Regimes of the Electron Diffusion Region in Magnetic Reconnection

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.110.135004</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Dec 02 15:39:52 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/81327</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Regimes of the Electron Diffusion Region in Magnetic Reconnection

A. Le, J. Egedal, and O. Ohia

Department of Physics, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

W. Daughton

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

H. Karimabadi

SciberQuest, Del Mar, California 92014, USA

V. S. Lukin

Naval Research Laboratory, Washington, DC 20375, USA

(Received 20 November 2012; published 28 March 2013)

The electron diffusion region during magnetic reconnection lies in different regimes depending on the pressure anisotropy, which is regulated by the properties of thermal electron orbits. In kinetic simulations at the weakest guide fields, pitch angle mixing in velocity space causes the outflow electron pressure to become nearly isotropic. Above a threshold guide field that depends on a range of parameters, including the normalized electron pressure and the ion-to-electron mass ratio, electron pressure anisotropy develops in the exhaust and supports extended current layers. This new regime with electron current sheets extending to the system size is also reproduced by fluid simulations with an anisotropic closure for the electron pressure. It offers an explanation for recent spacecraft observations.

DOI: 10.1103/PhysRevLett.110.135004

PACS numbers: 52.35.Vd

Magnetic reconnection, a rapid reconfiguration of the magnetic field embedded in a plasma, energizes particles in explosive events such as fusion experiment disruptions, solar coronal flares, and magnetospheric substorms [1]. A still unresolved question is how electron physics couples to the larger structure of the reconnecting plasma.

In collisionless regimes, such as most space plasmas, the collective electron dynamics is tied to the kinetic behavior of the individual particles. A variety of charged particle orbits is possible even in simplified, prescribed magnetic fields that qualitatively resemble reconnection geometries [2,3]. In the linear phase of the tearing mode, three regimes have been identified depending on how strongly the electron orbits are magnetized [4]. Particle-in-cell (PIC) methods afford a numerical means of studying how the various classes of particle orbits, including meandering, chaotic, and magnetized adiabatic orbits, self-consistently feed back on magnetic reconnection. Here, we report on a series of PIC simulations with varying ion-to-electron mass ratio, guide magnetic field, and upstream normalized electron pressure. We find a number of regimes related to qualities of the electron orbits.

We identify a new regime that includes an electron current sheet extending to the simulated system size embedded in the reconnection exhaust. A fluid simulation that accounts for electron pressure anisotropy [5] reproduces the embedded current layer in larger simulation domains. The current layers form a basic feature of the electron diffusion region, taken here to mean where the electron frozen-in condition is violated. Magnetic dissipation need not occur in this so-called diffusion region, and it remains to be seen how the electron layers alter dissipation in regions with more restrictive definitions as in Ref. [6]. We note also that the layers may be unstable to secondary instabilities and thus profoundly influence the reconnection dynamics in 3D systems [7].

The new regime is a good candidate for the electron diffusion region inferred from Cluster spacecraft data collected in Earth’s magnetosheath during reconnection [8]. And it resolves discrepancies between observation and simulation pointed out by Goldman et al. [9], in particular that previously identified that current layers of unmagnetized electrons are shorter in simulations and are deflected by guide fields much weaker than the measured one. Additional spacecraft data may become available soon, as NASA’s upcoming Magnetospheric Multiscale Mission has the express goal of taking high-resolution electron measurements.

We use three ion-to-electron mass ratios of \(m_i/m_e = 100, 400, \) and 1836 in simulations with the code VPIC [10]. Although the total reconnection rate is largely insensitive to the implemented mass ratio [11–13], we find other measurable quantities, including the current density profile and electron pressure anisotropy, strongly depend on this parameter. The initial conditions contain a Harris sheet with unperturbed magnetic field components \(B_z = B_0 \tanh(c/\lambda)\) and \(B_y = B_x \), where \(\lambda = 0.5d_i\). The domain is \(L_x \times L_z = 20d_i \times 20d_i\) (40d_i \times 20d_i for \(m_i/m_e = 100\)).
with no gradients in the y direction and open boundary conditions in the exhaust. For each mass ratio, the uniform guide field B_g is scanned over a range of values from $B_g/B_0=0$ to 0.8. The Harris sheet plasma parameters are characterized by $T_{e0}/T_{e\theta}=5$ and $\omega_{pe}/\omega_{ce}=2$, with $v_{the}/c=\sqrt{T_{e0}/m_e}c^2=0.14$. The Harris sheet is superposed on a slightly cooler background with $T_{e\theta}/T_{e0}=0.76$ and uniform density $n_0=0.076, 0.23$, or 0.68n_0 (n_0 is the peak Harris density). This yields an upstream ratio $\beta_{e0}\sim 2\mu_0n_0T_{e\theta}/B_0^2$ of -0.01, 0.03, or 0.09. The proton mass ratio runs employ a grid of 5120×5120 cells and -10^{10} numerical particles of each species.

For all sets of parameters, electric fields parallel to the magnetic field heat the inflow electron fluid according to $n_{b}\sim$ $\frac{1}{\mu_0}$ $\frac{B_0}{c}$. This yields an upstream $\beta_{e0}\sim 2\mu_0n_0T_{e\theta}/B_0^2$ of -0.01, 0.03, or 0.09. The proton mass ratio runs employ a grid of 5120×5120 cells and -10^{10} numerical particles of each species.

When the firehose condition is approached, we discover the regime that includes a system-length magnetized electron current sheet with a normal component of magnetic field. Adiabatic invariance of $\mu = v_e^2/2B$ requires $\rho_e/R_B \ll 1$ [3], where ρ_e is the electron Larmor radius and $R_B = |\mathbf{b} \cdot \nabla \mathbf{b}|^{-1}$ is the magnetic field line radius of curvature. For weak guide fields, this condition breaks in the center of the reconnection exhaust, and pitch angle mixing due to nonadiabatic particle orbits renders the exhaust pressure nearly isotropic [see the example in Figs. 1(d)–1(f)]. The level of effective pitch angle diffusion is controlled by the ratio of R_B to the thermal electron Larmor radius, which we find must be based on the total energy (rather than only the perpendicular energy) for unmagnetized or marginally magnetized electrons. The electrons are observed to be in a fully magnetized regime when $K \approx 2.5$, where

$$K^2 \equiv \min(\frac{R_B}{\rho_{e\theta}}),$$

and drives a current $\mathbf{J}_\perp = (p_\| - p_\perp)\mathbf{B} \times (\mathbf{b} \cdot \nabla \mathbf{b})/B^2$. The current flows across the magnetic field above the local $E \times B$ velocity in a narrow layer embedded in the exhaust [see Fig. 1(c)]. Following Refs. [16,17], the firehose threshold may be expected to hold outside any quasi-1D current sheet with a normal component of magnetic field.

FIG. 1 (color). (a) Electron pressure anisotropy with $p_\|/p_\perp > 1$ extends into the exhaust with a guide field of $B_g/B_0 = 0.14$, (b) approaches the firehose threshold $\mu_0(p_\| - p_\perp)/B^2 = 1$, and (c) drives an out-of-plane current density J_z/J_\parallel. $J_\parallel = n_e e v_{A0}$, where $v_{A0} = B_0/\sqrt{\mu_0 n_0 m_e}$, (d)–(f) The electrons are nearly isotropic for $B_g/B_0 = 0.1$ $(m_i/m_e = 1836$ and $\beta_{e0} \sim 0.09)$.
To relate the regimes of Fig. 2 to previous studies, Fig. 3 presents the results of a comprehensive scan in \(m_i/m_e \) and \(B_g/B_0 \) at a fixed \(\beta_{e0}=0.03 \). Here, we identify four regimes based on the characteristics of the electron pressure and current profile. For weak or moderate guide fields, simulations with the same value of \((B_g/B_0)\sqrt{m_i/m_e} \) tend to be in the same regime. This follows if we assume that the electron orbits near the X line are similar for a fixed ratio \(\rho_{eg}/d_i \) of the electron gyroradius in the guide field \(\rho_{eg}\propto 1/B_0 \) and the ion scale \(d_i\propto \sqrt{m_i} \) relevant to kinetic reconnection.

Table I summarizes the traits of each regime. An example of the out-of-plane current \(J_y \) from each regime is plotted on the right in Fig. 4 from simulations at the proton mass ratio \(m_i/m_e = 1836 \) for various guide fields \(B_g/B_0 \) (marked in blue in Fig. 3). The plots on the left in Fig. 4 are from runs with \(m_i/m_e = 400 \), and they illustrate the differences at a reduced mass ratio. More detailed characteristics of each regime are as follows:

1. In the antiparallel regime at zero or low guide field, an unmagnetized electron jet flowing at nearly the electron thermal speed develops in the inner electron diffusion region [9,13,19,20]. Note that the inner jets persist to much higher guide fields at reduced mass ratios. They form when the magnetic field is weak enough to allow thermal electrons to follow meandering orbits [21], which requires \(K\leq1 \) [3]. The meandering motion leads to rather complicated local electron velocity distributions [22], but gross momentum balance of the current layer is regulated by the upstream pressure anisotropy [17,22,23].

2. Above a certain guide field, inner electron jets do not form. As pointed out in Ref. [9], the guide field prevents electrons from meandering about the magnetic field reversal. We find this regime in the range \(1 \leq K \leq 2.5 \) characterized by chaotic electron orbits. In both the simulations of Ref. [9] and our simulations, guide fields of \(B_g \approx 0.1B_0 \) deflect the inner electron jets at the proton mass ratio [see Fig. 4(e)]. In this weak guide field regime, the nonadiabatic electron orbits in the outflow render the exhaust electron pressure nearly isotropic.

3. A window opens at \(2.5 \leq K \) where the electrons are magnetized, yet the guide field is weak enough for the pressure anisotropy to approach the firehose condition. The new regime has a layer of anisotropy reaching \(\mu_0(p||-p\perp)/B^2>0.7 \), which drives a current \(J_\perp\sim(p||-p\perp)\mathbf{B}\times(\mathbf{b}\cdot\nabla\mathbf{b})/B^2 \) across the magnetic field [see Fig. 4(d)]. These current layers are \(\approx 10d_e \) wide, with a length of \(\approx 15d_i \) that is limited by the simulation domain size. Interestingly, they do not appear to be unstable to secondary island formation in our 2D simulations, likely because field-aligned current filaments cannot form in 2D. In addition, electron pressure anisotropy with \(p||>p\perp \) may suppress secondary tearing. Although the current layer is shorter in the run at \(m_i/m_e = 400 \) in Fig. 4(c), we classify it as marginally in regime (3) because the electrons are magnetized and electron pressure anisotropy greatly enhances the local current density.

<table>
<thead>
<tr>
<th>Regime</th>
<th>Inner jets</th>
<th>Anisotropic exhaust</th>
<th>Embedded layer</th>
<th>(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>(K\leq1)</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>(1\leq K \leq 2.5)</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>(2.5 \leq K)</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>(2.5 \leq K)</td>
</tr>
</tbody>
</table>
Unlike the inner unmagnetized jets of regime (1), the embedded layers can be described within a fluid framework. In fact, they are reproduced in fluid simulations by including the equations of state for the anisotropic electron pressure [5]. The fluid code allows larger simulation domains than the equations of state for the anisotropic electron pressure anisotropy develops. In fact, they are reproduced in fluid simulations by including the electron pressure anisotropy, initially in a force-free configuration. Unlike the inner unmagnetized jets of regime (1), the embedded layers can be described within a fluid framework. In fact, they are reproduced in fluid simulations by including the equations of state for the anisotropic electron pressure [5]. The fluid code allows larger simulation domains than the equations of state for the anisotropic electron pressure anisotropy develops. In fact, they are reproduced in fluid simulations by including the electron pressure anisotropy, initially in a force-free configuration.

In summary, a new series of kinetic simulations demonstrate that currents and magnetic fields that develop during reconnection fall into different regimes depending on the guide field strength, the electron $\beta_{e\infty}$, and the implemented mass ratio. These results underscore the complexity of direct comparison of spacecraft data to simulation, which often must employ some unrealistic parameters and rely on extrapolation. Notably, a new regime with an extended embedded electron diffusion region is present in our simulations for an interval of guide fields that becomes wider as m_i/m_e increases and is most significant in our runs at the real proton-to-electron ratio.

The work was funded in part by DOE Junior Faculty Grant No. DE-FG02-06ER54878 and NASA Grant No. NNH11CC65C. Contributions from W.D. were supported by the NASA Heliophysics Theory Program and from V.S.L. were supported by the NASA Solar and Heliospheric Physics Program. Simulations were performed on Pleiades provided by NASA’s HEC Program, on Hopper provided by NERSC, and with Los Alamos Institutional Computing resources.