Contribution of Electricity to Materials Processing: Historical and Current Perspectives

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1007/s11837-012-0538-3</td>
</tr>
<tr>
<td>Publisher</td>
<td>Springer-Verlag</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Jan 14 07:38:45 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/81408</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike 3.0</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/3.0/</td>
</tr>
<tr>
<td>Manuscript Number:</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Full Title:</td>
<td>Contribution of Electricity to Materials Processing: Historical and Current Perspectives</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Overview</td>
</tr>
</tbody>
</table>
| Corresponding Author: | Antoine Allanore, Ph.D.
 MIT
 Cambridge, MA UNITED STATES |
| Corresponding Author Secondary Information: | |
| Corresponding Author's Institution: | MIT |
| Corresponding Author's Secondary Institution: | |
| First Author: | Antoine Allanore, Ph.D. |
| First Author Secondary Information: | |
| Order of Authors: | Antoine Allanore, Ph.D. |
| Order of Authors Secondary Information: | |
| Abstract: | Most major materials extraction processes are more than 100 years old, developed at a time of limited awareness of their environmental impact and the issue of resources limitations. In this context, it is proposed to look back at materials processes progress in parallel with the history of electric power generation. This overview reveals that electricity became a key energy vector for chemical and materials processing in less than a century. The role of electricity in the production of the highest tonnage metals, i.e. aluminium and steel proved to be crucial, leading to higher productivity and lower energy consumption for both metals. Finally, a review of the recent developments in electrolytic steel shows that new electricity-based processes are possible, offering the opportunity for a symbiosis between future carbon-free power generation and materials processing. |
Contribution of Electricity to Materials Processing:
Historical and Current Perspectives

Antoine Allanore
Department of Materials Science & Engineering
Massachusetts Institute of Technology,
77 Massachusetts Avenue, #13-5066
Cambridge, MA, 02139

allanore@mit.edu
Phone: +1 617 452 2758

‡

Abstract

Most major materials extraction processes are more than 100 years old, developed at a time of limited awareness of their environmental impact and the issue of resources limitations. In this context, it is proposed to look back at materials processes progress in parallel with the history of electric power generation. This overview reveals that electricity became a key energy vector for chemical and materials processing in less than a century. The role of electricity in the production of the highest tonnage metals, i.e. aluminium and steel proved to be crucial, leading to higher productivity and lower energy consumption for both metals. Finally, a review of the recent developments in electrolytic steel shows that new electricity-based processes are possible, offering the opportunity for a symbiosis between future carbon-free power generation and materials processing.

1. The availability of electricity: a timeline

The impact of electricity on the level of technological development achieved by mankind is hard to summarize. The upper part of Figure 1 presents the timeline in the mastering of electricity and reveals that electric power became available quantitatively and reliably only at the beginning of the 19th century, thanks to a first key invention: the battery by A. Volta in 1799. Several decades elapsed before the second key discovery: a device that was able to reliably convert mechanical power to electricity, invented by M. Faraday in the form of a disk generator in 1831. The battery and the disk were both immediately adopted by scientists in their laboratory as a source of electricity. The successful demonstration of the electromagnetic conversion method led to numerous developments, and in particular to the invention of the dynamo for high power application by C. Wheatstone and W. Siemens simultaneously in 1867. The next key step in this timeline are the invention and construction of the first dam for electric power generation, which occurred presumably close to Niagara Falls (Schoelkopf Power Station No. 1, 1881). One year after, the first coal-fired power station was built and operated in New York City (Edison’s Pearl St station, 1882).

A century of inventions and developments passed before mankind was able to reliably generate large quantity of electricity, an achievement considered as one of the pillars of the 2nd industrial «revolution».
2. Adoption of electricity: the role of chemists

As illustrated in the center of part of the timeline in Figure 1 ‘philosophers’ of the early 19th century were well ahead of their time and immediately embraced this new form of energy as a mean to isolate elements and investigate their physical properties.

As early as 1807, the potential difference at the terminal of a battery was identified by chemists as a powerful tool for the investigation of the ‘true elements of bodies’. It indeed allowed the experimentalists to expose any chemical media to a finite and controllable difference of chemical potential. Helped by the availability at the Royal Society of the world largest battery, H. Davy became a chemist of standing and isolated alkaline and alkaline earth elements thanks to electrolysis [1]. The isolation of these reactive elements was a first in chemistry and helped in less than two decades to separate other elements thanks to metallothermic reaction, e.g. beryllium («glucinium» by reduction of its chloride salts with electrolytic potassium [2,3]). Less than two decades after Volta’s invention, electricity was also identified as a mean to provide heat and obtain temperatures hardly achievable with previous laboratory techniques: J. G. Children melted metallic iridium and osmium in 1813 using a battery as electricity source [4]. It is also thanks to electricity that H. Moissan - who isolated fluorine thanks to electrolysis in 1886 [5] - was able to reach temperatures in excess of 3000°C in his electric furnace that relied solely on arc-generated radiative heat [6]. It is with this tool that he investigated diamond synthesis and the melting point of refractory oxides.

The use of a continuous source of electricity and the principle of electrolysis was also adopted by chemists to produce essential gases in significant quantities and in pure form: hydrogen [7], oxygen [7] or ozone. Some of these processes or products nowadays are interestingly advocated as a solution to mitigate mankind’s impact on the environment. The remarkable efficiency of electrolysis for separation has continued to be appraised by chemists in the 20th century, for example after the discovery of deuterium for the forthcoming production of heavy-water [8]. The production of chlorinated compounds by electrolysis was also an early discovery and scaled up at the pace of industrial electricity deployment [9]. The chlor-alkali production ultimately became one of the most important process in the chemicals industry, consuming around 3% of the electricity in USA. It is in this industry that electrochemical experts see the last technical breakthrough of key importance for energy and the environment: the dimensionally stable anode (DSA®) for chlorine evolution invented by H. DeBeer and industrialized by the V. & O. DeNora in the 1970’s [11]. From a materials perspective, it is fair to stress that the technological progress and the sustainability of these electrochemical processes relied intensively on the application of materials science which provides a link to the section below.

2 Chlorine as an element was isolated and identified by L.J. Gay-Lussac in 1809 without assistance of electricity
3. Contribution of electricity to metal processing

The timeline in Figure 1 also shows that many philosophers at the time of Alessandro Volta were not only chemists, but also metallurgists. In 1805, three decades before Faraday’s laws on electrolysis, L. Brugnatelli demonstrated the principle of electrolysis of gold using Volta’s battery [12]. In 1808, H. Davy demonstrated the use of an arc to melt and join metal thus giving birth to fusion welding techniques. These early successes initiated an intimate relationship between electricity and metallurgy at both low and high temperatures.

In less than 70 years, the field application of electrolytic methods in aqueous-based electrolyte was broadened and investigated for the extraction or manufacturing of most common metallic elements (33 out of 70) e.g., for plating, refining or forming [13]. Industrial electrolysis at low temperature is nowadays a key process for primary and secondary metal extraction, and enables the large-scale availability of some of the most important metals.

Electrolytic techniques for metal separation at high-temperatures in molten salts were also applied early as pioneered by H. Davy in 1807 [1]. The corresponding industrial processes were designed and operated less than a century later, for sodium (from sodium hydroxide by Castner in 1891 [14] and later sodium chloride electrolysis by Downs [15]), magnesium (chloride electrolysis principle by Faraday in 1833 [16]), lithium (commercial production started in 1923 from chlorides) or rare-earth elements (in chlorides or fluorides [17,18]). One metal, isolated before the advent of electrolysis, has lead to one of the most fascinating business and technological adventure of the 20th century: aluminium. Considered as a precious metal before the invention of molten cryolite electrolysis simultaneously by C.M. Hall [19] and P. Héroult [20] in 1886, aluminium has become a commodity in less than 25 years.

The use of electricity for high temperature metal extraction or refining in electric furnaces was also promptly adopted, with a very sound physical understanding of the thermodynamics attributes of electricity [21]. The invention of the direct arc-heating furnace is credited to W. Siemens [22] as early as 1878. At that time, an arc was created between an electrode and the material to be processed. The combination of direct arc and resistance heating was patented in 1887 and operated in France (La Praz) to melt steel for the first time by the very same P. Héroult in 1900 [23, 24]. In this specific case the arc was generated between two electrodes through a resistive media - a slag - in contact with the material of interest. After several decades of domination by the Héroult type of furnace, and after its important transition from AC to DC operation, direct arc heating furnaces for smelting operation became commercially available to process oxide materials and are used today for the extraction of a wide range of products, from ferro-alloys to platinum group elements [25].

4. Benefits of materials processing with electricity

The use of electricity in metal production provides unique process attributes: low capital cost, high purity of the metal product, easy process control, flexible production capacity... These key features shall not mask another asset of the industrial application of electricity: using electricity helps to reduce the energy consumption and improve productivity.
In the context of the promotion of sustainable materials processing techniques, it is of interest to recall the trend in the energy intensity for aluminium production (Hall-Héroult electrolytic process (HH)) along with the increase in the corresponding reactor productivity (Figure 2). These data are praised by the aluminium sector and are worth sharing with the whole materials community: the use of electricity led simultaneously to a rapid and drastic reduction of the specific energy consumption and a considerable increase in the cell capacity (productivity per square meter of cathode). For comparison, the time variation of the energy consumption for primary steel production (ironmaking, Blast-Furnace based (BF)) and steel electric remelting (Electric Arc Furnace (EAF) based) is presented in Figure 2 revealing a similar rate of improvement during the same period, though limited to an energetic efficiency factor slightly higher than 2 for BF, while aluminium is close to 1.5.

The less favorable efficiency for ironmaking may be due to the reliance on a gas-solid reduction reaction which require numerous pre- and post- operations (coke oven, sintering, basic oxygen furnace respectively), ultimately leading to temperature discontinuities and energy losses along the various steps [2]. One has to emphasize that these numerous steps have been developed on purpose to guarantee the impressive productivity of the blast-furnace. As a matter of fact some ironmaking integrated plants are operating today close to what is considered an optimal level of energy consumption, although radically different techniques are under development to allow further reduction in energy intensity and GHG emissions. Interestingly, in the USA and some other countries, a significant reduction in energy consumption and CO₂ emissions for steelmaking occurred at the end of the 20th century (Figure 3), coinciding with a more intensive use of the electric arc furnace. This demonstrates that using electricity for steelmaking is a modern reality and actually provides benefits.

5. The ironmaking dilemma

The ironmaking issue is a key challenge both from the society and engineering standpoints. The immediate availability of carbon sources, initially as charcoal, has tied the iron smelting operation to carbon around 4000 years ago [26]. This successful relationship is a gift to mankind: both carbon and iron oxide are abundant, the Gibbs energy of formation of iron oxide is low - it is relatively easy to reduce iron oxide to metal -, carbon provides unique mechanical properties to iron and finally the amount of heat generated during the combustion of carbon is sufficient to guarantee the production of molten metal. Without any attempts to criticize the technological and scientific developments that shaped the existing steel industry processing it is of interest to review the fundamental nature of iron extraction.

Adopting a holistic approach - backed-up by thermodynamics -, one can depict the extraction of iron from the oxide as a separation process, an operation which in principle does not require the use of another chemical. To be efficient, this step requires careful monitoring of the amount of chemical energy, equivalent to work in thermodynamic terms [30]. This is needed to separate the oxygen anions from the metal (reaction 1).

4 The energy index is defined here as the ratio of the actual specific energy consumption (Best Available Technique) to the thermodynamic minimum for the oxide separation into its constituent elements (metal and oxygen) in the case of primary extraction, and minimum heat needed to melt the metal in the case of the EAF. This is a fair comparison for production of primary aluminium and steel since both processes rely on the use of carbon as reactant and ultimately produce CO₂.
Simultaneously a definite amount of heat is needed to sustain the reaction and obtain the metal in the liquid form. A carbonated chemical (carbon, or more accurately CO) was used in the early age of mankind to provide the work needed to conduct the separation, but its reaction with the iron oxide is difficult to master on large scale. An advanced reactor to operate this reaction has therefore been developed i.e. the blast-furnace (BF).

As noticed in the schematic of current ironmaking flow-sheet (Figure 4), a number of reactors have been added to the BF to produce virgin steel at high tonnage today. Indeed, to cope with the gas/solid reaction principle and provide high enough productivity, ancillary steps have ingenuously been designed to prepare the compounds needed for the reduction (lime, sintering/pelletizing and coke plant). Because the reduction temperature is achieved by combustion, oxygen is used in the blast, requiring nitrogen separation for better efficiency. At that stage, the reactants, fluxes and fuels are ready to be introduced in the BF. These preparations are required to achieve the simultaneous control of the three most important chemical engineering phenomena in the reduction step: 1) the gases, solids, and liquids pattern; 2) the advancement of the reaction and 3) the heat-balance. Despite these astonishing engineering developments, and because of the large affinity of carbon for iron, the level of the former element in the product out of the blast-furnace («pig iron») is far too high for most applications. A decarbonization step (basic oxygen furnace or converter) is therefore added in which oxygen is used to eliminate the excess of carbon reductant initially introduced. It is only after these processing steps that steel of acceptable carbon content is obtained, and secondary metallurgists can operate.

We therefore see that the chemical approach for steel production in a single high capacity reactor requires large capital investments in both the BF and its ancillary reactors and is likely to pose some challenges in reducing further the energy consumption [32]. Furthermore, one of the key consequences in the dependency on carbonated compounds is the nature of the gases ultimately emitted, CO and CO$_2$. In the early 21" century, it is established that the most advanced integrated steel mills have a greenhouse gases intensity of around 1.8 tCO$_2$.tHotRolledCoil [31].

From the society perspective, the low price-point of steel - less than 0.6 .kg^{-1} - and its world annual consumption - 1.5 billion tonnes -, make its sustainability issue of key importance: steel currently ranks number 1 materials in terms of Greenhouse Gases impact in most developed countries. This reality has been acknowledged as early as 1990’s by steelmakers and metallurgists [32,33], and ultimately lead to the bold and pioneer decision of the steel industry to investigate new methods for steel-production, all across the globe and with various approaches and targets. Some of these approaches, interestingly, consider taking further advantage of electricity for steelmaking thus bridging the existing technological gap between iron and the other metals.

6. Challenges in existing electrochemical techniques for metal extraction

The picture presented above that describes the efficiency and importance of electricity-based materials processing does not imply the absence of technical challenges in electrochemical technologies.

$Fe_2O_3 \rightarrow 2Fe + \frac{3}{2}O_2(g)$
Metal extraction by aqueous electrochemistry suffers many limitations for high throughput and low specific energy consumption. The low current density - typically less than 0.05 A cm\(^{-2}\), the limited cell height, the large inter-electrode distances, the presence of a physical separator between the electrodes, or the limited deposit thickness due to dendritic growth are individually or collectively responsible for these limitations.

High current densities are obtained in molten salts but in processes that produce solid metal lead to dendritic or powder deposits. This product form requires significant additional energy downstream for rinsing and salts recovery, as well as numerous pre or post-processing steps (powder handling, compaction, re-melting). The batch-mode of operation of these processes clearly limits their field of application. One of the key issue for the sustainability of molten-salts electroextraction processes is the absence of satisfactory inert anode materials, i.e. which could replace consumable carbon electrode and sustains oxygen evolution. This «ultimate materials» challenge [34], despite some pioneering efforts, remains current in particular for fluoride-based electrolyte.

7. Openings: direct oxide processing at low and high temperature by electrolysis

Innovative approaches therefore seem requested to adapt electrolytic techniques for tonnage production of metals. Two paths have recently been proposed and demonstrated for iron, at low and high temperature. These techniques are not limited to this element by any means, but they do point the way with respect to such high tonnage - low cost metal.

At low temperature (100°C), the electrolysis of iron oxides particles in suspension was patented in 1918 [35]. It consists in the electrolysis of iron oxide particles (hematite typically) in a concentrated aqueous alkaline electrolyte (pH=15, 100°C). The particles are suspended at relatively high concentration and are subjected to electrolysis following reaction (2) on the cathode and (3) on the anode:

\[
Fe_2O_3(s) + 6e^- + 3H_2O \rightarrow 2Fe(s) + 6OH^- \tag{2}
\]

\[
6OH^- \rightarrow 3O_2(g) + 6e^- + 3H_2O \tag{3}
\]

It is only recently that an insight into the cathode reaction mechanism has been provided, revealing a topochemical electroreduction mechanism of an oxide slab [36] operative in absence of bulk solid-state diffusion. This mechanism, involving reaction of particles directly in contact with the cathode without dissolution of iron ions in the bulk electrolyte [37] prevents loss of efficiency through ion valence shifting between the cathode and the anode. The mechanism justifies the high selectivity of the process (selectivity higher than 90%), the high current densities - up to 1.5 A cm\(^{-2}\) [38], and the advanced energetic efficiency (higher than 80%). This last feature is partly inherited from the high conductivity of the sodium hydroxide electrolyte, the absence of a separator, and the availability of high efficiency oxygen evolving anodes for such electrolyte. This unusual electrolysis configuration, which involves suspension handling and particle-metal surface interactions [39] has been operated in various cell designs (plates, cylinders [40]) and lead to the development of large scale innovative reactor design for iron production, which produces plates up to 3kg and 5 mm thickness (Figure 5).
The commercial version of the process is envisioned with a vertical stacking of the cells to reduce the footprint of the extraction process. Meanwhile, the energy consumption has reached values \((2600 \text{kWh.t}_\text{Fe}^{-1}) \) already close to the thermodynamic minimum, providing another example of the sole ability of electrical technique to lead to the rapid development of processes with high energetic efficiency.

At high temperature, the concept of Molten Oxide Electrolysis (MOE) championed by Prof. D. Sadoway [41] has been developed for a suite of metals, including iron. The key idea is to operate in a molten oxide electrolyte - a slag in pyrometallurgist language - in a configuration very similar to the Hall-Héroult cell. The operating temperature of 1600°C allows the direct production of liquid metal in a semi-continuous manner and the presence of an oxide melt enables the building of a frozen side-wall. This reduces the capital-costs of such high-temperature reactors. The demonstration of simultaneous iron production and oxygen generation at the bench scale has been published recently [34, 42]. Efforts have been conducted to find an anode material that sustains the corrosive oxide environment [43] and the oxygen evolution at such temperature. The foreseen current density (above 2A.cm\(^{-2}\)), the absence of carbon in the reactor, and the low capital costs are among the key assets of this technology and explain the continued interest and support of this technique by steel producers worldwide. The process operates in an optimized energetic set-up, i.e. it is the synthesis of an electrolytic process (for the ability to provide exactly the amount of work needed to decompose the oxide) and the electric arc furnace\(^6\). The corresponding minimum energy consumption for MOE-steel is then \(2600 \text{kWh.t}_\text{liquid Fe}^{-1} \) which, taking into account typical heat-losses in advanced high-temperature electrolysis cells (40%), translates to around \(3600 \text{kWh.t}_\text{liquid Fe}^{-1} \). In such conditions, as presented in Figure 6, \(\text{CO}_2 \) mitigation for steelmaking could be achieved as early as 2013 for example using a natural gas combined cycle power plant. Thus carbon-free sources of electricity can ultimately provide GHG-free steelmaking thanks to electrolysis.

Both approaches have key common features: 1) iron ore particles are directly reduced with the corresponding ability to process fines or ultrafines ore, 2) perfectly controlled energetic conditions are determined solely by the electrolyte composition and the cell design and 3) metal of unique metallurgical composition is produced. It is important to realize that MOE provides the advantage of directly producing molten iron at high throughput in a continuous manner, making it ideally designed for tonnage metal production such as steelmaking.

Conclusion

Electricity in materials processing has a key role that started with its mastering by mankind at significant scale. For the extraction of metals in particular, it is noticeable that the process efficiency and productivity have been significantly improved at a high pace, leading to a reduction of the corresponding energy consumption as illustrated for aluminium. Electricity has also become a key energy vector in steelmaking and thanks to new concepts in electrochemistry, one may foresee its usage for primary iron production as well. Recent results indeed

\(^6\) Though an electric arc furnace uses the principle of an «arc», or a plasma - high voltage and low current. This is in striking difference with the thermodynamic requirements for metal extraction where the energy input is ideally in the form of work (definite cell voltage close to the thermodynamic minimum) and the productivity has to be as high as possible (high current).] (to provide heat in an efficient manner), taking advantage of the thermodynamic principle of equivalence of work and heat at high temperature
suggest that significant mitigation of the GHG impact of ironmaking is possible with ‘electrolytic steel’, in particular in the context of a decarbonization of power generation or the creation of a CO$_2$ emissions trading system.

Acknowledgments

The author would like to thank Profs. Claude Lupis, David Paul and Thomas Eagar for their support and help in editing the document.
References

[22] W. Siemens, UK patents, 4208 (1878) and 2110 (1879)

List of Figures

Figure 1. Selective timeline of development in electricity generation (top), application of electricity for isolation of elements (bottom, ‘I’), demonstration of process principles (bottom, ‘P’) and industrial applications (bottom, ‘A’). Sources are cited in the text.

Figure 2. Chronological variation of the specific energy efficiency index (ratio between the actual specific energy consumption and the thermodynamic minimum, 6.6, 3.5 and 22.9 MJ/t for primary iron (BF), iron remelting (EAF) and aluminium (HH) respectively ([26], AISI and [31]), line and symbols on the left axis) and the reactor productivity index (ratio based on the 1990 value, provided by [27] and [30], histogram on the right axis).

Figure 3. Chronological variation of the share of the electric arc furnace route (square) and the specific energy consumption for steel production (ratio between the actual specific energy consumption and the value in 1990, circles) in the United States [AISI and Iron and Steel Technology].

Figure 4. Simplified flow-sheet of an integrated steel plant for production of virgin steel based on iron ore reduction by coal in a blast-furnace reactor.

Figure 5. Deposits obtained by alkaline electrolysis of iron oxide particles in suspension, in a rotating cylinder (a, scale bar 2cm, deposit of 1.5kg and 5mm thickness) or parallel plates configuration (b, scale bar 10cm, deposit of 3.5kg and 5 mm thickness).

Figure 6. CO₂ mitigation by electrolytic route (4000 kWh.t⁻¹Fe) depending on the power generation source (in parenthesis, GHG content in gCO₂.kWh⁻¹)
Figure 2
Figure 3

- **Share of the EAF route & % of 1990 energy consumption**
- **Specific energy consumption**
- **% of steel produced through EAF route**

- 1990 level of energy consumption
CO_2 mitigation $(0 = 1.85\,\text{t}\cdot\text{t}^{-1})$

- Nat. Gas: (440)
- Coal+CCS: (85)
- Renewables: (50)
- Nat. Gas+CCS: (44)
- Nuclear: (5)

Note: The values in parentheses indicate the reduction in CO_2 emissions per kWh of energy.
Dr. Antoine Allanore is the co-recipient of Vittorio De Nora Prize from TMS in 2012, commemorating the centennial anniversary of the birth of Vittorio De Nora. This award recognizes outstanding materials science research and development leading to the reduction of environmental impacts, particularly greenhouse gas emissions. The prize comes with an invitation to present a lecture at the TMS Annual Meeting. In 2012, Dr. Allanore has been appointed the Thomas B. King Professor of Metallurgy at the Massachusetts Institute of Technology (Cambridge, MA), in the Department of Materials Science and Engineering.

Dr. Allanore earned a chemical engineering degree from the Ecole Nationale Superieure des Industries Chimiques de Nancy. He also obtained his M.Sc and Ph.D in chemical engineering from the Institut National Polytechnique de Lorraine. Prior joining MIT as a post-doctoral researcher in 2010 alongside Prof. Sadoway, he worked as a research engineer at ArcelorMittal R&D on the development of new electrolytic processes for primary steel production. In 2011, Dr. Allanore was a TMS Extraction and Processing Division Young Leader Professional Development Award winner.