 and 4 cm$^{-1}$ with a constant step size of 0.02 cm$^{-1}$.

For accurate comparison with the experiment, we first calculate the momentum transfer cross section by solving a one-dimensional (1D) scattering problem based on the lowest non-relativistic Sb–He potential of $^4\Sigma^-$ symmetry (Fig. 3). To validate this approach, we also compute the total elastic cross section in the same manner and compare it to the exact multichannel result (Fig. 5). We find that the 1D approximation reproduces the exact cross section to within 10% over the temperature range 0.1–2 K, including scattering resonances.

Second, we compute the quantum scattering cross section for transitions from the $m_j = J = 3/2$ stretched Zeeman state to all final $m_{j'}$ states. The rate coefficients for momentum transfer and Zeeman relaxation are calculated from the cross sections by thermally averaging over the Maxwell-Boltzmann distribution. The total Zeeman relaxation rate k_R is calculated by adding contributions for transitions to all other magnetic sublevels [Eq. (4)]. The calculated ratio γ of the two rates is shown in Fig. 6 for several values of the magnetic field B, along with the bound obtained by the experiment at $B = 0.86$ T. We find that the calculated value exceeds the experimental upper bound by about a factor of 2.

Since the inaccuracy in interaction potentials is the most important factor affecting γ, we repeat our calculation with all the scalar-relativistic interaction potentials $[V_{\mu}^{LL'}(R)]$ scaled by a constant factor λ (Fig. 7). We find that γ decreases nearly monotonically over this range and that theory and experiment are in agreement for a deepening of the potentials by $\approx 10\%$. This level of error is reasonable for the $ab\ initio$ calculations, which are expected to slightly underestimate the attractive dispersion interaction due to the finite basis set and included correlations.

FIG. 5. (Color online) Calculated Sb–4He total elastic and momentum transfer cross sections. The solid curve is an exact multichannel calculation and the dashed curves are calculated using a 1D approximation that includes only the lowest non-relativistic adiabatic potential. The excellent agreement between the two calculations of the total elastic cross section (solid black and dashed red curves) implies that the approximation is good over this temperature range.

FIG. 6. (Color online) Calculated Sb–4He momentum-transfer-to-inelastic collision rate ratio γ. The experimental upper bound obtained at $B = 0.86$ T is also shown (dashed blue line).
In comparison to the Bi–He system under similar conditions [9], the rate of Zeeman relaxation in Sb–He collisions is an order of magnitude lower, due to the weaker SO coupling of the ground $^3S_{1/2}$ state to anisotropic states. This is in agreement with the reduction in the interaction anisotropy ΔE_Σ (Fig. 4), as well as with a Z^4 scaling.

VII. CONCLUSION

We present experimental and theoretical results for Sb–He collisions that demonstrate significant distortion of the isotropic $^3S_{1/2}$ ground state due to the SO interaction. The resulting electronic interaction anisotropy drives rapid Zeeman relaxation in this system. However, we show theoretically that relaxation occurs at a rate about an order of magnitude slower than the Bi–He system, in agreement with the second-order SO approximation [Eq. (8)] developed in Ref. [9]. This is also consistent with the strong relativistic dependence on Z of the SO interaction. Our measurement at $T = 800$ mK and $B = 0.86$ T confirms the strong inelasticity, setting a bound on the momentum-transfer-to-inelastic collision rate ratio of $\gamma \lesssim 9.1 \times 10^2$. This bound implies that the ab initio potential underestimates the interaction strength by $\approx 10\%$, which provides valuable feedback to the theoretical models.

The rapid Sb–He Zeeman relaxation that we observe here precludes buffer-gas loading of Sb into a magnetic trap. The rates of Zeeman relaxation of Bi, Sb, and N in collisions with He are consistent with a Z^4 scaling for temperatures near 1 K and magnetic fields near 1 T [9,18], following the same trend shown in the static dipole polarizability anisotropy [17]. A natural extension of this work is to look further up the pnictogen column to arsenic (As) and phosphorus (P), for which our theoretical model predicts significantly reduced relaxation in collisions with He. We can estimate these rates using Eq. (8) and the energies and SO coupling parameters of the isolated atoms [17,32]. Assuming conservatively that the difference $V_{P\Sigma} - V_{P\Sigma}^k$ decreases for pnictogens lighter than Sb, we find ΔE_Σ to be at least 7 and 170 times smaller for As and P, respectively, than for Sb. We therefore expect that these lighter atoms could be magnetically trapped after buffer-gas cooling for long enough to remove the buffer gas, which may allow for observation of collisions between trapped pnictogen atoms.

Pnictogen atom-atom collisions could potentially be used as a path to the creation of ultracold pnictogen ensembles. The N–N system has been demonstrated to be sufficiently elastic that evaporative cooling can likely be achieved [10], with Zeeman relaxation driven primarily by the magnetic dipole-dipole interaction. With the same magnetic moment, P and possibly As may exhibit similar behavior. We note that the wavelengths of optical $E1$ transitions from the ground states of pnictogens lighter than Sb are lower than 200 nm [32], presenting a formidable challenge for laser cooling of these atoms. However, buffer-gas cooling has been used to produce ensembles of N, Sb, and Bi with over 10^{11} atoms [9,18], and similar performance is expected for the other pnictogens. The combination of buffer-gas cooling, magnetic trapping, and evaporative cooling may allow for studies and applications of ultracold N, P, and As.

ACKNOWLEDGMENTS

We are grateful to Roman Krems for use of his scattering code and for many helpful discussions. This work was supported by the NSF under Grant No. PHY-1067990 and through the Harvard-MIT Center for Ultracold Atoms, and by RFBR under Project No. 11-03-00081.