Specific Trans-Synaptic Interaction with Inhibitory Interneuronal Neurexin Underlies Differential Ability of Neuroligins to Induce Functional Inhibitory Synapses

The MIT Faculty has made this article openly available. **Please share** how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Futai, K., C. D. Doty, B. Baek, J. Ryu, and M. Sheng. “Specific Trans-Synaptic Interaction with Inhibitory Interneuronal Neurexin Underlies Differential Ability of Neuroligins to Induce Functional Inhibitory Synapses.” Journal of Neuroscience 33, no. 8 (February 20, 2013): 3612-3623.</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1523/jneurosci.1811-12.2013</td>
</tr>
<tr>
<td>Publisher</td>
<td>Society for Neuroscience</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Jun 23 18:08:31 EDT 2017</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/80785</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Specific Trans-Synaptic Interaction with Inhibitory Interneuronal Neurexin Underlies Differential Ability of Neuroligins to Induce Functional Inhibitory Synapses

Kensuke Futai,†,1,2 Christopher D. Doty,†,* Brian Baek,†,* Jubin Ryu,†,2 and Morgan Sheng‡

†Brudnick Neuropsychiatric Research Institute, and Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604 and ‡The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Synaptic transmission depends on the matching and alignment of presynaptically released transmitters and postsynaptic neurotransmitter receptors. Neuroligin (NL) and Neurexin (Nrxn) proteins are trans-synaptic adhesion molecules that are important in validation and maturation of specific synapses. NL isoforms NL1 and NL2 have specific functional roles in excitatory and inhibitory synapses, respectively, but the molecular basis behind this distinction is still unclear. We show here that the extracellular domain of NL2 confers its unique ability to enhance inhibitory synaptic function when overexpressed in rat hippocampal pyramidal neurons, whereas NL1 normally only promotes excitatory synapses. This specificity is conferred by presynaptic Nrxn isoforms, as NL1 can also induce functional inhibitory synapse connections when the presynaptic interneurons ectopically express an Nrxn isoform that binds to NL1. Our results indicate that trans-synaptic interaction with differentially expressed presynaptic Nrxns underlies the distinct functions of NL1 and NL2, and is sufficient to induce functional inhibitory synapse formation.

Introduction

Excitatory (glutamatergic) and inhibitory (GABAergic) neurons send axons to their target neurons and form functional synaptic connections where postsynaptic receptors for glutamate and GABA are appropriately concentrated (Yamagata et al., 2003). However, the exact mechanisms that coordinate the alignment of presynaptic transmitter type with its cognate postsynaptic neurotransmitter receptor are not elucidated. Postsynaptically expressed Neuroligins (NLs; NL1–4) trans-synaptically bind Neurexins (Nrxns) [αNrxn1–3 (long form) or βNrxn1–3 (short)] and differentially regulate inhibitory and excitatory synapse function (Südhof, 2008). NL1 and NL2 are primarily situated in excitatory and inhibitory synapses, respectively (Song et al., 1999; Graf et al., 2004; Varoqueaux et al., 2004), and regulate corresponding synaptic function (Chubykin et al., 2007; Futai et al., 2007; Gibson et al., 2009; Blundell et al., 2010). While this indicates that NL1 and NL2 can distinguish between GABAergic and glutamatergic presynaptic inputs, the molecular mechanisms underlying the NL-dependent formation of functional excitatory and inhibitory synapses are poorly understood. It has been postulated that specific interactions with postsynaptic molecules may determine the differential subcellular localization of NL isoforms (Barrow et al., 2008; Pouloupolos et al., 2009). However, the postsynaptic molecules that determine the differential localization and function of NLs are still not identified.

Coculture studies have revealed that overexpression of βNrxn isoforms in non-neuronal cells induced the aggregation of both inhibitory and excitatory postsynaptic proteins in contacting neurons, while αNrxns triggered the assembly of inhibitory but not excitatory postsynaptic proteins (Nam and Chen, 2005; Chih et al., 2006; Kang et al., 2008). Moreover, knock-out mice lacking αNrxns exhibited a reduction in the density of symmetric inhibitory synapses in the brainstem (Missler et al., 2003). Therefore, αNrxns may have critical roles in inhibitory synapse formation. The study of Nrxn expression in hippocampus indicates region-specific and cell type-specific expression patterns of different Nrxn isoforms (Ullrich et al., 1995), which may limit the combinations of trans-synaptic NL–Nrxn interactions that can occur between particular pairs of contacting neurons. Therefore, the restricted pairing of NL–Nrxn isoforms between particular cell types may impart specificity on the synaptic functions of NL and Nrxn isoforms. For instance, if the Nrxn binding partners of a particular NL isoform are expressed only in inhibitory interneurons, then expression of that NL isoform in the postsynaptic neuron might be expected to promote inhibitory, but not excitatory synaptic function. This concept of synaptic specificity mediated by specific NL–Nrxn interactions has not been directly tested in neurons.

We report here that the extracellular domain of NL1 and NL2 confer the differential activities of these NLs on inhibitory synap-
tic transmission, and that βNrxns are abundantly expressed in excitatory neurons compared with inhibitory neurons. Furthermore, we demonstrate that even NL1, which is specific for excitatory synapses, can induce functional inhibitory synapses when the NL1 binding partner, βNrxn1, is introduced in presynaptic interneurons. Our results indicate that the NL–Nrxn interaction is sufficient to promote functional inhibitory synapses and that the differential role of NL1 and NL2 on inhibitory synaptic function is attributable to the low abundance of the primary NL1 ligand, βNrxn, in presynaptic interneurons.

Materials and Methods

Molecular biology

Expression and shRNA vectors. The expression and shRNA vectors have been reported previously for hemagglutinin (HA)-tagged mouse (m) NL1AB, mNL2A, mβNrxn1(4–), rat (r) αNrxn1(4–), and rNL2 shRNA (Scheiffele et al., 2000; Chih et al., 2005; Chih et al., 2006). HA-tagged mβNrxn2 (4–) and mβNrxn3 (4–) were gifts from Dr. Scheiffele (Biozentrum, University of Basel, Basel, Switzerland). Short hairpin sequences used for the knockdown experiments of NL2 were as follows: rNL2-shRNA: TGGAGCAAGGTC AACAGCAATTTCAAGGTCGTTGAACTGTCGGTTTT TTTC. Enhanced green fluorescent protein (EGFP), DsRed2 (Clontech), and TagBFP (Evrogen) were subcloned in the pCAG vector. The chimeric HA-tagged NL1AB with NL2 transmembrane and C terminus (NL1AB/NL2) was made by fusing the N terminus (1–695) of NL1AB (NP 619607) with amino acid (677–836) of NL2A (NP 942562) with a PCR-based method. The chimeric NL2A (1–676) with NL1 transmembrane and C terminus domains (696–843) was made in a similar fashion.

Single-cell reverse transcription. Harvesting the cytosol from CA3 and CA1 neurons was performed using the whole-cell patch-clamp technique described below. Patch pipettes were filled with the DEPC-treated internal solution containing the following (in mM): 140 K-methanesulfonate, 0.2 EGTA, 2 MgCl2, and 10 HEPES, pH adjusted to 7.3 with KOH. The resistance of the patch electrodes was 2.0–3.0 MΩ. The glass pipettes were baked at 200°C overnight. All other equipment, including electrode holder and tubing, was sprayed by RNase inhibitor (RNase Away) and kept clean before use. RNase inhibitor (1 U/μl; Ambion) was dissolved into internal solution for single-cell quantitative PCR (qPCR). Before filling the electrode with RNase inhibitor-containing solution (4.5 μl), the tip of the electrode was always loaded with a small volume of internal solution (~0.5 μl) to make a smooth seal formation. Immediately after the establishment of whole-cell recording, the contents of the recorded cell were aspirated into the patch pipette. The nuclei of target cells were not aspirated into the patch pipettes to avoid contamination of genomic DNA. The cytosol of the cell was expelled into an RNase-free 0.5 ml tube (Ambion) containing 15 μl of a solution consisting of dNTPs, random hexamer, and oligo-dT15 (Bio-Rad, i Script cDNA synthesis kit). After expelling the contents of the patch pipette into the reaction tube (total 20 μl), the mixture was incubated at 25°C for 5 min, 42°C for 3 h 30 min, and 85°C for 5 min.

Diagnostic PCR. The sequences of primers for the diagnostic PCR were designed by Perlprimer or as described previously (Jonas et al., 1999) (see below). The cDNA fragments of diagnostic genes were amplified by two-step PCR. Briefly, a solution containing the TaqDNA polymerase (2.5 U; Bio-Rad), the primer mixtures (a total of 22 primers, 5 pmol each), and template was added. For single-cell qPCR (see Fig. 3), 10% of total volume of cDNA aliquot (2 μl) was used for diagnostic PCR and 90% (18 μl) for the single-cell qPCR (see below, Single-cell qPCR). The thermal cycling was 95°C for 15 min, 94°C for 30 s, 60°C for 1 min, and 72°C for 1 min for 20 cycles. An aliquot (3 μl) of this reaction was added to the second PCR mixture containing one primer pair (0.1 μM each). A total of 35 amplification cycles were performed under the same condition as the first PCR. The second PCR products were separated on 1.5% agarose gels and the type of neuron was determined. Samples that failed to show expression of two ubiquitous genes, WYHAZ and tubulin, were not used for the single-cell qPCR. The cells that expressed GAD65 and/or GAD67 were defined as inhibitory interneurons and vesicular glutamate transporter 1 (VGluT1)-positive neurons as excitatory neurons. There were no cells expressing both inhibitory and excitatory neuronal markers. The sequence of PCR primers were as follows: GAD65, GenBank accession number, M72422: forward primer, CATCGCATTCAGTCAGAG; reverse primer, GAGACATCGATAACCTCCA; GAD67, GenBank accession number, M76177: forward primer, CTCAACTATGTGGCAAGAC; reverse primer, CCATAAGACAAACACGGTTG; VGlut1, GenBank accession number, RNU0769: forward primer, ATGTCACAGCAATGTG; reverse primer, GAGGAACAGCCTACT GCCA; PV, GenBank accession number, NM 022499: forward primer, GATGACAAAGTTGATACCC; reverse primer, CTTGGTTGGCTTCTTCAAG; reverse primer, GAGGAATCTTCCAACCC; Calb1, GenBank accession number, BC081764: forward primer, AGCTGCAAACTGTATC; reverse primer, ATACCTTCGCAAG CCTC; Cck, GenBank accession number, NM 012829: forward primer, GCACGGAAAGATATGAGGC; reverse primer, AG TCCGGTCACATTACC; Sst, GenBank accession number, NM 012659: forward primer, AGACTCGGTGACTTTTCTG; reverse primer, GAGGAGGATACAGGCTG; VIP, GenBank accession number, XM 001065820: forward primer, TATGGG CCTCCCTGAAATCTG; reverse primer, ATACCTTCGCAAG CCTC; YWHAZ, GenBank accession number, BC087603: forward primer, ATCCCA GTTCTCTGGAAATCTG; reverse primer, ATACCTTCGCAAG CCTC; Calb2, GenBank accession number, BC087603: forward primer, ATCCCA GTTCTCTGGAAATCTG; reverse primer, ATACCTTCGCAAG CCTC; GAD65, GenBank accession number, BC094305: forward primer, CTGATGGTACCTTGGAGG; reverse primer, CAAT TCCCTCTGTCATCC; Tubulin, GenBank accession number, J00798: forward primer, CTGACGATCCAATTCCTCC; reverse primer, ATGCCTTCGACCTGAT.

Single-cell qPCR. The single-cell cDNA samples identified for neuronal types by diagnostic PCR were further tested by single-cell qPCR. All primer sets and locked nucleic acid (LNA)-substituted Taqman probes were designed by the Beacon Designer. We first tested 129 primer sets for Nrxn isoforms (Nrxn1–4, Nrxn2–3, Nrxn4a–c, and Nrxn5) by SYBR green (Bio-Rad iQ SYBR Green kit) using the dilution series of cDNA prepared from P14 rat hippocampi and the primer sets, which exhibited the highest PCR efficiency with the corresponding Taqman probes, were chosen for the multiplex qPCR. None of the primers of βNrxns designed to span or flank introns exhibited >80% PCR efficiency. GAPDH was used as an internal control gene to normalize gene expression levels. The Taqman-based multiplex real-time PCR was performed in duplicate, and contained cDNA sample (9 μl) plus four probes, primer sets (α- or βNrxn1–3 and GAPDH) and multiplex qPCR mix (iQ Multiplex Powermix; Bio-Rad). A total of 40 amplification cycles were performed in a CFX96 Real-Time PCR Detection System (Bio-Rad) consisting of a heating step of 95°C for 15 s, followed by annealing and extension at 60°C for 50 s. Before amplification, the reaction mixture was held for 3 min at 95°C. The relative expression of Nrxns is given by the following: Relative expression = (1 + E_{GAPDH}^{C_{GAPDH}})^{(C_{GAPDH})/(1 +...
$E_{\text{PCR}} \approx \text{Ct}, \text{Nrxn}_1$; E, efficiency of target amplification (see PCR efficiency) and Ct, threshold cycle for target gene amplification.

The sequence of qPCR primers and probes were as follows: αNrxn1, GenBank accession number, NM96374: forward primer, TGCTAAAGGACAATACAACTG; reverse primer, GCAGAAGAGAAGCATCGATATG; sense probe, 5′-Gy5-aabgCctGccAtttCgaagG-3′ c-IowaBlackRQ-Sp3; PCR efficiency, 77; αNrxn2, GenBank accession number, NM96376: forward primer, CTGGGCTCTGATGTC; reverse primer, CTTCACGAGAAGATGATGTC; sense probe, 5′-HEX-cccAacGacCgGac-IowaBlackFQ3; PCR efficiency, 86; αNrxn3, GenBank accession number, NM053817: forward primer, GGGAAAAAAGAAAGGAAG; reverse primer, ATCCGCCTGAAAGTCCAC; sense probe, 5′-Tex615-cggAgcCagAagAaca-IowaBlackRQ-Sp3; PCR efficiency, 88; βNrxn1, GenBank accession number, NM96375: forward primer, CTGGATAGTCCTCCGCTCAC; reverse primer, GACCTGTAGATGCAATAGG; antisense probe, 5′-Cy5-atgCctGccGcc-IowaBlackRQ-Sp3; PCR efficiency, 75; βNrxn2, GenBank accession number, NM96377: forward primer, CACCTGCCACCTCTCCAC; reverse primer, CCTCCTCCGAAATGATGTC; sense probe, 5′-HEX-cctGccTcaAc-IowaBlackFQ3; PCR efficiency, 83; βNrxn3, cloned by Dr. Hiroki Taniguchi: forward primer, CTCTGGTGGAGTTCTTCTA; reverse primer, GCCGTGGAATGTGTTTGC; sense probe, 5′-Tex615-accCctCtcCtcCtc-IowaBlackRQ-Sp3; PCR efficiency, 88; GAPDH, GenBank accession number, NM017008: forward primer, CTTCCTCTCGATGTC; reverse primer, GAGTGGATCTCCATTTCTCAATG; reverse primer, GCCGTGGAATGTGTTTGC; sense probe, 5′-Tex615-accCctCtcCtcCtc-IowaBlackRQ-Sp3; PCR efficiency, 88; GAPDH, GenBank accession number, NM017008: forward primer, CTTCCTCTCGATGTC; reverse primer, GAGTGGATCTCCATTTCTCAATG; reverse primer, GCCGTGGAATGTGTTTGC; sense probe, 5′-FAM-tctGacAtcc-CggCctg-IowaBlackFQ3; PCR efficiency, 88. The capital and bold letters in primers are LNAs.

Primary hippocampal neuron culture, transfection, and immunocytochemistry. Primary hippocampal cultures were prepared from the brains of individual rat embryos at embryonic day 19 (either sex) as described previously (Brewer et al., 1993) with some modifications. Hippocampi were dissected at 4°C and digested with trypsin, which was inactivated by the addition of fetal calf serum. Tissue was dissociated in Neurobasal/B27 (Invitrogen) medium supplemented with 2% B27 supplement. To visualize axonal and dendritic segments: confocal images of 512 × 512 pixels were taken from hippocampal primary culture with a spinning disk confocal microscope (Nikon; University of Massachusetts Medical School Imaging Core Facility), and ×100 or ×40 objective with sequential acquisition settings. Long narrow processes with varicosities were defined as axons and VGluT1-immunopositive sites were defined as presynaptic terminals of excitatory synapses.

Each image was a Z-series projection of x-y images, and taken at 0.2 μm depth intervals. Morphometric measurements were made using MetaMorph software (Molecular Devices). The localization of βNrxn1 and VGluT1 or VGAT staining signals were evaluated by dividing the area of βNrxn1, which was overlapped with VGluT1 or VGAT, by the total area of βNrxn1.

Morphological analysis of spines from cultured hippocampal slices was performed as follows. Three days after biotin transport of GFAP with or without NLs in organotypic slice cultures, the slices were fixed with 4% PFA and 4% sucrose in PBS overnight. The slices were then cryoprotected in 30% sucrose in 0.1 M phosphate buffer (pH 7.4) for 2 h at room temperature, rapidly frozen on dry ice, thawed in PBS, and stained with GFP antibodies in DAB buffer (0.1% gelatin, 0.3% TX-100, 450 mM NaCl, and 32% 0.1 M phosphate buffer, pH 7.4) (McAllister, 2000). Confo cal images were obtained using a 63× objective. Morphometric analysis and quantification were performed using MetaMorph software. All measurements were made in a “blind” manner.

Electrophysiology. Simultaneous recording from two adjacent hippocampal CA1 pyramidal cells. Organotypic hippocampal slice cultures were prepared from postnatal 6- to 7-d-old rats of either sex as described previously (Nakagawa et al., 2004; Futai et al., 2007). All animal protocols were approved by the Institutional Animal Care and Use Committee at Massachusetts Institute of Technology and University of Massachusetts Medical School. Neurons were transfected using biotinylated gene gun (Bio-Rad) at DIV 4–6, and were assayed 3 or 5 d after transfection of NLs or NL2-shRNA, respectively. A total of 100 μg DNA and 10 mg gold particles (1.6 μm diameter) were used to prepare ∼50 bullets. The extracellular solution was as follows (in mM): 119 NaCl, 2.5 KCl, 4 CaCl2, 4 MgCl2, 26 NaHCO3, 1 NaH2PO4, 11 glucose, and 0.01 2-chloroadenosine (Sigma), gassed with 5% CO2/95% O2, pH 7.4, unless otherwise noted. 2-Chloroadenosine, an agonist of the adenosine A1 receptor, was included in the extracellular solution to prevent bursting of the slice culture. Whole-cell voltage-clamp recordings were made simultaneously from a pair of CA1 pyramidal neurons, one transfected (visualized by cotransfecting GFP) and one untransfected neighbor. The patch recording pipettes (2–4 MΩ) were filled with internal solution containing the following (in mM): 115 cesium methanesulfonate, 20 CsCl, 1% Triton X-100, and 0.45 M NaCl.

Antibodies. The following antibodies were used: rabbit anti-vesicular GABA transporter (VGAT; 1:5000 dilution; Synaptic Systems); guinea pig anti-VGluT1 (1:10000; Synaptic Systems); rabbit anti-parvalbumin (1:2000; SWANT); goat anti-parvalbumin (1:1000; SWANT); mouse anti-βNrxn1 (1:1000, Neuromab); rabbit anti-HA (1:3000; Santa Cruz Biotechnology); mouse anti-GAPDH (1:1000; Millipore Bioscience Research Reagents); secondary Alexa dye-conjugated anti-mouse (Alexa 488, anti-rabbit (Alexa 594), anti-goat (Alexa 405 or 594), and anti-guinea pig (Alexa 647 anti-IgG) (Invitrogen); horseradish peroxidase-conjugated anti-mouse and anti-rabbit (GE Healthcare) antibodies.

Western blotting. Nrxn-transfected HEK293T cells were solubilized in lysis buffer (10 mM Tris, pH 8.0, 200 mM NaCl, 1% Triton X-100, 1% SDS, protease inhibitors) and loaded onto 8% SDS-PAGE gels. Crude membrane fraction of rat hippocampus (P14) was isolated as described previously (Carlin et al., 1980). Protein bands were transferred to nitrocellulose membranes (Bio-Rad). Primary antibodies (1:1000 to 1:3000 dilution) were applied in blocking buffer (20 mM Tris, pH 7.4, 137 mM NaCl, 0.1% Tween 20, and 1% bovine serum albumin, 5% nonfat milk) for 2 h at room temperature. Secondary antibodies were used at 1:2000 dilution. The signal was detected using an ECL detection kit (PerkinElmer Life Sciences).

Neuronal imaging. Immunostaining of axonal and dendritic segments: confocal images of 512 × 512 pixels were taken from hippocampal primary culture with a spinning disk confocal microscope (Nikon; University of Massachusetts Medical School Imaging Core Facility), and ×100 or ×40 objective with sequential acquisition settings. Long narrow processes with varicosities weredefined as axons and VGluT1-immunopositive sites were defined as presynaptic terminals of excitatory synapses.
produce an IPSC amplitude of 500–1000 pA in untransfected pyramidal neurons. After obtaining 40 to 50 consecutive stable IPSC responses evoked at 0.2 Hz with a stimulating electrode placed in the stratum radiatum, picrotoxin (0.1 mM, Sigma) was added to ACSF to eliminate the IPSC. Then, AMPAR-EPSCs were evoked at $V_{\text{hold}} = -60$ mV without changing stimulus strength. This stimulus condition evoked ~50 pA of AMPAR-EPSC. The measurement of GABA$_A$-R-mediated and AMPAR-mediated miniature synaptic current was performed similarly (to measure stimulation-evoked GABA$_A$-R-PCs and AMPAR-PCs) in the presence of tetrodotoxin (TTX; 0.001 mM; Tocris Bioscience) in extracellular solution. Events smaller than 5 pA were excluded from the analysis. Experiments and analysis were done blind to the DNA constructs used.

Presynaptic and postsynaptic double whole-cell recording from hippocampal CA1 neurons. Dual whole-cell recordings were performed from presynaptic untransfected interneurons and postsynaptic pyramidal cells expressing GFP with or without NL isoform. Double or triple whole-cell recordings were performed from DsRed2 and Nrnx isoform expressing presynaptic interneuron, untransfected and GFP with NL expressing postsynaptic pyramidal cells. 2-Chloroadenosine was omitted from the extracellular solution. We used DEPC-treated potassium-based internal solution (substituted potassium for cesium) for whole-cell recording of presynaptic interneurons. Synaptic transmission was evoked by applying two 70 mV depolarization pulse from -70 mV of 2–4 ms duration to the presynaptic interneuron in voltage-clamp mode delivered at 0.1 Hz while recording postsynaptic IPSCs from the excitatory neuron at 0 mV. Synaptic connectivity was tested by applying 50 consecutive paired (at 50 ms interval) stimulations; responses larger than 10 pA observed within 5 ms after the onset of either of the pulses were counted as evoked unitary GABA$_A$-R-IPSC. If any evoked response was observed during this period, the pair was considered synthetically connected. Immediately after recording, cytosol of presynaptic interneurons was collected in a recording pipette and expelled into reverse transcription reaction solution from which diagnostic PCR was performed to identify the interneuron type. Experiments were done blind to the DNA constructs used.

Single-cell electroporation to presynaptic interneurons. One day after biolistic gene transfection as described above, slices were transferred to a microscope equipped with differential interference contrast optics and perfused with the extracellular solution with TTX (0.001 mM) but without 2-chloroadenosine. Biolistically transfected NL isoform in CA1 pyramidal neurons was identified by coexpressed EGFP epifluorescence. Inhibitory neurons within 100 μm radius of the GFP-positive pyramidal neurons were visually identified and were electroporated with DsRed2 and Nrnx plasmid-containing solution (0.1–0.2 μg/ml) with 100 Hz frequency of 1 V square pulse for 300–700 ms through patch pipette (3–5 MΩ) using a single-cell electroporator (Axoporator 800A; Molecular Devices). Plasmids (0.2 μg/μl) were dissolved in the same internal solution for single-cell reverse transcription. After electroporation, slices were transferred to the CO$_2$ incubator and cultured under semisterilized condition for 2 d. Note that the transfection duration of NL isoforms in Figures 5 and 6 are 3 d, which is the exact same transfection condition we used in Figures 1 and 2.

Statistical analysis
Results are reported as mean ± SEM. The statistical significance was evaluated by Kruskal–Wallis ANOVA or one-way ANOVA with post hoc Dunnett for multiple comparison, and by Student’s t test or Mann–Whitney test for two-group comparison. Statistical significance was set at $p < 0.05$.

Results

NL2 isoforms but not NL1 regulate inhibitory synaptic transmission
To examine the roles of NL1 and NL2 in excitatory and inhibitory synapse function, we biolistically transfected NL isoforms NL1AB or NL2A [the two major splice forms of NL1 and NL2 expressed in hippocampus (Chih et al., 2006)] in CA1 pyramidal cells of organotypic hippocampal slice cultures (Fig. 1). Simultaneous electrophysiological recordings were made from transfected and neighboring untransfected neurons. CA1 pyramidal cells overexpressing NL1AB showed evoked GABA$_A$-R-mediated IPSCs indistinguishable from neighboring, untransfected control neurons, but a marked increase in AMPAR-mediated EPSCs, as reported previously (Fig. 1, A–F, for summary) (Chubykin et al., 2007; Futai et al., 2007). In contrast, overexpression of NL2A induced enhancement of IPSC as well as EPSC compared with neighboring untransfected cells (Fig. 1, B–F). The NL2-mediated enhancement of IPSC and EPSC did not require the presence of the alternative splice insertion at site A (Fig. 1, C–F). We also compared the quantal events of inhibitory and excitatory synaptic responses (mIPSC and mEPSC) in NL-transfected neurons (Fig. 2). Postsynaptic transfection of NL1AB greatly increased mEPSC frequency (but not amplitude) compared with untransfected neurons (Fig. 2, B, C); in contrast, there was no significant effect on mIPSC amplitude or frequency (Fig. 2, E, F). NL2A overexpression increased the frequency of both mIPSCs and mEPSCs (Fig. 2, C, F), although there was a modest reduction of mIPSC amplitude (Fig. 2E). Thus NL1 specifically enhanced excitatory synaptic input, whereas NL2 enhanced both excitatory and inhibitory synaptic transmission onto the transfected cell. The above results suggest that the enhancement of EPSC by NL1 and NL2 is due to an increase in the number of functional excitatory synapses, consistent with studies in dissociated neurons (Chih et al., 2005, 2006; Levinson et al., 2005). We measured the spine density of CA1 pyramidal neurons overexpressing NL1AB or NL2A in hippocampal slice culture (Fig. 2G–J). Compared with GFP transfection alone, both NL1AB and NL2A transfection caused a significant increase in spine density, with no change in spine dimensions (Fig. 2H–J), which is in line with NL1 and NL2 having a large effect on enhancement of mEPSC frequency. The stimulatory effect of NL2A on excitatory synapses has been reported in dissociated cultured neurons (Chih et al., 2005, 2006; Levinson et al., 2005) and overexpressed NL2 is reported to show colocalization with PSD-95 (Graf et al., 2004; Levinson et al., 2005), though not consistently (Chubykin et al., 2007).

The extracellular domains of NLs determine the specific synaptic function of NL isoforms

Inhibitory synaptic function was enhanced by postsynaptic overexpression of NL2A (Fig. 1B, F). Moreover, shRNA-mediated knockdown of endogenous NL2 resulted in selective reduction of IPSC amplitude, with no effect on EPSC (data not shown) [IPSC amplitudes (untransfected: 603.6 ± 75.5 pA; transfected 149.2 ± 24.8 pA; $p < 0.001$) and EPSC amplitudes (untransfected: 36.6 ± 7.4 pA; transfected 31.8 ± 7.8 pA; $p = 0.2$)]. These results are consistent with another study (Chubykin et al., 2007) and indicate a specific role of postsynaptic NL2 in regulation of inhibitory synaptic input.

Which domain of NL2 mediates its action on inhibitory synapse? Because NL1 has no effect on inhibitory synaptic transmis-
sion (Fig. 1A,F), we swapped the NL1AB and NL2A extracellular domains to generate chimeric constructs in which the NL1AB extracellular domain was conjugated to the transmembrane (TM) and intracellular domains of NL2 (NL1AB/NL2), or the NL2A extracellular domain was fused to the TM and intracellular domains of NL1 (NL2A/NL1). We then measured IPSCs and EPSCs in neurons transfected with these chimeras. NL1AB/NL2 transfection had no significant effect on IPSC amplitude compared with untransfected neurons (Fig. 1D). In contrast, NL2A/NL1 transfection increased IPSC, similarly to NL2A (Fig. 1E,F). Both NL1AB/NL2 and NL2A/NL1 massively enhanced EPSC (Fig. 1D,E). The latter result—which is to be expected since the parental NL1AB and NL2A constructs have similar effects on EPSC—demonstrates that the NL chimeras are expressed and functional. Together, the data indicate that the enhancement of IPSC is conferred by the extracellular domain of NL2 (Fig. 1F).

βNrxn1 is prominently expressed in CA3 pyramidal neurons but only weakly in interneurons

The above experiments indicate that the extracellular domain of NL2, but not that of NL1AB, contains the determinant that enhances inhibitory synaptic transmission. Since the extracellular domain of NLs mediate selective interactions with Nrxns, we hypothesized that differential expression of specific Nrxn isoforms with distinct affinities for NL1 and NL2 in axons of GABAergic versus glutamatergic neurons underlies the differential effect of NL2 and NL1 on IPSC. As a first step to test this hypothesis, we performed single-cell qPCR and measured the expression of specific Nrxn isoforms in CA3 pyramidal neurons, the excitatory presynaptic partner of CA1 interneurons that provide inhibitory input to CA1 pyramidal cells. Parallel with qPCR of Nrxns, the pyramidal and interneuronal cell types were identified by conventional reverse transcription (RT)-PCR for cell-type markers (see Materials and Methods, Diagnostic PCR) and divided on this basis into three interneuron groups: parvalbumin (PV)-, somatostatin (Sst)-, and cholecystokinin (Cck)-expressing interneurons. Notably, the expression of βNrxn1 in all three of these interneuron subtypes was much lower than that in CA3 pyramidal neurons (Fig. 3A). In contrast, there was no statistically significant differential expression of βNrxn2 or βNrxn3 between pyramidal neurons and interneuronal cells. This result suggests that the overall expression of βNrxn isoforms in excitatory neurons is higher than that in interneurons. The expression of αNrxn1, but not of 2 and αNrxn3, was also elevated in CA3 pyramidal neurons compared with CA1 interneurons (Fig. 3B).

To evaluate the cell type-specific expression of Nrxns at the protein level, we next performed immunocytochemistry for βNrxn1 in presynaptic terminals of excitatory and inhibitory neurons. Using an anti-βNrxn1 antibody that detected only...
βNrxn1 and its splice variants (Fig. 4A), we measured the area of βNrxn1 puncta overlapping with the presynaptic markers of excitatory (VGluT1) or inhibitory (VGAT) synapses in cultured hippocampal neurons (Fig. 4B). Importantly, βNrxn1 colocalized largely with VGluT1: the area of βNrxn1 puncta overlapping with VGluT1 was much higher than with VGAT, indicating a specific association of βNrxn1 with excitatory synapses (colocalization of βNrxn1 and VGluT1: 61.7 ± 3.3%; βNrxn1 and VGAT: 3.45 ± 0.4%; βNrxn1, VGluT1, and VGAT: 1.4 ± 0.3%; n = 14 neurons, >300 puncta were measured from each neuron, p < 0.00001, Student’s t test). The degree of colocalization of excitatory and inhibitory synapse markers VGluT1 and VGAT (2.73 ± 0.4%) was similar to that of βNrxn1 and VGAT, supporting that βNrxn1 is an excitatory synapse-specific Nrxn isoform. We also performed staining of mouse hippocampal dissociated neurons (DIV 21) and obtained similar results (colocalization of βNrxn1 and VGluT1: 60.6 ± 9.3%; βNrxn1 and VGAT: 16.1 ± 11.3%; n = 13 neurons, p < 0.00001, Student’s t test, data not shown). In addition, we confirmed the specific localization of βNrxn1 in excitatory synaptic terminals in hippocampal slice culture (Fig. 4C) (colocalization of βNrxn1 and VGluT1: 56.5 ± 1.8%, βNrxn1 and VGAT: 1.4 ± 0.11%, βNrxn1, VGluT1, and VGAT: 0.6 ± 0.8%, n = 6 slice cultures/3 rats, >1500 puncta were measured from each slice, p < 0.00001, Student’s t test). Furthermore, we measured the expression of βNrxn1 in axonal segments of excitatory and PV-expressing neurons. Axonal segments of excitatory neurons (marked by transfected BFP) were immunoreactive for anti-βNrxn1 antibody (Fig. 4D). In contrast, the axonal projections of PV interneurons visualized by PV immunoreactivity displayed lack of βNrxn1 signals (Fig. 4E). Together with the predominant expression of βNrxn1 mRNA in excitatory neurons (Fig. 3), the above immunostaining results provide strong evidence that βNrxn1 is predominantly localized in the presynaptic terminals of excitatory rather than inhibitory neurons.

NL1AB can induce functional inhibitory synaptic connections when βNrxn1 is ectopically expressed in inhibitory interneurons

βNrxns bind directly to NL1, including the NL1AB isoform (Boucard et al., 2005; Comoletti et al., 2006, 2007; Araç et al., 2007; Chen et al., 2008; Reissner et al., 2008; Koehnke et al., 2010). Notably, the binding affinity of NL2 and βNrxn1 has been reported as ~300-fold lower than that of NL1-βNrxn (Comoletti et al., 2006; Leone et al., 2010, but also see Koehnke et al., 2010). We hypothesized that the specific ability of postsynaptic NL1AB overexpression to induce excitatory but not inhibitory synaptic transmission is due to the abundant expression of βNrxns, especially βNrxn1, in CA3 pyramidal neurons but the relatively low expression of βNrxns in inhibitory interneurons.
efficiency of the biolistic transfection was not the ideal transfection method for interneurons, which represent only ~10% of all cells in hippocampus. We therefore used a single-cell electroporation technique to transfec Nrxns into CA1 interneurons (see Materials and Methods) (Haas et al., 2001). We transfected three Nrxn1 isoforms—βNrxn1 containing an insertion at site 4 [βNrxn1(4+)A], lacking splice insertion at site 4 [βNrxn1(4−)], or αNrxn1(4−)—together with marker DsRed2 into visually identified CA1 interneurons. Two days after electroporation, we performed dual whole-cell recording from Nrxn1-transfected presynaptic interneurons (DsRed2 positive) and nearby (within 100 μm) untransfected postsynaptic pyramidal neurons (Fig. 5D–F). Control cell pairs consisted of presynaptic interneurons transfected with DsRed2 alone and untransfected postsynaptic pyramidal neurons. In cell pairs expressing βNrxn1(4+ or 4−) in presynaptic interneurons, there was no detectable change in uIPSC or connectivity (Fig. 5E, F). Similarly, presynaptic overexpression of αNrxn1(4−), a candidate binding partner for NL2 but not NL1AB (Boucard et al., 2005; Kang et al., 2008), did not enhance connectivity or uIPSC compared with control cell pairs.

We hypothesized that the sole overexpression of postsynaptic NL1AB or presynaptic Nrxn1 was not sufficient for induction of inhibitory synapses because the expression of the respective binding partners (presynaptic βNrxns or postsynaptic NLs) is limiting. This hypothesis predicts that concomitant overexpression of βNrxn in presynaptic interneurons together with NL1AB in postsynaptic pyramidal neurons should result in enhanced inhibitory synaptic transmission between the two cells. Thus, we tested the effect of simultaneous transfection of Nrxn1 in the presynaptic interneuron and NL1AB in the postsynaptic pyramidal neuron (Fig. 6). The presynaptic and postsynaptic dual gene transfection was performed using a combination of biolistic gene gun (postsynaptic pyramidal neurons) and single-cell electroporation (presynaptic interneurons). Indeed, we observed an increase in connectivity in the cell pairs expressing βNrxn1(4+ or 4−) in the presynaptic interneuron and NL1AB in the postsynaptic pyramidal neuron. All dually transfected cell pairs (100%, 23/23 cell pairs tested) showed functional inhibitory synaptic connections, compared with 51.1% (48/94 pairs) for control cell pairs (Fig. 6C). Moreover, the dually transfected cell pairs that expressed presynaptic βNrxn1(4−) and postsynaptic NL1AB exhibited markedly enhanced uIPSC amplitudes compared with control pairs (Fig. 6B). Cell pairs transfected with βNrxn1(4+) and NL1AB showed a slight increase in mean uIPSC amplitude that did not reach statistical significance. Since postsynaptic transfection of NL1AB by itself did not alter inhibitory synaptic transmission (Figs. 1A, 5B), these results indicate that the enhancement of connectivity and uIPSC is due to specific trans-synaptic interaction of βNrxn1 and NL1AB. The greater effect of βNrxn1(4−) correlates with its higher binding affinity for NL1 containing splice insertion at site B (Boucard et al., 2005; Reissner et al., 2008; Koehnke et al., 2010). Notably, postsynaptic interneurons overexpressing αNrxn1(4−), which does not bind to NL1AB (Boucard et al., 2005), did not increase uIPSC amplitude or connectivity with NL1AB–transfected pyramidal neurons, corroborating the importance of specific trans-synaptic Nrxn–NL interaction on functional synapse induction (Fig. 6B, C).
Figure 4. βNrxn1 is predominantly expressed in excitatory presynaptic sites. A, Specificity of βNrxn1 antibody confirmed by probing lysates from HEK293T cells overexpressing HA-tagged αxln1(4−1), βNrxn1(4−1), βNrxn2(2−4) or βNrxn3(4−1), and hippocampal extract. Immunoblotting images with HA (left) or βNrxn1-specific (right) antibody. Membranes were first probed with rabbit HA antibody, stripped, then reprobed with mouse βNrxn1 or GAPDH antibody. The expression of βNrxn1 isoform was confirmed in hippocampus. B, Cultured hippocampal neurons (DIV 14) were fixed and immunostained for βNrxn1 (B1, green in B4 and B5), VGluT1 (B2, red in B4 and B6), and VGAT (B3, blue in B5 and B6). Projection (up) or single-plane (bottom) confocal images were taken from dendritic segments. C, Organotypic hippocampal slice cultures (DIV 8) were fixed and immunostained for βNrxn1 (C1, green in C4), VGluT1 (C2, red in C4), and VGAT (C3, blue in C4). Left, Single-plane low-magnification confocal images were taken from hippocampal CA1 stratum pyramidale and radiatum areas. Right, Single-plane high-magnification images in hippocampal stratum radiatum area. Asterisks represent cell bodies in stratum pyramidale. D, Cultured rat hippocampal neurons (DIV 11) were transfected with BFP. Three days after transfection (DIV 11+3), endogenous βNrxn1 and VGluT1 were immunostained with βNrxn1 (D2, green in D4) and VGluT1 (D3, red in D4) antibodies, and the axonal segment of transfected spiny excitatory neurons was visualized by BFP epifluorescence (D1, blue in D4). All VGluT1 puncta in axonal segments were colocalized with βNrxn1 (n = 4 neurons, >20 VGluT1 puncta were tested in each neurons). E, Lack of βNrxn1 immunoreactivity in axonal segment of PV+ interneurons. Fixed cultured hippocampal neurons (DIV 14) were immunostained for PV (E1, E3, red in E5) and βNrxn1 (E2, E4, green in E5). E1, E2, Low-magnification images of PV-expressing neuron. Arrows, dendritic segments; yellow arrowheads, axonal terminals. E3–E5, High-magnification images of region in white rectangle in E1. Scale bars: 10 μm.
NL2A couples with αNrxn1 to form functional inhibitory synapses

Biochemical assays revealed that NL2 directly binds to αNrxn1 (Boucard et al., 2005). Interestingly, the binding affinity of NL2 and βNrxn appears to be much lower than that of NL1–βNrxn (Comolli et al., 2006; Leone et al., 2010), but also see Koehnke et al. (Koehnke et al., 2010). However, the coculture studies suggested that overexpression of either βNrxns or αNrxns triggers the assembly of inhibitory postsynaptic proteins (Nam and Chen, 2005; Chih et al., 2006; Kang et al., 2008). To address in neurons which Nrxns or αNrxns is sufficient to promote functional inhibitory synapses and αNrxns syner-gizes with NL2A to form inhibitory postsynaptic proteins (Nam and Chen, 2005; Chih et al., 2006; Kang et al., 2008). To address in neurons which Nrxns or αNrxns is sufficient to promote functional inhibitory synapses and αNrxns syner-

Discussion

Despite the lines of evidence suggesting that different combinations of trans-synaptic adhesion molecules can determine either excitatory or inhibitory synapse function, the specifics of this model have not been elucidated. NL1AB and NL2A have been contrasted as the excitatory and inhibitory synapse-specific postsynaptic adhesion molecules, respectively; however, the molecular mechanisms that confer specific function to NL1 and NL2 have not been fully understood. Our results demonstrate that the extracellular domain of these NL isoforms confers their differential function on GABAergic synaptic transmission. We also found that βNrxn1 is specifically local-

Figure 5. Presynaptic overexpression of Nrxn alone does not change inhibitory synaptic transmission. A–C, Effect of postsynaptic overexpression of Nrxns (N1, red; N2: blue) on unitary inhibitory synaptic transmission in hippocampal CA1 pyramidal neurons. A, Configuration of dual whole-cell recording (top) and averaged sample uIPSC traces by two presynaptically applied depolarization commands (bottom). B, C, Summary of uIPSC amplitude (B) and connectivity (C). The cell pairs, which consist of untransfected interneurons and Nrxn-expressing postsynaptic pyramidal neurons, were used as the control. p = 0.014 by one-way ANOVA, post hoc Dunnett test *p < 0.05. D–F, Effect of presynaptic overexpression of Nrxns (αNrxn1, light gray; βNrxn1, dark gray) on inhibitory synaptic transmission in hippocampal CA1 pyramidal neurons. D, Configuration of dual whole-cell recording (top), and averaged sample uIPSC traces (bottom). Nrxns were overexpressed in CA1 interneurons by electroporation and postsynaptic response was measured from neighboring untransfected CA1 pyramidal neurons. Summary of uIPSC amplitude (E) and connectivity (F). Controls are neuronal pairs expressing DsRed2 presynaptically. Number in each bar represents the number of synaptically connected cell pairs (B, E) and total number of cell pairs tested (C, F).
NL1AB binding partner, i.e., βNrxn1, in presynaptic interneurons.

The binding affinities between the various NL isoforms and Nrxn splice variants remain to be fully worked out. With regard to NL1, Boucard et al. (2005) reported that the NL1 splice variants containing a B insertion specifically bind to βNrxn1(4−), but not to βNrxn1(4+) or αNrxn1(4−). However, another study indicated that NL1AB is capable of binding to the LNS6 domains of αNrxn1 and βNrxn1(4+), albeit with lower affinity (Reissner et al., 2008; Koehnke et al., 2010). In addition, cell pairs expressing βNrxn1(4−) or βNrxn1(4−) in interneurons and NL1AB in pyramidal neurons showed enhanced (100%) synaptic connectivity, although the increased amplitude of uIPSCs showed enhanced (100%) synaptic connectivity, although the increased amplitude of uIPSCs only reached statistical significance (Futai et al., 2013). These results suggest that NL1AB can bind to both isoforms of βNrxn1 in the cell–cell context, and that the difference of uIPSC amplitude (perhaps a more quantitative measure) may be due to a stronger binding affinity of βNrxn1(4−) for NL1AB (Reissner et al., 2008; Koehnke et al., 2010). In addition, cell pairs expressing αNrxn1(4−) in interneurons and NL1AB in pyramidal neurons exhibited no significant synaptic effect compared with controls, consistent with the low binding affinity of NL1AB to αNrxn1(4−) (Boucard et al., 2005).

Our connectivity study also suggests that the endogenous presynaptic binding partner of NL2 is αNrxns, rather than βNrxns, because presynaptically overexpressed βNrxn1(4−) or βNrxn1...
(4+) did not functionally interact with postsynaptically expressed NL2A to enhance inhibitory synapses, even though they were effective with postsynaptic NL1AB (Figs. 5, 6). Our qPCR results indicate that αNRxns are weakly expressed in PV+ interneurons (Fig. 3). This may suggest that other αNRxns isoforms (αNRxns2 and αNRxns3) work as the partner of NL2A to form functional inhibitory synapses in PV+ interneurons (Kang et al., 2008). Multiple studies have reported that βNRxns are capable of inducing the clustering of inhibitory postsynaptic molecules (Chih et al., 2006; Kang et al., 2008). Perhaps NL3 could mediate the assembly of inhibitory postsynaptic molecules through an interaction with βNRxns (Budreck and Scheiffele, 2007). Further study using our dual cell transfection technique should help to reveal the functional consequences of not only additional specific NL–NRxns interactions, but also any other trans-synaptic interactions.

Even though NLs are not absolutely essential for “structural” synapse formation in mouse knock-out models (Varoqueaux et al., 2006), it has been proposed that NLs validate the function (excitatory vs inhibitory) of the synapse because of their differential subcellular localizations. Since NL1 is usually associated with excitatory postsynaptic proteins (such as PSD-95), how does postsynaptic NL1AB cooperate with βNRxns1 in presynaptic interneurons to assemble functional inhibitory synapses? Our results uncover the capability of NL1AB as an “organizer” of inhibitory synapses when there is a binding partner of NL1AB, βNRxns1, present in the presynaptic interneuron. It is reasonable to speculate that the intracellular domain of NL1 can serve as the adaptor domain for the assembly of inhibitory postsynaptic proteins. Although the intracellular domain of NL1 and NL2 are overall only moderately homologous (50% homology, 38% identity in amino acid sequence), the three characterized domains, the PDZ-binding motif, gephyrin-binding motifs, and critical domain (structurally unsolved), are highly conserved between NL1 and NL2 (Meyer et al., 2004; Poulopoulos et al., 2009; Shipman et al., 2011). Therefore, we propose that the trans-synaptic interaction alone can nucleate functional inhibitory synapse formation, at least under overexpression conditions, and that any NL intracellular domain can perform the protein interactions required for the kind of synapse specified. Indeed, NL2 can bind to PSD-95 (Meyer et al., 2004) and colocalize with PSD-95 both in vitro (Levinson et al., 2005) and in vivo (Hines et al., 2008).

Our study sheds light on the hierarchical interaction of NL–NRxns binding. Postsynaptic overexpression of NL2A by itself strongly increased both stimulation-evoked and unitary inhibitory synaptic transmission (Figs. 1B, 5B, C). However, presynaptic transfection of any NRxn1 isoforms had no effect on inhibitory synaptic function in untransfected postsynaptic neurons (Fig. 5E, F). It is notable that the overexpression of αNRxns1(4+), one of the strongest candidates for inhibitory presynaptic NRxns (Chih et al., 2006; Kang et al., 2008), did not further promote functional inhibitory synapse formation on to untransfected pyramidal neurons. A similar result was observed for excitatory synapses (Futai et al., 2007). Presynaptic overexpression of βNRxns1(4+) in CA3 pyramidal neurons neither increased unitary excitatory synaptic transmission nor connectivity to neighboring untransfected pyramidal neurons, which might be because the number of endogenous postsynaptic NLs is limiting. This explanation is supported by our presynaptic and postsynaptic overexpression study because NRxn1-overexpressing interneurons showed 100% of connectivity when the corresponding NRxn binding partner was simultaneously transfected in postsynaptic pyramidal neurons (Fig. 6).

A large number of genetic studies has revealed the association of NRxns1 with autism spectrum disorder, schizophrenia, mental retardation, and nicotine dependence (Reichelt et al., 2012). Furthermore, a loss-of-function mutation of NL2 was found in schizophrenia (Sun et al., 2011). Therefore, it is of particular interest to understand the trans-synaptic interaction between NRxn1 and NL2 on inhibitory synaptic function for better understanding of the synaptic pathophysiology of psychiatric illness.

References

Hines RM, Wu L, Hines DJ, Steenland H, Mansour S, Dahlhaus R, Singaraja...
Futai et al. • Neurexin–Neuroligin Binding Determines Inhibition

J. Neurosci., February 20, 2013 • 33(8):3612–3623 • 3623

