Wireless secrecy in large-scale networks

Citation

As Published
http://dx.doi.org/10.1109/ITA.2011.5743597

Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Version
Author's final manuscript

Accessed
Sat Dec 29 00:15:07 EST 2018

Citable Link
http://hdl.handle.net/1721.1/80881

Terms of Use
Creative Commons Attribution-Noncommercial-Share Alike 3.0

Detailed Terms
http://creativecommons.org/licenses/by-nc-sa/3.0/
Abstract—The ability to exchange secret information is critical to many commercial, governmental, and military networks. The intrinsically secure communications graph (iS-graph) is a random graph which describes the connections that can be securely established over a large-scale network, by exploiting the physical properties of the wireless medium. This paper provides an overview of the main properties of this new class of random graphs. We first analyze the local properties of the iS-graph, namely the degree distributions and their dependence on fading, target secrecy rate, and eavesdropper collusion. To mitigate the effect of the eavesdroppers, we propose two techniques that improve secure connectivity. Then, we analyze the global properties of the iS-graph, namely percolation on the infinite plane, and full connectivity on a finite region. These results help clarify how the presence of eavesdroppers can compromise secure communication in a large-scale network.

Index Terms—Physical-layer security, wireless networks, stochastic geometry, secrecy capacity, connectivity, percolation.

I. INTRODUCTION

Contemporary security systems for wireless networks are based on cryptographic primitives that generally ignore two key factors: (a) the physical properties of the wireless medium, and (b) the spatial configuration of both the legitimate and malicious nodes. These two factors are important since they affect the communication channels between the nodes, which in turn determine the fundamental secrecy limits of a wireless network. In fact, the inherent randomness of the wireless medium and the spatial location of the nodes can be leveraged to provide intrinsic security of the communications infrastructure at the physical-layer level.1

The basis for information-theoretic security, which builds on the notion of perfect secrecy [11], was laid in [2] and later in [3, 4]. More recently, there has been a renewed interest in information-theoretic security over wireless channels, from the perspective of space-time communications [5], multiple-input multiple-output communications [6–10], eavesdropper collusion [11, 12], cooperative relay networks [13], fading channels [14–18], strong secrecy [19, 20], secret key agreement [21–25], code design [26–28], among other topics.

P. C. Pinto is with the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland (e-mail: pedro.pinto@epfl.ch). J. Barros is with Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal (e-mail: jbarros@de.up.pt). M. Z. Win is with the Massachusetts Institute of Technology, Cambridge, MA, USA (e-mail: moe.win@mit.edu).

This research was supported, in part, by the Portuguese Science and Technology Foundation under grant SFRH-BD-17388-2004; the MIT Institute for Soldier Nanotechnologies; the Office of Naval Research under Presidential Early Career Award for Scientists and Engineers (PECASE) N00014-09-1-0435; and the National Science Foundation under grant ECS-0636519.

1In the literature, the term “security” typically encompasses 3 different characteristics: secrecy (or privacy), integrity, and authenticity. This paper does not consider the issues of integrity or authenticity, and the terms “secrecy” and “security” are used interchangeably.

A comprehensive treatment of physical-layer security can be found in [29]. A fundamental limitation of the literature is that it only considers scenarios with a small number of nodes. To account for large-scale networks composed of multiple legitimate and eavesdropper nodes, secrecy graphs were introduced in [30] from a geometrical perspective, and in [31] from an information-theoretic perspective. The local connectivity of secrecy graphs was extensively characterized in [32], while the scaling laws of the secrecy capacity were presented in [33], [34]. The feasibility of long-range secure communication was proved in [35], in the context of continuum percolation.

In this paper, we present an overview of secure communication over large-scale networks, in terms of the properties of the underlying random graph. The main contributions are as follows:

- **Framework for intrinsic security in stochastic networks:** We introduce an information-theoretic definition of the intrinsically secure communications graph (iS-graph), based on the notion of strong secrecy.
- **Local connectivity in the iS-graph:** We provide a probabilistic characterization of both in-degree and out-degree of a typical node.
- **Techniques for communication with enhanced secrecy:** We propose sectorized transmission and eavesdropper neutralization as two techniques for enhancing the secrecy of communication.
- **Maximum secrecy rate (MSR) in the iS-graph:** We provide a probabilistic characterization of the MSR between a typical legitimate node and each of its neighbors.
- **The case of colluding eavesdroppers:** We quantify the degradation in secure connectivity arising from eavesdroppers collusion.
- **Percolation in the iS-graph:** We prove the existence of a phase transition in the Poisson iS-graph, showing that long-range communication is still possible when a secrecy constraint is present.
- **Full connectivity in the iS-graph:** We characterize secure full connectivity on a finite region of the Poisson iS-graph.

This paper is organized as follows. Section II describes the system model. Section III characterizes local connectivity in the Poisson iS-graph. Section IV analyzes two techniques for enhancing the secrecy of communication. Section V considers the MSR between a node and its neighbours. Section VI characterizes the case of colluding eavesdroppers. Section VII characterizes continuum percolation in the Poisson iS-graph defined over the infinite plane. Section VIII analyzes full connectivity in the Poisson iS-graph restricted to a finite region. Section IX concludes the paper.
II. System Model

A. Wireless Propagation Characteristics

In a wireless environment, the received power $P_{rx}(x_i, x_j)$ associated with the link $\overrightarrow{x_i x_j}$ can modeled as

$$P_{rx}(x_i, x_j) = P_t \cdot g(x_i, x_j, Z_{x_i, x_j}), \quad (1)$$

where P_t is the (common) transmit power of the legitimate nodes; and $g(x_i, x_j, Z_{x_i, x_j})$ is the power gain of the link $\overrightarrow{x_i x_j}$, where the random variable (RV) Z_{x_i, x_j} represents the random propagation effects (such as multipath fading or shadowing) associated with link $\overrightarrow{x_i x_j}$. We consider that the $Z_{x_i, x_j}, x_i \neq x_j$ are independent identically distributed (IID) RVs with common probability density function (PDF) $f_Z(z)$, and that $Z_{x_i, x_j} = Z_{x_j, x_i}$, due to channel reciprocity. The channel gain $g(x_i, x_j, Z_{x_i, x_j})$ is considered constant (quasi-static) throughout the use of the communications channel, which corresponds to channels with a large coherence time. The gain function is assumed to satisfy the following conditions:

1. $g(x_i, x_j, Z_{x_i, x_j})$ depends on x_i and x_j only through the link length $|x_i - x_j|$; with abuse of notation, we can write $g(r, z) \triangleq g(x_i, x_j, z)|_{x_i - x_j = r}$. \cite{8}
2. $g(r, z)$ is continuous and strictly decreasing in r. \cite{8}
3. $\lim_{r \to \infty} g(r, z) = 0$. \cite{8}

The proposed model is general enough to account for common choices of g. One example is the bounded model where $g(r, z) = \frac{r}{r + b}$. The term $\frac{1}{r + b}$ accounts for the far-field path loss with distance, where the amplitude loss exponent b is environment-dependent and can approximately range from 0.8 (e.g., hallways inside buildings) to 4 (e.g., dense urban environments), with $b = 1$ corresponding to free space propagation. Another example is the bounded model where $g(r, z) = \frac{1}{r^\sigma}$, which eliminates the singularity at the origin, but often leads to intractable analytical results \cite{36}. Furthermore, by appropriately choosing of the distribution of Z_{x_i, x_j}, both models can account for various random propagation effects, including Nakagami-m fading, Rayleigh fading, and log-normal shadowing \cite{37}.

B. iS-Graph

Consider a wireless network where legitimate nodes and potential eavesdroppers are randomly scattered in space, according to some point process. The iS-graph is a convenient representation of the information-theoretically secure links that can be established on such network, and is defined as follows.

Definition 2.1 (iS-Graph \cite{37}): Let $\Pi_{\ell} = \{x_i\} \subset \mathbb{R}^d$ denote the set of legitimate nodes, and $\Pi_e = \{e_i\} \subset \mathbb{R}^d$ denote the set of eavesdroppers. The iS-graph is the directed graph $G = \{\Pi_{\ell}, \mathcal{E}\}$ with vertex set Π_{ℓ} and edge set

$$\mathcal{E} = \{\overrightarrow{x_i x_j} : R_s(x_i, x_j) > \theta\}, \quad (2)$$

where θ is a threshold representing the prescribed infimum secrecy rate for each communication link; and $R_s(x_i, x_j)$ is the maximum secrecy rate (MSR) of the link $\overrightarrow{x_i x_j}$, given by

$$R_s(x_i, x_j) = \left[\log_2 \left(1 + \frac{P_{rx}(x_i, x_j)}{\sigma_\ell^2} \right) \right]_+ - \left[\log_2 \left(1 + \frac{P_{rx}(x_i, e^*)}{\sigma_e^2} \right) \right]_+, \quad (3)$$

in bits per complex dimension, where $[x]^+ = \max\{x, 0\}$; $\sigma_\ell^2, \sigma_e^2$ are the noise powers of the legitimate users and eavesdroppers, respectively; and $e^* = \arg\max_{e_i \in \Pi_e} P_{rx}(x_i, e_i)$. \cite{38}

This definition presupposes that the eavesdroppers are not allowed to collude (i.e., they cannot exchange or combine information), and therefore only the eavesdropper with the strongest received signal from x_i determines the MSR between x_i and x_j.

The iS-graph admits an outage interpretation, in the sense that legitimate nodes set a target secrecy rate ρ at which they transmit without knowing the channel state information (CSI) of the legitimate nodes and eavesdroppers. In this context, an edge between two nodes signifies that the corresponding channel is not in secrecy outage.

Consider now the particular scenario where the following conditions hold: (a) the infimum desired secrecy rate is zero, i.e., $\rho = 0$; (b) the wireless environment introduces only path loss, i.e., $Z_{x_i, x_j} = 1$ in (1); and (c) the noise powers of the legitimate users and eavesdroppers are equal, i.e., $\sigma_\ell^2 = \sigma_e^2 = \sigma^2$. Note that by setting $\rho = 0$, we are considering the existence of secure links, in the sense that an edge $\overrightarrow{x_i x_j}$ is present if and only if $R_s(x_i, x_j) > 0$. Under these special conditions, the edge set in (2) simplifies to

$$\mathcal{E} = \{\overrightarrow{x_i x_j} : |x_i - x_j| < |x_i - e^*|, \quad e^* = \arg\min_{e_i \in \Pi_e} |x_i - e_i|\}, \quad (4)$$

which corresponds the geometrical model proposed in \cite{39}. Fig. \ref{fig:is-graph} shows an example of such an iS-graph on \mathbb{R}^2.

The spatial location of the legitimate and eavesdropper nodes can be modeled either deterministically or stochastically. In many cases, the node positions are unknown to the network designer a priori, so they may be treated as uniformly random according to a Poisson point process \cite{37, 38, 40}.

Definition 2.2 (Poisson iS-graph): The Poisson iS-graph is an iS-graph where $\Pi_{\ell}, \Pi_e \subset \mathbb{R}^d$ are mutually independent, homogeneous Poisson point processes with densities λ_{ℓ} and λ_e, respectively.

In the remainder of the paper (unless otherwise indicated), we focus on Poisson iS-graphs in \mathbb{R}^2. \footnote{This definition uses strong secrecy as the condition for information-theoretic security. See \cite{19, 38} for more details.}
III. LOCAL CONNECTIVITY IN THE POISSON iS-GRAPH

The iS-graph is a random graph, and therefore the in- and out-degrees of the legitimate nodes are RVs. In this section, we provide a probabilistic characterization of both in-degree N_{in} and out-degree N_{out} of a typical node in the Poisson iS-graph. We first consider the simplest case of $\varrho = 0$ (the existence of secure links), $Z_{x_i,x_j} = 1$ (path loss only), and $\sigma_c^2 = \sigma_s^2$ (equal noise powers) in Sections III-A and III-B. This scenario leads to an iS-graph with a simple geometric description, thus providing various insights that are useful in understanding more complex cases. Later, in Sections III-C and III-D we separately analyze how the node degrees are affected by wireless propagation effects other than path loss (e.g., multipath fading), a non-zero secrecy rate threshold ϱ, and unequal noise powers σ_c^2, σ_s^2.

A. In-Degree Characterization

The following theorem uncovers a surprising connection between a node’s in-degree and the area of a typical cell in a Poisson-Voronoi tessellation.

Theorem 3.1 ([31]): The in-degree N_{in} of a typical node in the Poisson iS-graph has the following moment generating function (MGF)

$$M_{N_{\text{in}}}(s) = \mathbb{E}\left\{\exp\left(\frac{\lambda_f}{\lambda_e} \tilde{A}(e^s - 1)\right)\right\}, \quad (5)$$

where \tilde{A} is the area of a typical Voronoi cell induced by a unit-density Poisson process. Furthermore, all the moments of N_{in} are given by

$$\mathbb{E}\{N_{\text{in}}^n\} = \sum_{k=1}^{n} \left(\frac{\lambda_f}{\lambda_e}\right)^k S(n,k) \mathbb{E}\{\tilde{A}^k\}, \quad n \geq 1, \quad (6)$$

where $S(n,k), 1 \leq k \leq n$, are the Stirling numbers of the second kind [41, Ch. 24].

Figure 2 illustrates the in-degree of a legitimate node. Equation (6) expresses the moments of N_{in} in terms of the moments of A. In general, $\mathbb{E}\{\tilde{A}^k\}$ cannot be obtained in closed form, except in the case of $k = 1$ where $\mathbb{E}\{A\} = 1$. For $k = 2$ and $k = 3$, $\mathbb{E}\{\tilde{A}^k\}$ can be expressed as multiple integrals and then computed numerically [42]. Alternatively, the moments of \tilde{A} can be determined using Monte Carlo simulation of random Poisson-Voronoi tessellations [43].

The above theorem can be used to obtain other in-connectivity properties, as given in the following corollary.

Corollary 3.1: The average in-degree of a typical node in the Poisson iS-graph is

$$\mathbb{E}\{N_{\text{in}}\} = \frac{\lambda_f}{\lambda_e} \quad (7)$$

and the probability that a typical node cannot receive from anyone with positive secrecy rate (in-isolation) is

$$p_{\text{in-isol}} = \mathbb{E}\left\{e^{-\frac{\lambda_f}{\lambda_e} \tilde{A}}\right\}. \quad (8)$$

B. Out-Degree Characterization

Theorem 3.2 ([30], [31]): The out-degree N_{out} of a typical node in the Poisson iS-graph has the following geometric probability mass function (PMF)

$$p_{N_{\text{out}}}(n) = \left(\frac{\lambda_f}{\lambda_e + \lambda_c}\right)^n \left(\frac{\lambda_c}{\lambda_f + \lambda_c}\right), \quad n \geq 0. \quad (9)$$

Figure 3 illustrates the out-degree of a node. The above theorem can be used to obtain other out-connectivity properties, as given in the following corollary.

Corollary 3.2: The average out-degree of a typical node in the Poisson iS-graph is

$$\mathbb{E}\{N_{\text{out}}\} = \frac{\lambda_f}{\lambda_e} \quad (10)$$
and the probability that a typical node cannot transmit to anyone with positive secrecy rate (out-isolation) is

$$p_{\text{out-isol}} = \frac{\lambda_c}{\lambda_f + \lambda_c}.$$ \hspace{1cm} (11)

C. General Relationships Between In- and Out-Degree

We have so far considered the probabilistic distribution of the in- and out-degrees in a separate fashion. This section establishes a direct comparison between some characteristics of the in- and out-degrees.

Property 3.1 ([32]): For the Poisson iS-graph with $\lambda_f > 0$ and $\lambda_c > 0$, the average degrees of a typical node satisfy

$$E\{N_{\text{in}}\} = E\{N_{\text{out}}\} = \frac{\lambda_f}{\lambda_c}. \hspace{1cm} (12)$$

Furthermore, we can establish the following relationship between the probabilities of in- and out-isolation.

Property 3.2 ([32]): For the Poisson iS-graph with $\lambda_f > 0$ and $\lambda_c > 0$, the probabilities of in- and out-isolation of a typical node satisfy

$$p_{\text{in-isol}} < p_{\text{out-isol}}. \hspace{1cm} (13)$$

An intuitive explanation for this property is provided in [32]. Figure 4 compares the PMFs of the in- and out-degree of a node, while Figure 5 compares the probabilities of in- and out-isolation for various ratios $\frac{\lambda_f}{\lambda_c}$.

D. Effect of the Wireless Propagation Characteristics

We have so far analyzed the local connectivity of the iS-graph in the presence of path loss only. However, the wireless medium typically introduces random propagation effects such as multipath fading and shadowing, which are modeled by the RV Z_{x_i,x_j} in (1). Considering $\varrho = 0$, $\sigma_i^2 = \sigma_e^2 = \sigma_f^2$, and arbitrary propagation effects Z_{x_i,x_j} with PDF $f_Z(z)$, we can combine (2) with the general propagation model of (1) to obtain the edge set

$$\mathcal{E} = \{x_i x_j : g(|x_i - x_j|, Z_{x_i,x_j}) > g(|x_i - e^*|, Z_{x_i,e^*})\}, \hspace{1cm} (14)$$

where

$$e^* = \arg\max_{e_k \in \Pi} g(|x_i - e_k|, Z_{x_i,e_k}).$$

Unlike the case of path-loss only, where the out-connections of a node are determined only by the closest eavesdropper, here they are determined by the eavesdropper with the least attenuated channel. The following theorem characterizes the distribution of the out-degree.

Theorem 3.3 ([32]): For the Poisson iS-graph with propagation effects Z_{x_i,x_j}, whose PDF is given by a continuous function $f_Z(z)$, the PMF of the out-degree N_{out} of a typical node is given in (9), and is invariant with respect to $f_Z(z)$.

Intuitively, the propagation environment affects both the legitimate nodes and eavesdroppers in the same way, such that the PMF of N_{out} is invariant with respect to the PDF $f_Z(z)$. However, the PMF of N_{in} does depend on $f_Z(z)$ in a non-trivial way, although its mean remains the same, as specified in the following corollary.

Corollary 3.3: For the Poisson iS-graph with propagation effects Z_{x_i,x_j} distributed according to $f_Z(z)$, the average node degrees are

$$E\{N_{\text{in}}\} = E\{N_{\text{out}}\} = \frac{\lambda_f}{\lambda_e}, \hspace{1cm} (15)$$

for any distribution $f_Z(z)$.

We thus conclude that the expected node degrees are invariant with respect to the distribution characterizing the propagation effects.

E. Effect of the Secrecy Rate Threshold and Noise Powers

In this section, we study the effect of non-zero secrecy rate threshold, i.e., $\varrho > 0$, and unequal noise powers, i.e., $\sigma_i^2 \neq \sigma_e^2$, on the iS-graph. Considering $Z_{x_i,x_j} = 1$ and arbitrary noise powers σ_i^2, σ_e^2, we can combine (2) with the general propagation model of (1) and obtain the edge set

$$\mathcal{E} = \{x_i x_j : g(|x_i - x_j|) > \frac{\sigma_i^2}{\sigma_e^2}g(|x_i - e^*|) + \frac{\sigma_i^2}{\sigma_e^2}(2^\varrho - 1)\}, \hspace{1cm} (16)$$
where
\[e^* = \arg\min_{e_k \in \Pi_e} |x_i - e_k|. \]

Note that by setting \(\varrho = 0 \) and \(\sigma^2 = \sigma^2_e \) in (16) we obtain the edge set in (13) as a special case. The exact dependence of the average node degree on the parameters \(\varrho, \sigma^2, \sigma^2_e \) depends on the function \(g(r) \). To gain further insights, we consider the specific channel gain function
\[g(r) = \frac{1}{r^d}, \quad r > 0. \]

This function has been widely used in the literature to model path loss behavior as a function of distance, and satisfies the conditions in Section III-A. The following theorem characterizes the average degrees of the resulting iS-graph.

Theorem 3.4 (12): For the Poisson iS-graph with secrecy rate threshold \(\varrho \), noise powers \(\sigma^2, \sigma^2_e \), and channel gain function \(g(r) = \frac{1}{r^d} \), the average node degrees are
\[
\mathbb{E}\{N_{in}\} = \mathbb{E}\{N_{out}\} = \pi^2 \lambda \lambda_e \int_0^{\infty} \frac{x e^{-x \lambda_e} x^d (\sigma^2 + \frac{\sigma^2_e}{(2^d - 1) x^d})^{1/d}}{\lambda_e} dx
\]

Figure 6 illustrates the effect of the secrecy rate threshold \(\varrho \) on the average node degrees. We observe that the average node degree attains its maximum value of \(\frac{\pi^2}{\lambda_e} = 10 \) at \(\varrho = 0 \), and is monotonically decreasing with \(\varrho \).

IV. Techniques for Communication with Enhanced Secrecy

Based on the results derived in Section III we observe that even a small density of eavesdroppers is enough to significantly disrupt connectivity of the iS-graph. For example, if the density of eavesdroppers is half the density of legitimate nodes, then from (12) the average node degree is only \(\frac{\pi^2}{\lambda_e} = 2. \)

In this section, we propose two techniques—sectorized transmission and eavesdropper neutralization—which achieve an average degree higher than \(\frac{\pi^2}{\lambda_e} \).

A. Sectorized Transmission

We have so far assumed that the legitimate nodes employ omnidirectional antennas, distributing power equally among all directions. We now consider that each legitimate node is able to transmit independently in \(L \) sectors of the plane, with \(L \geq 1 \), as depicted in Figure 7. This can be accomplished, for example, through the use of \(L \) directional antennas. With each node \(x_i \in \Pi_i \), we associate \(L \) transmission sectors \(\{S^{(l)}_i\}_{l=1}^L \), defined as
\[S^{(l)}_i \triangleq \{ z \in \mathbb{R}^2 : \phi_i + (l - 1)\frac{2\pi}{L} < \phi < \phi_i + \frac{2\pi}{L} \} \]

for \(l = 1 \ldots L \), where \(\{\phi_i\}_{i=1}^\infty \) are random offset angles with an arbitrary joint distribution. The resulting iS-graph \(G_L = \{\Pi_i, \mathcal{E}_L\} \) has an edge set given by
\[\mathcal{E}_L = \{ x_i, x_j : |x_i - x_j| < |x_i - e^*| \}, \]

where
\[e^* = \arg\min_{e_k \in \Pi_i \cap S^*} |x_i - e_k|, \quad S^* = \{ S^{(l)}_i : x_j \in S^{(l)}_i \}. \]

Here, \(S^* \) is the transmission sector of \(x_i \) that contains the destination node \(x_j \), and \(e^* \) is the eavesdropper inside \(S^* \) that is closest to the transmitter \(x_i \). The following theorem characterizes the average node degree as a function of \(L \).

Theorem 4.1 (Sectorized Transmission): For the Poisson iS-graph \(G_L \) with \(L \) sectors, the average node degrees are
\[\mathbb{E}\{N_{in}\} = \mathbb{E}\{N_{out}\} = L \frac{\lambda_e}{\lambda_e}. \]

We conclude that the average node degree increases linearly with the number of sectors \(L \), and hence sectorized transmission is an effective technique for enhancing the secrecy of communications. Figure 7 provides an intuitive understanding of why sectorization works. Specifically, if there was no sectorization, node 0 would be out-isolated, due to the close proximity of the eavesdropper in sector \(S^{(4)} \). However, if we allow independent transmissions in four non-overlapping sectors, that same eavesdropper can only hear the transmissions...
inside sector $S^{(4)}$. Thus, even though node 0 is out-isolated with respect to sector $S^{(4)}$, it may still communicate securely with some legitimate nodes inside sectors $S^{(1)}, S^{(2)},$ and $S^{(3)}$.

B. Eavesdropper Neutralization

In some scenarios, each legitimate node may be able to physically inspect its surroundings and deactivate the eavesdroppers falling inside some neutralization region. With each node $x_i \in \Pi_e$, we associate a neutralization region Θ_i inside which all eavesdroppers have been deactivated. The total neutralization region Θ can then be seen as a Boolean model with points $\{x_i\}$ and associated sets $\{\Theta_i\}$, i.e.,

$$\Theta = \bigcup_{i=1}^{\infty} (x_i + \Theta_i).$$

Since the eavesdroppers inside Θ have been deactivated, the effective eavesdropper process after neutralization is $\Pi_e \cap \overline{\Theta}$, where $\overline{\Theta}$ denotes the complement of Θ. The resulting iS-graph $G_\Theta = \{\Pi_e, E_\Theta\}$ has an edge set given by

$$E_\Theta = \{\{x_i, x_j\} : |x_i - x_j| < |x_i - e^*|, \quad e^* = \arg\min_{e \in \Pi_e \cap \overline{\Theta}} |x_i - e|\}.$$

In the following, we consider the case of a circular neutralization set, i.e., $\Theta_i = B_0(\rho)$ where ρ is a deterministic neutralization radius, as depicted in Fig. 8.

Theorem 4.2 (Eavesdropper Neutralization [44]): For the enhanced iS-graph G_ρ with neutralization radius ρ, the average node degrees of a typical node are lower-bounded by

$$\mathbb{E}\{N_{in}\} = \mathbb{E}\{N_{out}\} \geq \frac{\lambda e}{\lambda_e} \left(\pi \lambda e \rho^2 + e^{2 \pi \lambda e \rho^2}\right). \quad (20)$$

We conclude that the average node degree increases at a rate that is at least exponential with the neutralization radius ρ, making eavesdropper neutralization an effective technique for enhancing the secrecy of communications.

Figure 9 plots the average node degree versus the neutralization radius ρ, for various values of λ_e. We observe that the analytical lower-bound for $\mathbb{E}\{N_{out}\}$ given in (20) is very close to the actual value of $\mathbb{E}\{N_{out}\}$ obtained through Monte Carlo simulation, becoming tight as $\rho \to 0$ or $\lambda_e \to \infty$.

V. Maximum Secrecy Rate in the Poisson iS-Graph

In this section, we analyze the MSR between a node and each of its neighbours. Considering the coordinate system depicted in Fig. 3 and the channel gain $g(r) = \frac{\lambda}{2\cdot2\pi}$, the MSR $R_{\xi,i}$ between the node at the origin and its i-th closest neighbour, $i \geq 1$, can be written for a given realization of the node positions Π_e and Π_ξ as

$$R_{\xi,i} = \left[\log_2 \left(1 + \frac{P_0}{\lambda e_1 \sigma^2}\right) - \log_2 \left(1 + \frac{P_0}{\lambda e_1^2 \sigma^2}\right) \right]^{+} \quad (21)$$

in bits per complex dimension. For each instantiation of the random Poisson processes Π_e and Π_ξ, a realization of the RV $R_{\xi,i}$ is obtained. The following theorem provides the distribution of this RV.

Theorem 5.1 ([37]): The MSR $R_{\xi,i}$ between a typical node and its i-th closest neighbour, $i \geq 1$, is a RV whose cumulative distribution function (CDF) $F_{R_{\xi,i}}(\rho)$ is given by

$$F_{R_{\xi,i}}(\rho) = 1 - \frac{\ln 2(\pi \lambda e)^i}{(i - 1)!} \int_{ \rho }^{\infty} \frac{2^{\frac{1}{2}}}{(2^z - 1)^{1/2}} dz,$$

for $\rho \geq 0$.

From this result, we can trivially obtain the probability of existence of a non-zero MSR, and the probability of secrecy outage.

Corollary 5.1: Considering the link between a typical node and its i-th closest neighbour, $i \geq 1$, the probability of existence of a non-zero MSR, $P_{\text{exist, } i} = \mathbb{P}\{R_{\xi,i} > 0\}$, is

$$P_{\text{exist, } i} = \left(\frac{\lambda e}{\lambda e + \lambda_0}\right)^i. \quad (23)$$
and the probability of an outage in MSR is
\[p_{\text{outage},i}(\varrho) = P(\mathcal{R}_{x,i} < \varrho) = F_{\mathcal{R}_{x,i}}(\varrho), \]
as given in (22).

Figure 10 shows the probability \(p_{\text{outage},i} \) of secrecy outage of a typical node transmitting to its \(i \)-th closest neighbour, as a function of the desired secrecy rate \(\varrho \). As expected, a secrecy outage becomes more likely as we increase the target secrecy rate \(\varrho \) set by the transmitter.

VI. THE CASE OF COLLUDING EAVESDROPPERS

In this section, we consider that the eavesdroppers have ability to collude, i.e., they can exchange and combine the information received by all the eavesdroppers to decode the secret message. The following theorem characterizes the resulting average node degree in such graph.

Theorem 6.1 (22): For the Poisson i\(S \)-graph with colluding eavesdroppers, secrecy rate threshold \(\varrho = 0 \), equal noise powers \(\sigma_i^2 = \sigma_0^2 \), and channel gain function \(g(r) = \frac{1}{r^b} \), \(b > 1 \), the average degrees of a typical node are

\[
\mathbb{E}\{N_{\text{in}}\} = \mathbb{E}\{N_{\text{out}}\} = \frac{\lambda_f}{\lambda_c} \text{sinc} \left(\frac{1}{b} \right),
\]

where \(\text{sinc}(x) \triangleq \frac{\sin(\pi x)}{\pi x} \).

It is insightful to rewrite (24) as \(\mathbb{E}\{N_{\text{out}}|\text{colluding}\} = \mathbb{E}\{N_{\text{out}}|\text{non-colluding}\} \cdot \eta(b) \), where \(\eta(b) = \frac{\text{sinc}(\frac{1}{b})}{1} \), and \(\eta(b) < 1 \) for \(b > 1 \). The function \(\eta(b) \) can be interpreted as the degradation factor in average connectivity due to eavesdropper collusion. In the extreme where \(b = 1 \), we have complete loss of secure connectivity with \(\eta(1) = 0 \). This is because the series \(P_{r,x,e} = \sum_{i=1}^{\infty} P_{r,x,e}^i \) diverges (i.e., the total received eavesdropper power is infinite), so the resulting average node degree is zero. In the other extreme where \(b \rightarrow \infty \), we achieve the highest secure connectivity with \(\eta(\infty) = 1 \). This is because the first term \(\frac{P_{r,x,e}^0}{P_{r,x,e}^0} \) in the \(P_{r,x,e} \) series (corresponding to the non-colluding term) is dominant, so the average node degree in the colluding case approaches the non-colluding one.

VII. PERCOLATION IN THE POISSON i\(S \)-GRAPH

Percolation theory studies the existence of phase transitions in random graphs, whereby an infinite cluster of connected nodes suddenly arises as some system parameter is varied. Percolation theory has been used to study connectivity of multi-hop wireless networks, where the formation of an unbounded cluster is desirable for communication over arbitrarily long distances [45]–[47]. In this section, we prove the existence of a phase transition in the Poisson i\(S \)-graph, showing that long-range communication in a wireless network is still possible when a secrecy constraint is present.

A. Definitions

Graphs: We use \(G = \{\Pi, \mathcal{E}\} \) to denote the (directed) i\(S \)-graph with vertex set \(\Pi \) and edge set given in (2). In addition, we define two undirected graphs: the weak i\(S \)-graph \(G^{\text{weak}} = \{\Pi, \mathcal{E}^{\text{weak}}\} \), where

\[
\mathcal{E}^{\text{weak}} = \{x_i x_j : \mathcal{R}_b(x_i, x_j) > \varrho \lor \mathcal{R}_b(x_j, x_i) > \varrho\},
\]

and the strong i\(S \)-graph \(G^{\text{strong}} = \{\Pi, \mathcal{E}^{\text{strong}}\} \), where

\[
\mathcal{E}^{\text{strong}} = \{x_i x_j : \mathcal{R}_b(x_i, x_j) > \varrho \land \mathcal{R}_b(x_j, x_i) > \varrho\}.
\]

Graph Components: We use the notation \(x \xrightarrow{G} y \) to represent a path from node \(x \) to node \(y \) in a directed graph \(G \), and \(x \xrightarrow{G'} y \) to represent a path between node \(x \) and node \(y \) in an undirected
For any \(\lambda \), the graph exhibits a.s. an unbounded cluster of nodes, phase or in other words, the graph percolates. The result is given by the following main theorem.

B. Main Result

Typically, a continuum percolation model consists of an underlying point process defined on the infinite plane, and a rule that describes how connections are established between the nodes. A main property of all percolation models is that they exhibit a phase transition as some continuous parameter is varied. If this parameter is the density \(\lambda \) of nodes, then the phase transition occurs at some critical density \(\lambda_c \). When \(\lambda < \lambda_c \), denoted as the subcritical phase, all the clusters are a.s. bounded. When \(\lambda > \lambda_c \), denoted as the supercritical phase, the graph exhibits a.s. an unbounded cluster of nodes, or in other words, the graph percolates.

We now determine if percolation in the iS-graph is possible, and if so, for which combinations of system parameters \((\lambda_c, \lambda, \varrho) \) does it occur. The mathematical characterization of the iS-graph presents two challenges: i) the iS-graph is a directed graph, which leads to the study of directed percolation; and ii) the iS-graph exhibits dependencies between the state of different edges, which leads to the study of dependent percolation. The result is given by the following main theorem.

Theorem 7.1 (Phase Transition in the iS-Graph [35]): For any \(\lambda_c > 0 \) and \(\varrho \) satisfying

\[
0 \leq \varrho < \varrho_{\text{max}} \triangleq \log_2 \left(1 + \frac{P \cdot g(0)}{\sigma^2} \right),
\]

(29)

there exist critical densities \(\lambda_c^{\text{out}}, \lambda_c^{\text{in}}, \lambda_c^{\text{weak}}, \lambda_c^{\text{strong}} \) satisfying

\[
0 < \lambda_c^{\text{weak}} \leq \lambda_c^{\text{out}} \leq \lambda_c^{\text{strong}} < \infty
\]

(30)

\[
0 < \lambda_c^{\text{weak}} \leq \lambda_c^{\text{in}} \leq \lambda_c^{\text{strong}} < \infty
\]

(31)

such that

\[
p_\infty^\circ = 0, \quad \text{for } \lambda_c < \lambda_c^\circ,
\]

(32)

\[
p_\infty > 0, \quad \text{for } \lambda_c > \lambda_c^\circ,
\]

(33)

for any \(\circ \in \{\text{out, in, weak, strong}\} \).

For \(\circ \in \{\text{out, in, weak, strong}\} \), the regime is supercritical and an infinite component arises. However, the graph \(G^* \). We define four components:

\[
\mathcal{K}^{\text{out}}(x) \triangleq \{ y \in \Pi_x : \exists x \xrightarrow{g} y \},
\]

(25)

\[
\mathcal{K}^{\text{in}}(x) \triangleq \{ y \in \Pi_x : \exists y \xrightarrow{g} x \},
\]

(26)

\[
\mathcal{K}^{\text{weak}}(x) \triangleq \{ y \in \Pi_x : \exists x \xrightarrow{g^{\text{weak}}} y \},
\]

(27)

\[
\mathcal{K}^{\text{strong}}(x) \triangleq \{ y \in \Pi_x : \exists x \xrightarrow{g^{\text{strong}}} y \}.
\]

(28)

Percolation Probabilities: To study percolation in the iS-graph, it is useful to define percolation probabilities associated with the four graph components. Specifically, let \(p_\infty^{\text{out}}, p_\infty^{\text{in}}, p_\infty^{\text{weak}}, \) and \(p_\infty^{\text{strong}} \) respectively be the probabilities that the in, out, weak, and strong components containing node \(x = 0 \) have an infinite number of nodes, i.e.,

\[
p_\infty^\circ (\lambda_c, \lambda, \varrho) \triangleq \mathbb{P}(\mathcal{K}^\circ(0) = \infty)
\]

for \(\circ \in \{\text{out, in, weak, strong}\} \).

Theorem 7.1 shows that each of the four components of the iS-graph (in, out, weak, and strong) experiences a phase transition at some nontrivial critical density \(\lambda_c^{\circ} \) of legitimate nodes. In addition, it shows that percolation can occur for any prescribed secrecy threshold \(\varrho \) satisfying \(\varrho < \varrho_{\text{max}} = \log_2 \left(1 + \frac{P \cdot g(0)}{\sigma^2} \right) \), as long as the density of legitimate nodes is made large enough. This implies that for unbounded path loss models such as \(g(r) = 1/r^\beta \), percolation can occur for any arbitrarily large secrecy requirement \(\varrho \), while for bounded models such as \(g(r) = 1/(1 + r^\gamma) \), the desired \(\varrho \) may be too high to allow percolation. Our results also show that as long as \(\varrho < \varrho_{\text{max}} \), percolation can be achieved even in cases where the eavesdroppers are arbitrarily dense, by making the density of legitimate nodes large enough.

Figure 12 shows the percolation probabilities for the weak and strong components of the iS-graph, versus the density \(\lambda_c \) of legitimate nodes (\(\lambda_c = 1 \text{ m}^{-2}, \varrho = 0 \)).

VIII. Full Connectivity in the Poisson iS-Graph

In the previous sections, we studied percolation in the iS-graph defined over the infinite plane. We showed that for some combinations of the parameters \((\lambda_c, \lambda, \varrho) \), the regime is supercritical and an infinite component arises. However,
Our goal is to characterize the function of the densities and fully in-connected. These probabilities are deterministic in a legitimate node (node system, i.e., that all nodes can communicate with each other, possibly through multiple hops. Note, however, that for networks defined over an infinite region, the probability of full connectivity is exactly zero. Thus, to study of full connectivity in the limit of a large density of legitimate nodes—possibly through multiple hops. Note, however, that for networks defined over an infinite region, the probability of full connectivity is exactly zero. Thus, to study of full connectivity in the limit of a large density of legitimate nodes.

A. Definitions

Definition 8.1 (Full Out-Connectivity): A legitimate node \(x_i \) in \(\Pi \cap R \) is fully out-connected with respect to a region \(R \) if in the iS-graph \(G = (\Pi, E) \) there exists a directed path between \(x_i \) and every node \(x_j \in \Pi \cap R \), for \(x_i \neq x_j \).

Definition 8.2 (Full In-Connectivity): A legitimate node \(x_i \in \Pi \cap R \) is fully in-connected with respect to a region \(R \) if in the iS-graph \(G = (\Pi, E) \) there exists a directed path between every node \(x_j \in \Pi \cap R \) and \(x_i \), for \(x_i \neq x_j \).

The iS-graph is a random graph, and therefore we can consider the probabilities of a node \(x_i \) being fully in- or out-connected. For analysis purposes, we consider that a probe legitimate node (node 0) placed at the origin of the coordinate system, i.e., \(x_{\text{probe}} = 0 \subset R \). We then define \(p_{\text{out-conn}} \) and \(p_{\text{in-conn}} \) as the probability that node 0 is, respectively, fully out- and fully in-connected. These probabilities are a deterministic function of the densities \(\lambda_t \) and \(\lambda_e \), and the area \(A \) of region \(R \). Our goal is to characterize \(p_{\text{out-conn}} \) and \(p_{\text{in-conn}} \).

B. Main Result

In what follows, we focus on the asymptotic behavior of secure connectivity in the limit of a large density of legitimate nodes. Specifically, for a fixed region of area \(A \) and a fixed density \(\lambda_e \) of eavesdroppers, we would like to determine if by increasing \(\lambda_t \to \infty \), we can asymptotically achieve full in- and out-connectivity with probability 1. The following theorem characterizes the asymptotic out-connectivity in the iS-graph.

Theorem 8.1 (Asymptotic Out-Connectivity): For the Poisson iS-graph with \(\lambda_e > 0 \) and \(A > 0 \), we have

\[
\lim_{\lambda_t \to \infty} p_{\text{out-conn}} = 1,
\]

i.e., the legitimate node at the origin is asymptotically out-connected.

The following theorem characterizes the asymptotic in-connectivity in the iS-graph.

Theorem 8.2 (Asymptotic In-Connectivity): For the Poisson iS-graph with \(\lambda_e > 0 \) and \(A > 0 \), we have

\[
\lim_{\lambda_t \to \infty} p_{\text{in-conn}} \leq 1 - \frac{6\pi}{8\pi + 3\sqrt{3}}(1 - e^{-\lambda_e A}),
\]

i.e., the legitimate node at the origin is not asymptotically in-connected.

The theorems show that full out-connectivity can be improved as much as desired by deploying more legitimate nodes. Full in-connectivity, however, remains bounded away from 1, no matter how large \(\lambda_t \) is made (an intuitive explanation for this fact is provided in [49]). Operationally, this means that a node can a.a.s. transmit secret messages to all the nodes in a finite region \(R \), but cannot a.a.s. receive secret messages from all the nodes in \(R \).

IX. Conclusion

Using the notion of strong secrecy, we provided an information-theoretic definition of the iS-graph as a model for intrinsically secure communication in large-scale networks. The iS-graph captures the connections that can be established with MSR exceeding a threshold \(\varrho \), in a large network. This paper provided an overview of the main properties of this new class of random graphs.

Perhaps the most interesting insight to be gained from our results, is the exact quantification of the impact of the eavesdropper density \(\lambda_e \) on secure connectivity—a modest density of scattered eavesdroppers can potentially cause a drastic reduction in the MSR provided at the physical layer of wireless communication networks. Our work has not yet addressed all of the far reaching implications of the broadcast property of the wireless medium. In the most general scenario, legitimate nodes could for example transmit their signals in a cooperative fashion, whereas malicious nodes could use jamming to disrupt all communications. We hope that further efforts in combining stochastic geometry with information-theoretic principles will lead to a more comprehensive treatment of wireless security.
The authors would like to thank L. A. Shepp, J. N. Tsitsiklis, V. K. Goyal, Y. Shen, and W. Suwansantisuk for their helpful suggestions.

REFERENCES