Top-quark mass measurement in events with jets and missing transverse energy using the full CDF data set

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

As Published	http://dx.doi.org/10.1103/PhysRevD.88.011101
Publisher	American Physical Society
Version	Final published version
Accessed	Mon Apr 25 01:10:08 EDT 2016
Citable Link	http://hdl.handle.net/1721.1/81355
Terms of Use	Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Detailed Terms	

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Top-quark mass measurement in events with jets and missing transverse energy using the full CDF data set
(CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
3University of Athens, 157 71 Athens, Greece
4Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
5Baylor University, Waco, Texas 76798, USA
6aIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
68University of Bologna, I-40127 Bologna, Italy
7University of California, Davis, Davis, California 95616, USA
8University of California, Los Angeles, Los Angeles, California 90024, USA
9Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
10Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
11Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
12Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
13Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
14Duke University, Durham, North Carolina 27708, USA
15Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
16University of Florida, Gainesville, Florida 32611, USA
17Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
18University of Geneva, CH-1211 Geneva 4, Switzerland
19University of Oxford, Oxford OX1 3RH, United Kingdom
20Harvard University, Cambridge, Massachusetts 02138, USA
21Department of Physics, Division of High Energy Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014 Helsinki, Finland
22University of Illinois, Urbana, Illinois 61801, USA
23The Johns Hopkins University, Baltimore, Maryland 21218, USA
24Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
25Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea;
Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Sawon 440-746, Korea;
Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea;
and Ewha Womans University, Seoul 120-750, Korea
26Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
27University of Liverpool, Liverpool L69 7ZE, United Kingdom
28University College London, London WC1E 6BT, United Kingdom
29Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, E-28040 Madrid, Spain
30Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
31Institute of Particle Physics: McGill University, Montréal, Québec H3A 2T8, Canada; Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; University of Toronto, Toronto, Ontario M5S 1A7, Canada;
and TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
32University of Michigan, Ann Arbor, Michigan 48109, USA
33Michigan State University, East Lansing, Michigan 48824, USA
34Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
35University of New Mexico, Albuquerque, New Mexico 87131, USA
36The Ohio State University, Columbus, Ohio 43210, USA
37Okayama University, Okayama 700-8530, Japan
38Osaka City University, Osaka 588, Japan
39University of Oxford, Oxford OX1 3RH, United Kingdom
40aIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy
40bUniversity of Padova, I-35131 Padova, Italy
41University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
42aIstituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
42bUniversity of Pisa, I-56127 Pisa, Italy
42cUniversity of Siena, I-56127 Pisa, Italy
We present a measurement of the top-quark mass using the full data set of Tevatron $\sqrt{s} = 1.96$ TeV proton-antiproton collisions recorded by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb^{-1}. The analysis uses events with one semileptonic $t \to b \nu_W$ decay, but without detection of the electron or muon. We select events with significant missing transverse energy and multiple jets. We veto events containing identified electrons or muons. We obtain distributions of the top-quark masses and the invariant mass of the two jets from W-boson decays from data and compare these to templates derived from signal and background samples to extract the top-quark mass and the
The top quark \((t)\) is the heaviest known elementary particle. Its mass is approximately 40 times larger than the mass of its isospin partner, the bottom quark \((b)\). The top-quark mass \(M_{\text{top}}\) is a fundamental parameter of the standard model (SM) and is tightly related to the \(W\)-boson mass and Higgs-boson mass via electroweak radiative corrections [1]. Before the recent observation of the Higgs boson and a direct measurement of its mass [2], precision measurements of \(M_{\text{top}}\) and \(W\)-boson mass provided the only available information on the SM Higgs boson.

Top quarks at the Tevatron are predominately produced in \(t\bar{t}\) pairs. Assuming unitarity of the three-generation quark-mixing matrix [3], the top quark decays almost exclusively into a \(W\) boson and a \(b\) quark. The case where one \(W\) decays leptonically into a charged lepton \((e, \mu, \tau)\) and its neutrino and the other \(W\) decays hadronically into a pair of jets \((t\bar{t} \rightarrow l\nu b\bar{b}q\bar{q})\) defines the lepton + jets decay mode. In the standard selection of lepton + jets events [4,5], we require a well-reconstructed electron or muon with multiple jets and large missing transverse energy \((E_T)\) [6]. The first requirement excludes events with a hadronically decaying \(\tau\) lepton and events with an electron or muon that fails the identification requirements or falls outside the limited detector coverage. In this paper, we focus on events from the lepton + jets decay in which no muon or electron is reconstructed. The signal acceptance in this channel is comparable with the standard lepton + jets channel, and the dominant QCD multijet background is manageable with a multivariate technique [7,8]. This work is an update of a previous measurement that used a subset of the present data and determined \(M_{\text{top}} = 172.3 \pm 2.6\) GeV/c\(^2\) [8]. In the present measurement, we not only use a larger sample but also increase the signal acceptance with changes in the event-selection criteria and improve the sensitivity with a new event-reconstruction method. These changes produce an improvement of about 18\% in statistical precision over the improvement expected from increasing the sample size alone. We use the full data set of \(p\bar{p}\) collisions collected by the CDF II detector at the Fermilab Tevatron, corresponding to an integrated luminosity of 8.7 fb\(^{-1}\).

The CDF II detector [9] is a general-purpose azimuthally and forward-backward symmetric detector surrounding the colliding beams of the Tevatron \(p\bar{p}\) collider. A charged-particle tracking system, consisting of an inner silicon microstrip detector and an outer drift chamber, immersed in a 1.4 T magnetic field, provides accurate vertex and momentum reconstruction. Electromagnetic and hadronic calorimeters surround the tracking system and measure particle energies. Drift chambers and scintillators, located outside the calorimeters, detect muon candidates.

The data used in this measurement are collected with a purely calorimetric online selection (trigger). Calorimeter energy deposits are clustered into jets using a cone algorithm with an opening angle of \(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4\) [10]. Events are triggered by selecting those containing at least four clusters with \(E_T > 15\) GeV and a scalar sum of the \(E_T\) of all the clusters greater than 175 GeV.

After the online selection, event observables of physical interest are computed. Jets are reconstructed with the JETCLU [11] algorithm using a cone radius of \(\Delta R = 0.4\). Jet energies are corrected [12] for nonuniformities of the calorimeter response parametrized as a function of \(\eta\), energy contributed by multiple \(p\bar{p}\) interactions in the event, and calorimeter nonlinearity. We identify jets originating from the decay of a \(b\) quark using the secvtx algorithm [13]. We require at least one jet to be identified as a \(b\) quark (\(b\) tagging). In order to improve the analysis’s sensitivity, we group the candidate events into two samples, one with exclusively single-\(b\)-tagged events (1-tag), and the other with events containing two or more \(b\)-tagged jets (2-tag). Events are required to have four, five, or six jets with transverse energy \(E_T > 15\) GeV and \(|\eta| < 2.0\). To maintain the event sample independent from those used in other CDF top-quark mass measurements [14–17], we require events to have no identified electrons or muons with \(p_T > 20\) GeV/c and \(|\eta| < 1.1\). In order to reject multijet backgrounds from QCD processes, we require the events to have \(E_T\) significance \((E_T^{2g} = E_T/\sqrt{\sum_{\text{jets}} E_T})\) to be greater than 3 GeV\(^{1/2}\), where the sum in the denominator runs over all identified jets in an event. The remaining events have appreciable background from QCD processes due to the mismeasurement of jet energies. Because these events sometimes have misalignment between QCD processes due to the mismeasurement of jet energies. Because these events sometimes have misalignment between QCD processes due to the mismeasurement of jet energies. Because these events sometimes have misalignment between QCD processes due to the mismeasurement of jet energies. Because these events sometimes have misalignment between QCD processes due to the mismeasurement of jet energies. Because these events sometimes have misalignment between QCD processes due to the mismeasurement of jet energies.

Background events with \(b\) tags arise from QCD multijet events and from electroweak production of \(W\) bosons associated with jets. We estimate the background rate using a data-driven method [8]. This method uses events with exactly three jets, which have a negligible (<0.1\%) \(t\bar{t}\) component, and employs a per-jet parametrization of the
TOP-QUARK MASS MEASUREMENT IN EVENTS WITH \mathbf{b}-TAGGING PROBABILITY

Due to the presence of $t\bar{t}$ events in event samples with higher jet multiplicity, we extrapolate the b-tagging probability of the three-jet event sample to higher jet multiplicity event samples after iteratively removing the $t\bar{t}$ content from the samples [8]. We estimate the background for the 1-tag and 2-tag samples separately. A b-tagging correction factor [19] is applied to account for the dominance of production in pairs for heavy-flavor jets. To improve the signal-to-background ratio in this analysis, an artificial neural network is trained to identify the kinematic and topological characteristics of SM $t\bar{t}$ events using input variables proposed in Refs. [7,19]. Compared with our previous work [8], we add new input variables,

$\Delta \phi (\vec{E}_T, \vec{p}_T^i)$, \vec{p}_T^i, and a series of two jets ($2j$) and three jets ($3j$) invariant masses, M_{2j}^{min}, M_{2j}^{max}, M_{3j}^{min}, and M_{3j}^{max}, where superscripts min and max represent the minimum mass and the maximum mass, respectively, among all the possible combinations of $2j$ or $3j$. We apply the neural network to all events meeting the above selection criteria. We then define the signal region by requiring a neural network output greater than 0.9 for 1-tag events and 0.8 for 2-tag events, respectively, chosen in order to reject approximately 95% of the background and preserve approximately 80% of the signal. With this procedure we obtain the estimated numbers of background events in the signal region shown in Table I. We also show the expected number of $t\bar{t}$ signal events, assuming a $t\bar{t}$ production cross section of 7.45 pb at $M_{top} = 172.5$ GeV/c^2 [20], together with the number of observed events in the data. Signal events are further separated by the number of jets for reasons explained later.

To distinguish between different values of M_{top}, we compare the reconstructed top-quark mass distribution from our data to a series of $t\bar{t}$ signal samples generated by PYTHIA [21] with 76 different M_{top} values ranging from 150 GeV/c^2 to 240 GeV/c^2. Because the jet energy scale (JES) is one of the dominant systematic uncertainties in the M_{top} measurement, we generate a set of samples with JES variations. Data jets in the analysis are corrected by a factor of $1 + \Delta_{\text{JES}}$ to account for the scale error in the calorimeter. In the simulation, the value of Δ_{JES} is varied from $-3.0\sigma_c$ to $+3.0\sigma_c$, where σ_c is the CDF JES fractional uncertainty [12].

Table I. Numbers of expected signal and estimated background events in the signal region compared to the number of events observed in the data.

<table>
<thead>
<tr>
<th></th>
<th>1-tag</th>
<th>2-tag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 jets</td>
<td>5 or 6 jets</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>427 ± 50</td>
<td>801 ± 70</td>
</tr>
<tr>
<td>Background</td>
<td>262 ± 22</td>
<td>450 ± 29</td>
</tr>
<tr>
<td>Expected</td>
<td>690 ± 55</td>
<td>1251 ± 76</td>
</tr>
<tr>
<td>Observed</td>
<td>761</td>
<td>1341</td>
</tr>
</tbody>
</table>

After event selection, the analysis proceeds in three steps. First, we reconstruct two different top-quark masses ($m_{t\bar{t}}^{\text{reco}}$ and $m_{t\bar{t}}^{\text{reco}(2)}$) using measured jets and \vec{E}_T. We modify the standard χ^2-like kinematic fitter [22,23], which has been used in the lepton + jets channel measurements, for the reconstruction of the lepton + jets with no reconstructed lepton. $m_{t\bar{t}}^{\text{reco}}$ is the reconstructed top-quark mass from the lowest χ^2 fit between measured jets to partons combinatorics while $m_{t\bar{t}}^{\text{reco}(2)}$ is taken from the assignment that yields the second lowest χ^2 to increase the statistical power of the measurement. Both $m_{t\bar{t}}^{\text{reco}}$ and $m_{t\bar{t}}^{\text{reco}(2)}$ are the sensitive variables for M_{top}. We also reconstruct the hadronically decaying W-boson mass. With the constraint of the well-known W-boson mass, this variable can be used to determine the JES calibration in situ which reduces the dominant uncertainty from the JES. The second step is a likelihood fit of the three variables using simulated signal and background distributions to obtain the measured top-quark mass ($M_{t\bar{t}}^{\text{meas}}$). Calibration factors relating this likelihood fit result to M_{top} are obtained. In this process, a three-dimensional kernel density estimation [22,24] is applied to obtain probability density functions (p.d.f.s) of the signals and background. Finally, we perform the same likelihood fit to the data and apply the calibration factors to obtain M_{top}.

Events used in this measurement have two missing particles, a neutrino and a charged lepton, which are assumed to have two decay products of a W boson. For the M_{top} measurement, the reconstruction of W-decay particles is not necessary, so these events can be considered as having one missing particle, a W boson that decays leptonically. We then reconstruct events with a number of constraints that is larger than the number of unknown quantities. We assume that all selected events are lepton + jets $t\bar{t}$ events with a missing particle, the W boson. Measured four-vectors of jets are corrected for known effects, and appropriate resolutions are assigned. The unclustered transverse energy (\vec{U}_T) [22] is estimated as a sum of all transverse energy in the calorimeters that is not associated with one of the selected four jets. The longitudinal momentum of the leptonically decaying W boson is a free parameter which is effectively determined by the constraints from the known mass of the W boson and the assumption that $M_{t\bar{t}} = M_t$, where M_t and $M_{t\bar{t}}$ are the mass of the top quark and antitop quark, respectively. To estimate the reconstructed top-quark mass, $m_{t\bar{t}}^{\text{reco}}$, we define a kinematic χ^2 function,

$$
\chi^2 = \sum_{i=4 \text{ jets}} \left(\frac{(p_{T,i}^{\text{fit}} - p_{T,i}^{\text{meas}})^2}{\sigma_{i}^{2}} \right) + \sum_{k,x,y} \left(\frac{(U_{k,x,y}^{\text{fit}} - U_{k,x,y}^{\text{meas}})^2}{\sigma_{k,x,y}^{2}} \right) + \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} + \frac{(M_{\text{missing}} - M_W)^2}{\Gamma_W^2} + \frac{(M_{b,\text{missing}} - m_{t\bar{t}}^{\text{reco}})^2}{\Gamma_i^2} + \frac{(M_{bjj} - m_{t\bar{t}}^{\text{reco}})^2}{\Gamma_i^2},
$$

(1)
where the value of the free parameter m_t^{reco} is determined as the reconstructed top-quark mass value corresponding to the minimum χ^2. In Eq. (1), we constrain the four selected jets p_T to their measured values and uncertainties (σ_T). We also constrain the x and y components of \vec{p}_T in the second term which is related to the transverse momentum of the missing W boson. The third term constrains the dijet mass of the two jets assigned as W-decay products to the known W mass within the W-boson decay width. The fourth term constrains the invariant mass of the missing particle (M_{missing}) to the W-boson mass. The fifth term constrains the invariant mass of the missing particle and the b quark (that is regarded as coming from the daughters of the same top-quark decay) to be consistent with the hadronically decaying top-quark mass within the top-quark decay width of 1.5 GeV/c^2. The last term imposes the same constraint on the invariant mass of the two jets regarded as W-boson decay products and the b quark that is assigned as coming from the same top-quark decay.

The event reconstruction described above, using the leading (highest-p_T) four jets, does not consider the contribution of hadronically decaying τ leptons. However, because the τ lepton can be misidentified as a jet, we also consider five leading jets and assign one of the jets as the misidentified τ lepton. We perform the χ^2 fit in Eq. (1) for each possible jet-to-parton assignment. Assuming that the leading five jets in any event come from the four final quarks and one hadronically decaying τ lepton, there are 24 and 6 possible assignments of jets to quarks or τ leptons for 1-tag and 2-tag, respectively. In the case of four-jet events, we assume that the four jets come from the four quarks. This makes 6 and 2 possible combinations in 1-tag and 2-tag, respectively. The χ^2 minimization is performed for each jet-to-quark or jet-to-τ assignment, and the first variable m_t^{reco} is taken from the assignment that yields the lowest χ^2. Due to the differing number of assignments between events with four jets and those with five or six, the resolution of m_t^{reco} is different. We therefore separate the candidate events accordingly.

In order to extract more statistical information from each event, we add a second variable, $m_t^{\text{reco}(2)}$, the reconstructed top-quark mass that corresponds to the second lowest χ^2 [15] in the jet-to-quark and jet-to-τ combinatorics. Studies based on Monte Carlo (MC) samples show that m_t^{reco} and $m_t^{\text{reco}(2)}$ have better sensitivity to the input top-quark masses of the samples than the two estimators used in a previous analysis [8].

The third variable, m_{jj}, defined as the invariant mass of the two jets from the hadronically decaying W boson, serves as an in situ constraint on the JES through the likelihood fit. We calculate m_{jj} from the two non-b-tagged jets. If more than two non-b-tagged jets are present, we use the closest value to the world average W-boson mass, 80.40 GeV/c^2 [25], from all possible combinations.

By accounting for the correlations between m_t^{reco}, $m_t^{\text{reco}(2)}$, and m_{jj}, we reconstruct three-dimensional p.d.f.s of signals and background for the likelihood fit procedure. First, we estimate p.d.f.s for the observables from the above-mentioned PYTHIA $t\bar{t}$ samples at discrete values of M_{top} from 150 GeV/c^2 to 240 GeV/c^2 and Δ_{JES} from $-3.0\sigma_c$ to $+3.0\sigma_c$. Background p.d.f.s are estimated for discrete Δ_{JES}. We interpolate the MC distributions to find p.d.f.s for arbitrary values of M_{top} and Δ_{JES} using the local polynomial smoothing method [26]. Then, we fit the signal and background p.d.f.s to the unbinned distributions observed in the data. Separate likelihoods are built for the four subsamples, and the overall likelihood is obtained by multiplying them together. References [22,27] provide detailed information about this technique.

The mass fitting procedure is tested with pseudoexperiments for a set of MC-simulated $t\bar{t}$ samples with 14 different M_{top} values ranging from 159 GeV/c^2 to 185 GeV/c^2. For each pseudoexperiment, we draw the number of background events from a Poisson distribution with a mean equal to the estimated total number of background events in the sample and the number of signal events from a Poisson distribution with a mean equal to the expected number of signal events normalized to a $t\bar{t}$ production cross section of 7.45 pb. The mean value of the distributions of the mass residual (the deviation from the input top-quark mass) for simulated experiments is corrected to be zero, and the correction from linear regression analysis is $M_{\text{corr}}^{t} = 1.066 \times M_{\text{meas}}^{t} - 11.46$ GeV/c^2, where M_{meas}^{t} is the raw value from the likelihood fit and M_{corr}^{t} is the corrected value of the measurement. The width of the pull is consistent with unity after the correction. We also test the mass fit results using different values of Δ_{JES} between $-1.0\sigma_c$ and $+1.0\sigma_c$ with three different M_{top} points, 168, 173, and 178 GeV/c^2. With the correction discussed above, the residuals of M_{top} from different Δ_{JES} values are consistent with zero in case of $M_{\text{top}} = 168$ GeV/c^2 and 173 GeV/c^2. However, the pseudoexperiments corresponding to a top-quark mass of 178 GeV/c^2 show a 0.42 GeV/c^2 difference between $-1.0\sigma_c$ and $+1.0\sigma_c$. We take the half difference (0.21 GeV/c^2) as the systematic uncertainty on the calibration.

We examine the effect of various sources of systematic uncertainties by comparing the results of pseudoexperiments in which we vary relevant parameters within their uncertainties. One of the leading sources of systematic uncertainty is the residual JES [12,22]. We vary the JES components within their uncertainties in the MC-simulated signal events and interpret the shifts in the returned top-quark mass as uncertainties. The b-jet energy scale systematic uncertainty that arises from the modeling of b fragmentation, b-hadron branching fractions, and calorimeter response captures the additional uncertainties not included in the light-quark-jet energy scale [22].
uncertainty arising from the choice of the MC generator is estimated by comparing results from MC samples generated with PYTHIA and HERWIG [28]. We estimate the systematic uncertainty due to imperfect modeling of initial-state gluon radiation and final-state gluon radiation by varying the amounts of initial- and final-state radiations in simulated events [23]. We estimate the systematic uncertainty due to parton distribution functions (PDFs) of the proton by varying the independent eigenvectors of the CTEQ6M [29] PDFs, varying the QCD scale A_{QCD} (228 MeV vs 300 MeV) and comparing CTEQ5M [30] with MRST72 [31] PDFs. To estimate the systematic uncertainty associated with uncertainties in the top-quark production mechanism, we vary the fraction of the top quarks produced by gluon-gluon annihilation from the default 6% to 20%, corresponding to a one-standard-deviation upper bound on the gluon fusion fraction [32]. The background systematic uncertainty accounts for the variation of the background originating from the uncertainty on the per-jet b-tagging probability. It includes not only the shape change of the reconstructed variables but also background normalization. The trigger efficiency is estimated using a combination of MC and data [33]. We evaluate the uncertainty propagated from the corrections of the trigger efficiency in the signal MC samples. We also estimate an uncertainty due to the effect of multiple hadron interactions, including its dependence on the instantaneous luminosity profile of the data. The color reconnection uncertainty [34] is evaluated using MC samples generated with and without color reconnection effects adopting different configurations of PYTHIA [35]. Table II summarizes all systematic uncertainties, which, summed in quadrature, total to 0.87 GeV/c².

By applying a likelihood fit to the data using the three variables described above and the corrections obtained from the simulated experiments, the top-quark mass is measured to be:

TABLE II. Systematic uncertainties on the top-quark mass measurement.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (GeV/c²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual jet-energy scale</td>
<td>0.44</td>
</tr>
<tr>
<td>MC generator</td>
<td>0.36</td>
</tr>
<tr>
<td>Color reconnection</td>
<td>0.28</td>
</tr>
<tr>
<td>gg fraction</td>
<td>0.27</td>
</tr>
<tr>
<td>Radiation</td>
<td>0.28</td>
</tr>
<tr>
<td>PDFs</td>
<td>0.16</td>
</tr>
<tr>
<td>b-jet energy scale</td>
<td>0.19</td>
</tr>
<tr>
<td>Background</td>
<td>0.15</td>
</tr>
<tr>
<td>Calibration</td>
<td>0.21</td>
</tr>
<tr>
<td>Multiple hadron interaction</td>
<td>0.18</td>
</tr>
<tr>
<td>Trigger modeling</td>
<td>0.13</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>0.87</td>
</tr>
</tbody>
</table>

FIG. 1 (color online). Distribution of three variables m_{t}^{reco}, $m_{t}^{\text{reco}(2)}$, and m_{jj} for events with four jets, from data (points), overlaid with their corresponding one-dimensional p.d.f.s from the signal MC sample ($M_{\text{top}} = 173.5$ GeV/c², hashed area) plus the estimated background (filled area). The 1-tag (top) and 2-tag (bottom) distributions are separately shown.
Figures 1 and 2 show the observed distributions of the variables used for the $M_{t\bar{t}}$ measurement overlaid with density estimates using $t\bar{t}$ signal events with $M_{t\bar{t}} = 173.5 \text{ GeV}/c^2$ and the background model. Graphs are presented for events with four jets and five or six jets, respectively.

In conclusion, we perform a measurement of the top-quark mass in events with jets and large E_T in data corresponding to an integrated luminosity of 8.7 fb^{-1} collected by the CDF experiment. The data sample is chosen in such a way as to be statistically independent from samples used in other CDF top-quark mass measurements, apart from the earlier version of this work [8]. The result, $M_{t\bar{t}} = 173.93 \pm 1.85 \text{ GeV}/c^2$, is a considerable improvement on the previous measurement with the same event signature, and is in agreement with the recent published Tevatron average of $M_{t\bar{t}} = 173.18 \pm 0.94 \text{ GeV}/c^2$ [5]. This result is included in the most recent preliminary Tevatron average with approximately 12% weight while a measurement using the standard lepton + jets channel with same data set contributes approximately 62% weight [36]. The present result is the most precise top-quark mass measurement to date in this event topology.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the National Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.
TOP-QUARK MASS MEASUREMENT IN EVENTS WITH ...

[6] The transverse momentum p_T and transverse energy E_T of a particle are defined as $|\vec{p} \sin \theta|$ and $E \sin \theta$, respectively, where θ is the polar angle of the particle momentum with respect to the proton beam direction. The missing transverse energy, an imbalance of energy in the plane transverse to the beam direction, is defined as $\not{E}_T = \sum_{\text{nu克}} E_T \hat{n}_T$, where \hat{n}_T is the unit vector normal to the beam and pointing to a given calorimeter tower and E_T is the transverse energy measured in that tower. \not{E}_T is the magnitude of the \not{E}_T vector.

[10] CDF uses a cylindrical coordinate system with the z axis along the proton beam axis. Pseudorapidity is defined as $\eta = -\ln (\tan (\theta/2))$, where θ is the polar angle relative to the proton beam direction, and ϕ is the azimuthal angle.

