Generation of a stable, aminotyrosyl radical-induced 22 complex of Escherichia coli class Ia ribonucleotide reductase

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.1220691110</td>
</tr>
<tr>
<td>Publisher</td>
<td>National Academy of Sciences (U.S.)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Feb 14 10:20:24 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/80387</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleoside diphosphates (dNDPs). The Escherichia coli class I RNR uses a mechanism of radical propagation by which a cysteine in the active site of the RNR large α2 subunit is transiently oxidized by a stable tyrosyl radical (Y) in the RNR small β2 subunit over a 35-Å pathway of redox-active amino acids: Yα2 ↔ [Yε2β2] ↔ Yβ2β56 in p2 to Y313 ↔ Y730 ↔ C235 in α2. When 3-aminotyrosine (NH2Y) is incorporated in place of Y730 in a long-lived NH2Yβ2β56 is generated in α2 in the presence of wild-type (wt)-p2, substrate, and effector. This radical intermediate is chemically and kinetically competent to generate dNDPs. Herein, evidence is presented that NH2Yβ2β56 induces formation of a kinetically stable α2β2 complex. Under conditions that generate NH2Yβ2β56, binding between Y730NH2Yα2 and wt-p2 is 25-fold tighter (Kd = 7 nM) than for wt-α2-wt-p2 and is cooperative. Stopped-flow fluorescence experiments establish that the dissociation rate constant for the Y730NH2Y-α2-wt-p2 interaction is ~10^{-9} mol/L second when Y at pH 7, and when incorporated at position 356 of β2, position 731 of α2, or position 730 of α2, it generates a chemically and kinetically competent NH2Y intermediate in the presence of both protein substrates, substrate, and effector. Furthermore, NH2Y RNRs are capable of making dNDPs with 3–12% the activity of wild-type (wt) RNR (9, 10).

The ability to incorporate NH2Y in place of the three pathway Ys and 3-hydroxytyrosine (DOPA) in place of Y730 provided an opportunity to test the validity of the docking model experimentally using pulsed electron-electron double resonance (PELDOR) spectroscopy. This method allows for measurement of the distance between two weakly coupled paramagnetic species, and is applicable to RNR because of its half-site reactivity (i.e., one dNDP must be generated on the first αβ pair before RT is initiated on the second αβ pair). The PELDOR measurements of two diagonal distances between a NH2Yα (or DOPAα) generated under turn-over conditions on the first αβ pair and the Y122β remaining on the second αβ pair provided experimental support for the α2β2 docking model (16).

Additional support for the docking model was provided by recent physical biochemical studies of E. coli RNR that demonstrated their model predicted a 35-Å distance between the diferric-Y122α cofactor in β2 and the active site cysteine (C235) in α2, the transient oxidation of which is a prerequisite for nucleotide reduction (1). A radical transfer (RT) pathway of conserved aromatic amino acids was proposed to account for kinetically competent radical propagation over this long distance (7). The thermodynamics of Y oxidation require loss of a proton to accompany loss of an electron, and the more detailed mechanism for proton-coupled electron transfer shown in Fig. L4 has emerged from experiments conducted in our laboratories (12, 13).

 Evidence for the utilization of an amino acid pathway in long-range RT has been derived from several types of experiments. Initial site-directed mutagenesis studies of the conserved residues (Fig. L4) supported their importance in nucleotide reduction but provided little insight into the mechanism of RT (14, 15). RNR’s fidelity to a specific redox pathway involving Y356, Y730, and Y731 (Fig. L4) has become apparent from recent experiments in which these residues have been site-specifically replaced with unnatural Y analogs with modified redox properties (9, 10). For example, incorporation of 3-aminotyrosine (NH2Y) in place of the three transiently oxidized Ys in the RT pathway has been mechanistically informative. NH2Y has a reduction potential ~190 mV lower than Y at pH 7, and when incorporated at position 356 of β2, position 731 of α2, or position 730 of α2, it generates a chemically and kinetically competent NH2Y intermediate in the presence of both protein substrates, substrate, and effector. Furthermore, NH2Y RNRs are capable of making dNDPs with 3–12% the activity of wild-type (wt) RNR (9, 10).

The ability to incorporate NH2Y in place of the three pathway Ys and 3-hydroxytyrosine (DOPA) in place of Y730 provided an opportunity to test the validity of the docking model experimentally using pulsed electron-electron double resonance (PELDOR) spectroscopy. This method allows for measurement of the distance between two weakly coupled paramagnetic species, and is applicable to RNR because of its half-site reactivity (i.e., one dNDP must be generated on the first αβ pair before RT is initiated on the second αβ pair). The PELDOR measurements of two diagonal distances between a NH2Yα (or DOPAα) generated under turn-over conditions on the first αβ pair and the Y122β remaining on the second αβ pair provided experimental support for the α2β2 docking model (16).

Additional support for the docking model was provided by recent physical biochemical studies of E. coli RNR that demonstrated...
Results

Strength of Y730NH2-Y-α2wt-β2 Interaction. The formation of NH2Y• in the reactions of NH2Y RNRs (Y730NH2-Y-α2, Y731NH2-Y-α2, or Y356NH2-Y-β2) with the second wt subunit, substrate, and allosteric effector has been extensively studied (9, 10). One of the more striking observations is the apparent stability of NH2Y• formed at positions 730, 731, and 356, which persists on the minute time scale. The lifetimes of these on-pathway radicals, compared with the microsecond lifetimes of Y• analogs in solution (19), prompted us to investigate the cause(s) of their increased stability. X-ray crystal structures of Y730NH2-Y-α2 and Y731NH2-Y-α2 (10) indicated that the mutated pathway residues are superimposable with Y730 and Y731 in the wt structure (7), and are partially solvent-exposed in α2 alone. Similarly, Y356 is located in the C-terminal tail of β and is conformationally disordered and solvent-exposed in the structure of β2 alone (6). Thus, the long lifetimes of NH2Y• led us to surmise that the radical must be shielded from solvent, a condition that would require enhanced interaction between the subunits.

As a first test of this contention, we measured the equilibrium dissociation constant (Kd) between Y730NH2-Y and wt-β2 in the presence of CDP and ATP (i.e., turnover conditions); the Kd of NH2Y• (formed under these conditions) is ~2.7 min at 25 °C (20). The Kd for Y730NH2-Y was determined using a spectrophotometric competitive inhibition assay (8) in which the wt-α2/wt-β2 interaction is disrupted by titrating increasing concentrations of an inhibitor (Y730NH2-Y-α2) into the assay mixture. The corresponding decrease in RNR activity is representative of the amount of inhibitor in the complex, and is used to extrapolate a Kd for the Y730NH2-Y-α2/wt-β2 interaction. A plot of [Y730NH2-Y-α2]bound vs. [Y730NH2-Y-α2]free is sigmoidal, rather than the hyperbolic curve observed for the wt-α2/wt-β2 interaction. Analysis of the data by the Hill model for cooperative binding gives Kd = 7 nM for the Y730NH2-Y-α2/wt-β2 interaction (Fig. 2, red). This Kd is 26-fold tighter than the wt-α2/wt-β2 (0.18 μM) interaction measured by the same method using the inactive mutant Y122F-β2 as a competitive inhibitor of the wt association (14). A Kd = 8 nM was determined for association between the analogous affinity-tagged protein, His6-Y730NH2-Y-α2 (10), and wt-β2, indicating that the N-terminal His6-tag does not disrupt the subunit interactions. The Kd between Y731NH2-Y-α2 and wt-β2 and those between Y356NH2-Y-β2 and wt-α2 were also determined. In both cases, the binding was cooperative, with Kd = 17 nM and Kd = 0.30 μM, respectively (Fig. 2, blue and green). Thus, the Y356NH2-Y-α2/wt-β2 interaction is 10-fold stronger than the corresponding wt interaction. The basis for the
weaker \(K_2 \) between \(Y_{350}NH_2Y-\beta_2 \) and wt-\(\alpha_2 \) is not understood at present but may reflect decreased stability of the \(NH_2Y \) at this position compared with positions in \(\alpha_2 \).

We further hypothesized that the origin of the enhanced interaction between \(Y_{730}NH_2Y-\alpha_2 \) and \(\alpha_2 \) rests in the ability to generate the stable pathway radical, \(NH_2Y_{730} \), rather than in ground-state structural differences between \(Y_{730}NH_2Y-\alpha_2 \) and wt-\(\alpha_2 \). To this end, the \(K_4 \) for the interaction between \(Y_{731}F/Y_{731}NH_2Y-\alpha_2 \) and wt-\(\alpha_2 \) was also measured, because the additional \(Y_{731}F \) mutation prevents \(NH_2Y \) formation (21). The data (Fig. S1) reveal a loss of cooperativity and a \(K_4 \) = 1.14 \(\mu \)M, which is >160-fold weaker than that for the \(Y_{730}NH_2Y-\alpha_2 \) and wt-\(\beta_2 \) interaction. This result supports the model that formation of an on-pathway \(NH_2Y \) stabilizes the subunit interaction.

A nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography "pull-down" assay was designed to validate the enhanced interaction between \(Y_{350}NH_2Y-\alpha_2 \) and wt-\(\beta_2 \) independently. A 1:1 mixture of Hist-\(Y_{730}NH_2Y-\alpha_2 \) and wt-\(\beta_2 \) (10 \(\mu \)M) was combined with CDP and ATP under single-turnover conditions (i.e., no reductant) to generate \(NH_2Y_{730} \), and the reaction mixture was incubated for 30 s with Ni-NTA agarose. The resin was washed to remove nonspecifically bound proteins, and bound protein(s) were then eluted with high [imidazole]. The entire procedure was complete within 3 min of initial mixing. The interaction between \(Y_{350}NH_2Y-\alpha_2 \) and wt-\(\beta_2 \) was examined under identical conditions. The protein content after each step was analyzed by SDS/PAGE (Fig. S2), and comparative densitometry analysis revealed that twice as much wt-\(\beta_2 \) coeluted with Hist-\(Y_{730}NH_2Y-\alpha_2 \) as with Hist-\(\alpha_2 \) (wt), consistent with a \(Y_{350}NH_2Y-\alpha_2 \)-wt-\(\beta_2 \) interaction that is stronger than the wt subunit interaction.

Kinetics of \(Y_{730}NH_2Y-\alpha_2 \)-wt-\(\beta_2 \) interaction. The long \(t_{1/2} \) of \(NH_2Y_{350} \) suggested that the \(Y_{730}NH_2Y-\alpha_2 \)-wt-\(\beta_2 \) interaction is tight and kinetically rapid. To investigate this possibility, the \(K_4 \) for various \(\alpha_2 \) interactions were measured by SF fluorescence spectroscopy, with the prediction that the \(k_{off} \) for \(Y_{730}NH_2Y-\alpha_2 \)-wt-\(\beta_2 \) would be significantly slower than that for wt-\(\alpha_2 \)-wt-\(\beta_2 \). We used DAN-\(\beta_2 \) (V56C), a mutant \(\beta_2 \) labeled with an environmentally sensitive fluorophore at a minimally disruptive position on the C-terminal tail (22), as a competitive inhibitor of \(\beta_2 \) to measure \(k_{off} \). Four subunit interactions were measured in the presence of CDP and ATP: wt-\(\alpha_2 \) with wt-\(\beta_2 \) or wt-\(\alpha_2 \)-reduced diferric-\(\beta_2 \) (met-\(\beta_2 \), incapable of initiating RT) and \(Y_{730}NH_2Y-\alpha_2 \) with wt-\(\beta_2 \) or met-\(\beta_2 \). For each experiment, \(\alpha_2 \) (1 eq), unlabeled \(\beta_2 \) (3 eq), and the nucleotides were combined in the second syringe and rapidly mixed with an excess of DAN-\(\beta_2 \) (V56C) (105 eq) in the second syringe, and the total fluorescence at wavelengths >420 nm was monitored. An increase in fluorescence intensity in this regime reports on the displacement of the fluorophore to a more hydrophobic environment, as is predicted to occur when the disordered \(\beta \)-tail binds to \(\alpha \) (22). The averaged kinetic traces for the wt-\(\alpha_2 \)-wt-\(\beta_2 \) and met-\(\alpha_2 \)-wt-\(\alpha_2 \) reactions are shown in Fig. M and Fig. S3A, respectively. Monoeponential fits to the data give \(k_{off} = 74 \text{ s}^{-1} \) and \(k_{off} = 63 \text{ s}^{-1} \), respectively. The similarity between these rate constants indicates that the presence of neither \(Y_{730}NH_2 \) for the active site disulfide formed during turnover has a significant impact on \(k_{off} \). The averaged fluorescence trace of an analogous experiment with \(Y_{350}NH_2Y-\alpha_2 \) and met-\(\beta_2 \) (Fig. S3B) gave \(k_{off} = 38 \text{ s}^{-1} \), with a total fluorescence change similar to that of the wt-\(\alpha_2 \) reactions. Thus, \(k_{off} \) of \(Y_{350}NH_2Y-\alpha_2 \) from met-\(\beta_2 \) is approximately twofold slower than with wt-\(\alpha_2 \), even in the absence of \(NH_2Y_{350} \) formation.

Finally, \(k_{off} \) was measured for \(Y_{730}NH_2Y-\alpha_2 \) and wt-\(\beta_2 \) in the presence of CDP and ATP, conditions that produce the long-lived radical. In contrast to the previous experiments, there was no significant increase in fluorescence over the first 150 ms (Fig. 3B, Inset), and the small amplitude change observed over longer times (Fig. 3B, 2 s) constitutes 15% of the total fluorescence change observed over 150 ms in the three previous experiments. This change may reflect interaction of DAN-\(\beta_2 \) (V56C) with the small fraction (<20%) of unbound \(Y_{730}NH_2Y-\alpha_2 \) in the initial solution (10). Details regarding the quantitative assessment of the amount of \(Y_{730}NH_2Y-\alpha_2 \) interacting with wt-\(\beta_2 \) in our experiments are provided in SI Materials and Methods. Because the \(k_{off} \) for the \(Y_{730}NH_2Y-\alpha_2 \)-wt-\(\beta_2 \) interaction was too slow to measure on the SF time scale, steady-state fluorescence spectroscopy was conducted under identical conditions. A slow fluorescence increase was observed over 40 min; no increase was observed on this time scale for the wt-\(\alpha_2 \)-wt-\(\beta_2 \) control (Fig. S4). Fitting the data gives a \(k_{off} \) on the order of \(10^{-3} \text{ s}^{-1} \), which is in agreement with the decay constant for \(NH_2Y_{730} \) (4 \(\times \) \(10^{-3} \text{ s}^{-1} \)) and suggests that the lifetime of the \(Y_{730}NH_2Y-\alpha_2 \)-wt-\(\beta_2 \) interaction and the pathway radical are correlated. The combined fluorescence experiments establish that the \(Y_{350}NH_2Y-\alpha_2 \)-wt-\(\beta_2 \) interaction is kinetically stable compared with the wt subunit interaction.

Structure of \(Y_{730}NH_2Y-\alpha_2 \)-wt-\(\beta_2 \) Complex Characterized by EM. The strength and kinetic stability of the \(Y_{730}NH_2Y-\alpha_2 \)-wt-\(\beta_2 \) interaction suggested that the complex might be visualized by EM, potentially providing valuable information about the structure and oligomeric state of the association. \(Y_{730}NH_2Y-\alpha_2 \) was combined with wt-\(\beta_2 \) in the presence of CDP and ATP, applied to the EM grid with minimal incubation time relative to the lifetime of the \(NH_2Y_{730} \), and preserved and contrasted with stain. Individual particles were identified in the images, and to avoid reference bias, particles were aligned and classified without the use of an initial model.

The resulting class averages were compared with projections of an \(\alpha_2 \) crystal structure (23) or the \(\alpha_2 \) docking model (7) (Fig. 4 A and B and Fig. S5). This comparison suggests that the majority of the averages represent different views of a complex that adopts a subunit arrangement consistent with the \(\alpha_2 \) docking model. Several other averages clearly represent views of the free \(\alpha_2 \) subunit. To determine whether observation of the \(\alpha_2 \) complexes is dependent on \(NH_2Y_{730} \) formation, we prepared a specimen with met-\(\beta_2 \) substituted for wt-\(\beta_2 \). Strikingly, the averages from this control experiment almost exclusively correspond with dissociated \(\alpha_2 \) and \(\beta_2 \) subunits (Fig. 4C), indicating that \(NH_2Y_{730} \) formation is a prerequisite for visualization of the \(\alpha_2 \) complex. One \(\alpha_2 \) class averages correspond to orientations in which subunits are not overlapping and can be easily identified. These views offer an opportunity to understand the subunit arrangement in the \(\alpha_2 \) complex better, especially when considered relative to a 3D map calculated from tilted-pair particle images (24). X-ray models of \(\alpha_2 \) and \(\beta_2 \) were separately fit into the 3D EM map (Fig. 4D) and compared with fitting of the \(\alpha_2 \) docking model (7) as a single rigid unit (Fig. 4E). The results from these two approaches agree [within the limitations related to low (∼32 Å) resolution and possible stain-induced deformation of the EM map], providing direct experimental support for the docking model.
Free subunits were first characterized under identical conditions by Guinier and Kratky analyses, as described previously (11). Although a small amount of inherent aggregation was detected in Y\textsubscript{730}NH\textsubscript{4}Y-α2, α ranges with well-defined radii of gyration (R\textsubscript{g}) could be identified in all samples by automated Guinier analysis (25) (Fig. S6 A–D). This analysis yielded similar extrapolated R\textsubscript{g} values for both forms of β (30.2 ± 3.7 Å for wt and 31.1 ± 1.4 Å for met), as well as for the two forms of α2 (42.0 ± 4.3 Å for wt and 45.2 ± 5.4 Å for Y\textsubscript{730}NH\textsubscript{4}Y). Shape information could be readily acquired from Kratky analysis of the mid-q region of scattering data, which is unaffected by the presence of aggregates (Fig. S7). Scattering from folded, globular species decays as q-4, which gives rise to a pronounced peak when plotted in Kratky representation (I\textsubscript{g} vs. q), whereas multimodal peaks are indicative of distinct, folded domains in a non-globular arrangement (26). In the case of wt-β2 and met-β2, monomodal peaks are observed, consistent with the compact monomer arrangement within the β2 dimer. Furthermore, the curves are nearly superimposable, indicating that the radical does not affect the shape of this subunit. By comparison, the Kratky curves of wt-α2 and Y\textsubscript{730}NH\textsubscript{4}Y-α2 display peaks with shoulders, consistent with the less globular monomer arrangement in α2 dimers. Importantly, the curves are nearly identical in shape, indicating that the mutation does not change the overall shape or fold of α2.

Simulations between subunits were examined under conditions in which mixtures of α2β2 and α4β4 are expected to form based on previous work with wt-α2 and met-β2 (11), namely, at a high protein concentration (30 μM) in the presence of GDP and dTTP. Guinier and Kratky analyses were again used. Previously, it was shown that the globular α2β2 complex (R\textsubscript{g} ~ 40 Å) has a monomodal Kratky curve with a peak at q ~ 0.04 Å-1, whereas the highly nonglobular αβ4 complex (R\textsubscript{g} ~ 70 Å) has a multimodal Kratky curve with distinct peaks at q ~ 0.024 Å-1 and q ~ 0.06 Å-1 (11). Mixtures of α2β2 and α4β4 thus lead to apparent R\textsubscript{g} between 40 and 71 Å and a smearing of Kratky peaks. Qualitatively, greater definition of multiple modes indicates higher levels of α4β4, whereas sharpening of the Kratky curve to a single peak at q ~ 0.04 Å-1 indicates higher levels of α2β2.

A reaction mixture representing a pre-turnover state consisting of 30 μM wt-α2 and met-β2 with dTTP/GDP led to a bimodal Kratky curve and a corresponding R\textsubscript{g} of 61.6 ± 0.1 Å, suggestive of a α2β2/α4β4 mixture (Fig. 5A, red) and consistent with previous observations (11). Replacing met-β2 with wt-β2 resulted in a similar Kratky curve (Fig. 5B, blue) with minimal changes to the R\textsubscript{g} (60.5 ± 0.2 Å with wt-β2). Comparison of α2β2 and α4β4 are similar for the pre- and post-turnover states. Likewise, a similar Kratky curve and nearly identical R\textsubscript{g} (64.3 ± 0.2 Å) were obtained from a reaction mixture consisting of 30 μM Y\textsubscript{730}NH\textsubscript{4}Y-α2 and met-β2 with dTTP/GDP (Fig. 5B, red), indicating that Y\textsubscript{730}NH\textsubscript{4}Y-α2 is able to make the same intersubunit interactions as wt-α2. Moreover, this result demonstrates that the Y\textsubscript{730}NH\textsubscript{4}Y mutation does not significantly perturb the distribution of α2β2 and α4β4 under nonturnover conditions. When Y\textsubscript{730}NH\textsubscript{4}Y-α2 was reacted with wt-β2, GDP, and dTTP, however, a dramatic change was observed (Fig. 5B, blue). A single prominent peak was observed at q ~ 0.04 Å-1, and the corresponding R\textsubscript{g} was much smaller (48.2 ± 5.4 Å), indicating that the α2β2 complex is dominant under turnover conditions. Previous work has shown that substrate is required for formation of NH\textsubscript{4}Y\textsubscript{730} (9, 10). Consistent with this observation, removal of substrate from the Y\textsubscript{730}NH\textsubscript{4}Y-α2/wt-β2 reaction mixture led to a less prominent peak (Fig. 5B, red), suggesting that the stability of the α2β2 complex is dependent on RT.

The kinetic stability of the NH\textsubscript{4}Y\textsubscript{730}-induced α2β2 complex was examined under conditions in which wt-α2β2 is maximally favored (11) (i.e., in the presence of dATP). A reaction mixture consisting of 30 μM Y\textsubscript{730}NH\textsubscript{4}Y-α2 and wt-β2 was first incubated with CDP (1 mM), conditions that have been shown to generate 70% the amount of NH\textsubscript{4}Y\textsubscript{730} observed with the matched CDP/ATP pair (10). Sufficient dATP to saturate both effector sites
(175 μM) was then added to the reaction, and the mixture was monitored every 2 min for a total of 22 min. Initially, a largely monomodal peak was observed in the Kratky curve (Fig. 5C, blue), demonstrating the stability of this α2β2 complex even under strongly inactivating conditions. With time, the Kratky curve slowly becomes more bimodal (Fig. 5C, red), approaching the state observed with wt-α2 and wt-β2 (Fig. S8B). Singular value decomposition analysis indicates that the data can be described as a two-state transition that is not completed over the course of 22 min (Fig. S9), whereas the change in shape of the Kratky curve is consistent with the conversion of α2β2 to α4β4. These results are consistent with very slow dissociation of the α2β2 complex, even under strongly inhibitory conditions.

Catalytic Activity of the Y730NH2-Y122α2wt-β2 Complex. We next investigated whether the stabilized complex is an active form of the enzyme. A modified RNR activity assay was conducted in which the Y730NH2-Y122α2wt-β2 complex was preformed by addition of His6-Y730NH2-Y122α2 to a mixture of wt-β2 (2 eq.), CDP, and ATP (mix 1). This solution was briefly aged and then diluted into a second solution containing the components of the standard steady-state RNR assay, including additional β2 (5 μM) and the reducing agents required for multiple turnovers, thioredoxin (TR), thioredoxin reductase (TRR), and NADPH (mix 2) (9). The activity of His6-Y730NH2-Y122α2 from the preformed NH2-Y122α2 wt-β2 complex was 86 ± 10 nmol min⁻¹ mg⁻¹. As a positive control, wt-β2 was omitted from mix 1 (i.e., no preformed complex) but included in mix 2. Under these conditions, His6-Y730NH2-Y122α2 had a specific activity of 88 ± 1 nmol min⁻¹ mg⁻¹, consistent with previous reports (10). This result indicates that the Y730NH2-Y122α2 wt-β2 complex induced by NH2-Y122α2 formation is either active itself or exists in rapid equilibrium with an active form of the complex. The fluorescence experiments indicate that koff for the complex is slow compared with the steady-state koff. This observation suggests it is the Y730NH2-Y122α2 wt-β2 complex itself that is an active quaternary structure. However, the effect of reductant(s) on the stability of the Y730NH2-Y122α2 wt-β2 complex has not been studied and could influence koff in the steady state.

Discussion

The results described herein provide very strong evidence that the reaction of Y730NH2-Y122α2, wt-β2, substrate, and effector generates a kinetically stable α2β2 complex and that the stability of this complex originates from the formation of a radical, NH2-Y730α2 on the RT pathway. Remarkably, the transfer of the equivalent of a single hydrogen atom from NH2-Y730 in α2 to Y122α2 in β2 in active RNR increases the kinetic stability of a 260-kDa complex by a factor of ~107 relative to wt-α2. Recent studies have indicated that the affinity between *E. coli* α2 and β2 is increased in the presence of matched substrate/effector pairs and that the binding of substrate/effector to α2 conformationally gates radical initiation in β2, indicating a role for nucleotide-induced conformational triggering of RT in the active α2β2 complex (10, 27). The previous studies extend this hypothesis by demonstrating that RT, in turn, transiently induces tight association between the subunits. We rationalize that this enhanced subunit affinity evolved as a regulatory mechanism to prevent quenching of transiently formed Y•s, which would result in RNR inactivation through loss of the catalytic oxidant.

Although the current studies have focused specifically on Y730NH2-Y122α2, studies with other RNRs containing unnatural Y analogs suggest that localizing a radical on the pathway is a general mechanism for strengthening and stabilizing α2β2 interactions. For example, we have recently reported the replacement of Y122α2 with several high-energy radical initiators (NO2Y122α2 or F2Y122α2). Incubation of these mutant β2s with wt-α2, substrate, and effector converts up to 50% of the initial radical at position 122 to a Y122α2 intermediate (28, 29). The lifetime of the Y122α2 depends on the identity of the radical initiator at position 122; however, in all cases, the new radical persists on the minute time scale. Recalling that Y122α2 is located on the C-terminal tail of free β2, would likely be reduced on the microsecond time scale (19), the observation of a long-lived Y122α2 suggests a comparably long-lived α2β2 association. In retrospect, a similar stabilization of the α2β2 complex likely accounts for the observations with the mechanism-based inhibitor 2′-azido-2′-deoxy nucleotide, which reacts in the presence of α2 and β2 to generate a nucleotide-based, nitrogen-centered radical (N•) in the enzyme active site. Fifty percent of the total initial Y• is rapidly lost concomitant with 50% formation of the N• and 90% loss of total enzyme activity, consistent with the half-life reactivity model. The complete loss of Y•, however, occurs only after 30 min, an observation suggestive of very slow subunit dissociation before complete Y• quenching (30).

The characterization of a stable, NH2-Y•-induced complex has provided a unique opportunity to visualize the active α2β2 complex “trapped” during catalysis by EM. Although the experiment was challenging due to the kinetic complexity and extent of NH2-Y• formation, class averages and 3D reconstructions reveal a compact, globular structure consistent with the docking model. SAXS experiments provide additional support for the solution stabilization of a Y730NH2-Y122α2 wt-β2 complex. These experiments, in combination with the previous PELDOR distances (16) and SAXS data (11), establish the docking model as an accurate representation of the active RNR structure.

In summary, the results presented above provide a visual representation of the active structure of the *E. coli* class Ia RNR. They also indicate that subtle conformational changes, which are induced by nucleotide binding and long-range RT, regulate RNR by preventing quenching of the catalytic radical at positions along the pathway, a loss that would result in enzyme inactivation. This mechanism is one of many that *E. coli* RNR uses to ensure the fidelity of its complicated radical chemistry.

Materials and Methods

Kα Measurements. *K*α for the interaction between NH2-α2s and wt-β2 or Y122α2wt-β2 was determined in assay buffer (50 mM Hepes, 15 mM Mg2+, 1 mM EDTA, pH 7.6) at 25°C by the competitive inhibition assay (8). Noncooperative binding data were fit to the standard *K*α equation (31) (Eq. S1); cooperative binding data were fit to the Hill equation (Eq. 55).

Pull-Down Assays. To a solution of untagged wt-β2 (10 μM) in EDTA-free assay buffer with CDP/ATP at 25°C was added either His6-α2 (wt) or His6-Y730NH2-Y122α2 (10 μM). The reaction mixture was mixed with Ni-NTA resin in the same buffer, incubated on ice (30 s), and centrifuged, and the supernatant was then removed. The resin was washed twice with EDTA-free assay buffer with 300 mM NaCl and 15 mM imidazole, and it was resuspended in EDTA-free assay buffer with 250 mM imidazole to elute bound protein. The protein in the supernatant at each step was assessed by 8% (wt/vol) SDS/PAGE.

![Fig. 5](https://example.com/fig5.png)
SF Fluorescence Experiments. DAN-(2j)Val(Sc) was prepared according to the protocol reported in the literature (22). SF fluorescence experiments were performed at 25 °C as described previously (32). In all cases, one syringe contained u2 (wt or yeast NH4Y, 0.16 µM), u2 (wt or met, 0.5 µM), CDP (1 mM), and ATP (3 mM) in assay buffer. A second syringe contained DAN-(2j)Val(Sc) (17.5 µM) in assay buffer. The contents of the syringes were mixed 1:1, and the fluorescence was monitored at >420 nm.

Structural Characterization by EM. Yeast NH4Y-u2 (1.5 µM), wt-u2 or met-u2 (3 µM), ATP (3 mM), and CDP (1 mM) were combined in assay buffer. The reaction mixture (8 µL) was applied to a carbon-coated EM grid, rinsed with assay buffer/ATP/CDP, and stained with a 2% uranyl acetate solution that also contained 0.2% trehalose. The specimens were imaged at 120 kV on a Tecnai F20 electron microscope (FEI) equipped with an UltraScan 4000 CCD camera (Gatan) using Leggion (33) operated in manual low-dose mode at a magnification of 50,000× with a pixel size of 2.18 Å at the specimen level. For the preparation with wt-u2, 48 pairs of images of the tilted and −55° tilted specimen were collected, and an initial dataset of 26,845 particle pairs was windowed from the CCD frames and processed using SPIDER (34). For the preparation with met-u2, 2,187 particles were windowed from 5 untilted images using SPIDER, and they were aligned and classified using the Iterative Stable Alignment and Clustering program in SPARX (35).

SAXS Analysis. SAXS data were collected using a Pilatus 100-K detector and an in vacuo 2-mm pathlength quartz capillary flow cell (36) at the Cornell High Energy Synchrotron Source (CHESS) G1 station. Data were processed following previously described protocols (11, 37). The momentum transfer vector is defined as q = 4πsin(θ)/λ, where λ is the X-ray wavelength and θ is the scattering angle with respect to the beam. Reaction components were mixed immediately before data acquisition. For each sample, exposures that did not exhibit time-dependent changes were averaged. All samples were in assay buffer with the nucleotide concentrations specified in the figure legends.

Activity Assays. His6-Y356DOPA-Y356-u2 (5 µM), wt-j2 (10 µM), [4H]-CDP (1 mM, 20,000 cpmmol), and ATP (3 mM) in a total volume of 25 µL were mixed in assay buffer at 25 °C, and the resulting solution was aged for 30 s. A fraction of this mixture (20 µL) was then diluted into a mixture (200 µL) containing additional wt-j2 (2.5 µM), [4H]-CDP (1 mM), ATP (3 mM), TR (0.5 µM), and NADPH (1 mM) in assay buffer, and RNR activity was measured (9).

ACKNOWLEDGMENTS. We thank Marco Jost and Jeremy Setzer (Massachusetts Institute of Technology) for assistance in SAXS data collection, Prof. Sol Gruner (Cornell University) for access to wet laboratory space, and Drs. Richard Gillilan and Soeren Nielsen (CHESS) for setting up the flow cell. CHESS is supported by the National Science Foundation and the National Institute of General Medical Sciences via National Science Foundation Award DMR-0936384; the Macromolecular Diffraction Facility at CHESS resource is supported by National Institute of General Medical Sciences Award GM08545. EM was performed at the National Resource for Automated Molecular Microscopy, which is supported by the National Institutes of Health through the National Center for Research Resources P41 program (RR017573). This research was supported by National Science Foundation Graduate Research Fellowship 1122374 (to L.O.) and by National Institutes of Health Grants K99GM100008 (to N.A.), F32GM094862 (to N.A.), GM67167 (to F.J.A.), P30-ES052109 (to C.L.D.), GM47274 (to D.G.N.), and GM29595 (to J.S.). C.L.D. is a Howard Hughes Medical Investigator.