Non-Cooperative Spectrum Access -- The Dedicated vs. Free Spectrum Choice

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
ABSTRACT

We consider a dynamic spectrum access system in which Secondary Users (SUs) choose to either acquire dedicated spectrum or to use spectrum-holes (white spaces) which belong to Primary Users (PUs). The tradeoff incorporated in this decision is between immediate yet costly transmission and free but delayed transmission (a consequence of both the possible appearance of PUs and sharing the spectrum holes with multiple SUs). We first consider a system with a single PU band, in which the SU decisions are fixed. Employing queueing-theoretic methods, we obtain explicit expressions for the expected delays associated with using the PU band. Based on that, we then consider self-interested SUs and study the interaction between them as a noncooperative game. We prove the existence and uniqueness of a symmetric Nash equilibrium, and characterize the equilibrium behavior explicitly. Using our equilibrium results, we show how to maximize revenue from renting dedicated bands to SUs. Finally, we extend the scope to a scenario with multiple PUs, show that the band-pricing analysis can be applied to some special cases, and provide numerical examples.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Queueing theory; C.2.1 [Computer-Communication Networks]: Network Architecture and Design—Wireless communication

General Terms
Theory, Performance

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

MobiHoc '11 May 16-20 2011, Paris, France
Copyright 2011 ACM 978-1-4503-0722-2/11/05 ...$10.00.
viewed as public safety and commercial users, respectively, where the SUs must vacate the channel at very short notice. Another example is of PUs being TV broadcasters and SUs being commercial cellular operators using available TV bands [22]. Networks operating according to this model have distinct characteristics that pose numerous challenging theoretical and practical problems, of which many remain to be solved, despite extensive recent research (for a comprehensive review of previous work see [2, 26]).

Our work is motivated by a recent FCC ruling [15] that allows CR devices (SUs) to operate in TV bands white spaces. In addition to spectrum-sensing capability, these devices may include a geolocation capability and provisions to access a database that contains the PUs (e.g., TV stations) expected channel use. Given the geolocation capability, spectrum sensing is required in order to avoid interference to PU devices that are not registered in the database. The FCC will also certify CR devices that do not include the geolocation and database access capabilities, and rely solely on sensing.

The operation model described in [15] introduces a new set of theoretical problems at the intersection of queueing theory, game theory, and control theory. In particular, we are interested in noncooperative SUs that have a spectrum sensing capability and can sense the PU band (e.g., Wireless Internet Service Providers - WISPs). These SUs can rent a licensed dedicated band, for a certain cost (we refer to such band as a dedicated band). Alternatively, they can use a band that is originally allocated to a PU (we refer to it as a PU band), for free. We assume that the SUs are service providers (i.e., they serve many users) that aggregate several connections/calls/packets to jobs that can be served over each of these band types. We do not focus on specific packets sent by specific users but rather on jobs that may be composed of several packets.

We study the decision process of the SUs which is illustrated in Fig. 2. An SU that has a job to serve can choose to use either one of the PU bands, or a dedicated band. When an SU selects a PU band, the band can be reclaimed by a PU and it is also shared with other SUs that selected the same band. Hence, the decision process of the SUs is affected by the tradeoff between the cost of acquiring a dedicated band and using a free PU band, which is prone to delays.

Figure 2: An illustration of the decision process of the SUs and the arrival process of the PUs.

Our first step towards understanding the SU decision process is to consider a system with a single PU band. For such a system, we first study the delay performance when the SU decisions are fixed. To that end, we develop a queuing model based on a server with breakdowns [29,30,37], where the PU band is the server and the return of the PU is modeled as a breakdown. We assume that upon selection of the PU band, the SU joins a queue of SUs waiting to use that band. This corresponds to a server with breakdowns model in which the arrival rates depend on the server’s status. To the best of our knowledge, this particular queuing model has not been rigorously considered in past literature.

We note that since managing a queue requires centralized control (which may not be feasible in a real system), a queue will most likely be replaced by a distributed MAC protocol (e.g., IEEE 802.22 [22]). In our analysis, we use the queue to represent the congestion effect incurred when a few SUs wish to use the same PU band.2 We note that a number of recent works in the area of cognitive radio used “virtual” queues as a plausible model to capture SU congestion effects [6,35,42].

Based on the queuing analysis for fixed SU policies, we then study the SU decision process in a system with a single PU band. We prove the existence and uniqueness of a symmetric Nash equilibrium and fully characterize the equilibrium behavior for the SU decision strategies. Next, we apply our Nash equilibrium analysis to show how to maximize the revenue from renting dedicated bands to SUs that prefer not to use the PU band. Such information may be used by a spectrum broker that provides dedicated bands for short periods of time.

A system with SUs and PUs was modeled in [6] using the priority queueing model. While for a single PU band the two models are somewhat similar, we find the server-breakdown queueing model more natural and more appropriate for the multi-band case. In particular, the system can be modeled so that each PU band is a server prone to breakdowns (i.e., return of the PU) and there are queues (or a single queue) of SUs that can be served by any of the available PU bands. On the other hand, under the classical priority queueing model, there is a single queue of high priority users (PUs) and each of them can be served by any of the servers (PU bands). This does not comply with the operation model in which each PU has a dedicated band. Based on this observation, we extend the model to the scenario in which multiple PU bands exist. We show that the band pricing analysis can be extended to special multi-band cases and provide numerical examples.

Unlike most of the previous work in the area of dynamic spectrum access, we utilize methods developed for decision making and the corresponding equilibrium analysis in queueing systems (see Haviv and Hassin [18] for a survey). Within that discipline, the novelty of the paper is in the analysis of the unobservable queue case and in examining the consequences of the dedicated band prices on the (non-cooperative) behavior of SUs and (for more details, see Section 2). For tractability, we assume that the inter-arrival times and the service times are exponentially distributed. Relaxing some of these assumptions is a subject for future work.

To conclude, the main contribution of this paper is twofold. First, we develop a novel approach for the analysis of a dy-

2Since we are primarily interested in gaining insight into the SU band selection dynamics and for the sake of exposition, we do not focus on the contention for a channel (contention between similar users has been extensively studied [1,5,9]).
namic spectrum access system. It combines the tools of game theory and queueing theory to provide insights into the SUs decision process as well as the spectrum pricing mechanisms used by the spectrum broker. Second, motivated by dynamic spectrum access systems, we provide novel results for the queueing theoretical problem of a server with breakdowns in which the arrival rates depend on the server’s status.

This paper is organized as follows. In Section 2 we discuss related work and in Section 3 we present the model. We study the equilibrium of the SUs interactions in Section 4. In Section 5 we consider the problem of pricing the dedicated spectrum. In Section 6 we discuss the extension to the multi-band case. We conclude and discuss future research directions in Section 7.

2. RELATED WORK

The extensive previous work in the area of CR as well as Cognitive Radio Network architectures, key enabling technologies, and recent developments have been summarized in a number of special issues and review papers (e.g., [2,26]). In this section, we briefly review previous work which is most closely related to our model.

A practical MAC protocol (IEEE 802.22) that takes the CR characteristics into account has been studied in [19], [17,38–40] used techniques from the area of Partially Observable Markov Decision Processes (POMDP) to model the behavior of PUs and SUs. Based on these techniques, decentralized protocols have been proposed. In [21], probabilistic methods have been used to evaluate the performance of PUs and SUs under different operation models. In [6,35,42], systems with SUs and PUs were modeled using priority queueing techniques. As mentioned above, we find the server-breakdown model more appropriate for modeling such a system.

Several papers used game theoretical notions to compare the cooperative and non-cooperative behavior of spectrum sensing and sharing [20,24,25,32,34,41]. In particular, [20] proposes a scheme in which users exchange “price” signals, that indicate the negative effect of interference at the receivers, [24,32] deal with cases in which operators compete for customers, [25] studies a dynamic spectrum leasing paradigm, and [34] proposes a distributed approach, where devices negotiate local channel assignments aiming for a global optimum.

Unlike most of the previous work, we utilize methods developed for decision making in queueing systems [18]. Following [12,31], extensive effort has been dedicated in the past decades to studying the effect of pricing on equilibrium performance. Our contribution is in analyzing the effect of the dedicated band pricing on the (non-cooperative) behavior of SUs. Recently, [8,33] studied the decision process of customers who may join a server that can go on vacation. Under that model, the server stops serving customers for some (stochastically distributed) period, whenever it becomes idle. Our model, which corresponds to a server with breakdowns, is significantly different as the “server” (band) may stop serving customers (SUs) even when there are customers (SUs) waiting. In [11] decisions for the server with breakdowns model under the observable queue case (i.e., customers observe the queue size when making a decision) were studied. We, on the other hand, study the unobservable case which better approximates a distributed MAC employed by the SUs.

3. THE MODEL

3.1 Preliminaries

We start by defining the model for a system with a single Primary User band and multiple Secondary Users that may wish to share that band.

Our baseline model consists of a single PU who owns a spectrum band of some fixed bandwidth. The use of the PU band by the PU occurs intermittently, in the form of sojourns. We assume that the PU sojourn times (i.e., the amount of time that the PU uses its band at a stretch) are random and exponentially distributed with mean $1/\eta$.

Moreover, the amount of time that elapses between the end of a sojourn, and the commencement of the next sojourn is also exponential with parameter ζ, and is independent of the sojourn times.

The SUs arrive to the network according to a Poisson process with rate λ. Each SU requires service for a random amount of time (exponential with parameter μ) in order to complete service. These SU 'job sizes' are assumed to be independent of the SU arrivals, and of the PU sojourns.

Upon arrival, each SU has to make a spectrum decision. That is, it has to decide between acquiring a dedicated band for a price, and using the PU band for free. If an SU chooses to acquire a dedicated band, it pays a fixed price \tilde{C}. For simplicity, we assume that the dedicated band and the PU band have the same bandwidth. Hence, the SU’s service times are exponential with parameter μ in either case. If an SU chooses to use the PU band, it joins a virtual queue of SU's that have chosen to use the PU band. This queue is used in order to model the delay incurred when a few SUs wish to use the same PU band.

The SUs can sense the PU band and learn whether the PU is present. However, the SU does not know how many other SUs are presently attempting to use the PU band, and must make its decision only on the basis of statistical information. This model the case in which SUs try to distributedly access a channel (e.g., by a distributed MAC protocol) and are not managed by a central entity.

The average cost incurred by a secondary user consists of two components: (i) the price of the dedicated band \tilde{C}, and (ii) an average delay cost. Let α be the delay cost per unit time (i.e., α represents the delay vs. monetary cost tradeoff of the SUs). The expected cost when acquiring dedicated spectrum is thus given by

$$J_B = \tilde{C} + \frac{\alpha}{\mu} = C,$$

We will refer to \tilde{C} as the dedicated band price, and to C as the total dedicated band cost.

The expected cost of using the PU band consists purely of a delay cost. Specifically, it is given by α times the expected delay faced by the SU. This expected delay depends

4We assume that there is no lack of dedicated bands, so that a user who is willing pay for a dedicated band can immediately get it.

5In a real system, the contention for a channel may be realized by a distributed MAC protocol rather than by a queue.

6We assume that the SUs can distinguish between an active PU and an active SU using, for example, the packet header or activity pattern.
on the presence or absence of the PU, as discussed in the next section.

3.2 SU Strategies

Since the SUs can sense the presence or absence of the PU, they can compute the expected delay cost conditioned on their sensing outcome. In particular, SUs which sense the PU to be present see a different conditional delay, and can therefore adopt a different strategy from those which sense the PU to be absent. In this work, we consider strategies that are described by a pair of fractions \((p, q)\), where \(p\) is the probability that an SU decides to use the PU band, given that the PU is absent (thus, with probability \(1 - p\) it acquires dedicated spectrum), and \(q\) is the probability that an SU decides to use the PU band, given that the PU is present (thus, with probability \(1 - q\) it acquires dedicated spectrum).

3.3 Nash Equilibrium

The classic notion of a Nash equilibrium stands for an operating point (a collection of strategies) where no user can improve its cost by unilaterally deviating from its current strategy. We wish to characterize the equilibrium points for the simple class of strategies outlined above.

For a strategy \((p, q)\), let \(T_A(p, q)\) denote the conditional delay experienced by an SU that arrives when the PU band is available and \(T_O(p, q)\) be the conditional delay experienced by an SU that arrives when the PU band is occupied\(^6\). The corresponding delay costs are given by \(J_A(p, q) = \alpha T_A(p, q)\), and \(J_O(p, q) = \alpha T_O(p, q)\).

In this paper, we will restrict attention to symmetric Nash equilibria, as a common solution approach in the research of equilibrium behavior in queuing systems [18]. While asymmetric equilibria may exist, their study remains beyond the scope of the present paper. It can be easily seen that a pair \((p, q)\) is a (symmetric) Nash equilibrium if and only if one relation from each of (2) and (3) holds.

\[
\begin{align*}
J_A(p, q) &\leq C, \quad &p = 1 \\
J_A(p, q) &> C, \quad &0 < p < 1 \\
J_A(p, q) &> C, \quad &p = 0 \\
J_O(p, q) &\leq C, \quad &q = 1 \\
J_O(p, q) &> C, \quad &0 < q < 1 \\
J_O(p, q) &> C, \quad &q = 0.
\end{align*}
\]

To avoid a trivial solution, we make the following assumption throughout the paper.

Assumption 1. The total dedicated band cost satisfies the following inequalities: \(J_A(0, 0) < C\), \(J_O(1, 1) > C\).

In the above, \(J_A(0, 0)\) should be interpreted as the delay cost incurred if a particular SU were to join the cognitive queue when the PU is absent, given that no other SU chooses to join the cognitive queue.

4. EQUILIBRIUM ANALYSIS

In this section, we analytically characterize equilibrium behavior of the SUs. As a building block for our analysis, we obtain in Section 4.1 the conditional delay expressions \(T_A\) and \(T_O\) for given values of the probabilities \(p\) and \(q\). Using the delay analysis, we proceed to provide several basic properties of the equilibrium in Section 4.2. These are then used in Section 4.3 to fully characterize the equilibrium behavior.

4.1 Conditional Delays

We develop explicit formulas for the conditional delays \(T_A\) and \(T_O\) for given values of the probabilities \(p\) and \(q\). In our analysis, we view the arrival of a PU as a server breakdown. That is, when a PU arrival occurs, the SU being served at that time is preempted, and service resumes after an exponentially distributed interval of mean duration \(1/\eta\). Since the service time distribution of the SUs is memoryless, it follows that the remaining service time of a preempted SU is still exponential with parameter \(\mu\). While delay analysis of exponential servers under breakdown has been studied extensively [29, 30, 37], our analysis is significantly more involved because the instantaneous arrival rate of SUs to the queue is a function of the presence or absence of the PU.

Fig. 3 depicts the Markov process corresponding to the system evolution. In the chain, the state \(i_0\) denotes the absence of a PU, and the presence of \(i\) SUs, where \(i = 0, 1, \ldots\), and \(i_1\) denotes the presence of a PU and \(i\) SUs. Note that the arrival process of SUs is Poisson of rate \(\rho\lambda\) when the PU is present, and Poisson of rate \(q\lambda\) when the PU is not present. This follows from the splitting property of Poisson processes. Further, SUs get served at rate \(\mu\) when the PU is not present, and do not get served when the PU is present.

The steady state probability of a PU being absent can be easily shown to be \(\eta/(\eta + \xi)\). The Markov process is positive recurrent if the average arrival rate is less than the average service rate, i.e., \((\eta p\lambda + q\xi\lambda)/(\eta + \xi) < \mu\eta/(\eta + \xi)\). For simplicity, we assume that the system is stable for all values of \(p\) and \(q\), which implies \(\lambda < \mu\eta/(\eta + \xi)\).

Under the above conditions, we next obtain explicit formulas for \(T_A\) and \(T_O\), which will be used for the equilibrium characterization.

Theorem 1. Let \(p\) and \(q\) be the probabilities of an SU committing to take the PU band, in case that the PU band is available and in case that it is occupied, respectively. The respective conditional delays are given by

\[
T_A(p, q) = \frac{\eta + \xi}{\mu \eta - \eta p \lambda - q \xi \lambda} \left(1 + \frac{q^2 \lambda^2 \xi}{\mu \eta^2}\right)
\]
\[p_{m,1} = \frac{\xi}{q\lambda + \eta} \left(\frac{q\lambda}{q\lambda + \eta} \right)^m p_{00} + p_{10} \left\{ \frac{\xi C_+ \beta_+ \left(- \frac{q\lambda \eta}{q\lambda + \eta} \right) - q\lambda \left(- \frac{q\lambda}{q\lambda + \eta} \right)^m}{\beta_-(q\lambda + \eta) - q\lambda \left(- \frac{q\lambda}{q\lambda + \eta} \right)^m} + \frac{\xi C_- \beta_- \left(- \frac{q\lambda \eta}{q\lambda + \eta} \right)}{\beta_-(q\lambda + \eta) - q\lambda \left(- \frac{q\lambda}{q\lambda + \eta} \right)^m} \right\}. \]

(7)

\[\overline{N}_O = \left(1 + \frac{\eta}{\xi} \right) (p_{00} \xi \frac{q\lambda}{\eta^2} + p_{10} \left\{ \frac{C_- \beta_+ \left(- \frac{q\lambda \eta}{q\lambda + \eta} \right) - q\lambda \left(- \frac{q\lambda}{q\lambda + \eta} \right)^m}{\beta_-(q\lambda + \eta) - q\lambda \left(- \frac{q\lambda}{q\lambda + \eta} \right)^m} + \frac{C_+ \beta_- \left(- \frac{q\lambda \eta}{q\lambda + \eta} \right)}{\beta_-(q\lambda + \eta) - q\lambda \left(- \frac{q\lambda}{q\lambda + \eta} \right)^m} \right\}; \]

(11)

Step 2: Head-of-line delay. Let \(\tau_{HOL} \) denote the average time spent at the head of line of the queue by an SU. This time has two components: the time for service, which is exponential with mean \(\frac{1}{\mu} \), plus the time for which the server is broken down (because of a PU arrival). Once an SU enters service, it completes service before being preempted by a PU with probability \(\frac{\mu}{\mu + \xi} \). If it is preempted by a PU, it stays at the head-of-line for a mean duration of \(\frac{1}{\eta} \), after which the service is resumed. Since the distribution of the SU service time is memoryless, the following recursion is straightforward:

\[\tau_{HOL} = \begin{cases} \frac{1}{\mu + \xi} + \frac{1}{\eta} + \tau_{HOL} & w.p. \frac{\mu}{\mu + \xi} \\ \frac{1}{\mu} + (1 + \overline{N}_A) \tau_{HOL} & w.p. \frac{\mu}{\mu + \xi} \end{cases} \]

Thus, we get

\[\tau_{HOL} = \frac{1}{\mu} \left(1 + \frac{\xi}{\eta} \right) \]

(12)

Step 3: Conditional delays seen upon arrival. Let \(\overline{N}_A \) and \(\overline{N}_O \) respectively denote the average queue occupancy seen by an SU, upon arriving to an occupied or available queue, respectively. Since each packet spends an average duration of \(\tau_{HOL} \) at the head-off-line, we have the following relations for the conditional delays \(T_A \) and \(T_O \):

\[T_A = (1 + \overline{N}_A) \tau_{HOL} \]

(13)

\[T_O = \frac{1}{\eta} + (1 + \overline{N}_O) \tau_{HOL} \]

(14)

We comment that the average occupancy seen by an arriving SU need not, in general, equal the time average occupancy seen by an external observer. However, we argue in the appendix that the ‘Arrivals See Time Averages’ (ASTA) property holds, once we condition on the presence or absence of the PU.\(^7\) Thus, \(\overline{N}_A = \overline{N}_A \) and \(\overline{N}_O = \overline{N}_O \). As a result, the expressions for the conditional delays read

\[T_A = (1 + \overline{N}_A) \tau_{HOL} \]

(15)

\[T_O = \frac{1}{\eta} + (1 + \overline{N}_O) \tau_{HOL} \]

(16)

where \(\overline{N}_A, \overline{N}_O \) and \(\tau_{HOL} \) are given in (10), (11), and (12) respectively. Substituting and simplifying gives (4) and (5).

\(^7\) Notice that since the arrival process of the SUs to the queue is in general not Poisson, this property is different from the ‘Poisson Arrivals See Time Averages’ (PASTA) property and requires a proof.

\[\text{Proof.} \]
Proposition 2. For any p, q we have
\[T_O(p, q) > T_A(p, q). \]

Proof. From (15) and (16), it is clear that the result would follow if $N_O \geq N_A$. Since the event of a PU arrival is a memoryless event, it is clear that the average occupancy just before a PU arrival is equal to N_A. Thus, the average SU occupancy just after the PU arrival is also N_A. Since the SUs get no service after the PU arrival, the average SU occupancy when the PU is present (N_O) cannot be smaller than the occupancy just after the PU arrival. Thus, $N_O \geq N_A$. \qed

4.2 Basic Equilibrium Properties

We prove in this subsection that the Nash equilibrium point exists and is unique. Along the way, we describe additional properties of the equilibrium. We start by stating that an equilibrium point always exists.

Proposition 3. There always exists a Nash equilibrium.

Proof. Let us consider three possible cost ranges, and show the existence of equilibrium in each case.

1. $J_A(1, 0) \leq C, J_O(0, 1) > C$. Noting (2)–(3), $(p, q) = (1, 0)$ is a Nash equilibrium for this case.

2. $J_A(1, 0) > C$. Recall that $J_A(0, 0) < C$ by assumption. Then by continuity of the delay function, it follows that there exists $p < 1$ such that $J_A(p, 0) = C$ (intermediate-value theorem); furthermore, $J_O(p, 0) > C$ by Proposition 2. In view of (2)–(3), the last two assertions immediately imply that $(p, 0)$ is a Nash equilibrium.

3. $J_O(1, 0) < C$. Recall that $J_O(1, 1) > C$ by assumption. Then by continuity of the delay function, it follows that there exists $q < 1$ such that $J_O(1, q) = C$; furthermore, $J_A(1, q) < C$ by Proposition 2. In view of (2)–(3), the last two assertions immediately imply that $(1, q)$ is a Nash equilibrium.

Thus, there always exists an equilibrium point. \qed

We next provide a basic characterization of the range of equilibrium probabilities.

Proposition 4. Suppose that the pair (p, q) is a Nash equilibrium.

(i) If $0 < p < 1$, then $q = 0$.

(ii) If $0 < q < 1$, then $p = 1$.

Proof. Using (2), we see that the condition $0 < p < 1$ implies $C = J_A(p, q)$. Next, Proposition 2 implies $J_O(p, q) > J_A(p, q) = C$. Finally, using (3), we conclude that $q = 0$. Part (ii) also follows along similar lines. \qed

Note that the above proposition, together with Assumption 1, imply that $p > q$ in any equilibrium, as might have been expected. By using this proposition, we can now establish the uniqueness of the equilibrium point.

Proposition 5. The Nash equilibrium point is unique.

Proof. The proofs follows from the following auxiliary lemma.

Lemma 1. Let (p_1, q_1) and (p_2, q_2) be two distinct Nash equilibria. Then

(i) $p_1 > p_2$ \implies $q_1 > q_2$.

(ii) $q_1 > q_2$ \implies $p_1 > p_2$.

Proof. (i) Assume to get a contradiction that $q_2 > q_1$, hence, $q_2 > 0$. If $q_2 = 1$ then $p_2 = 1$, which cannot be an equilibrium by Assumption 1; otherwise, $0 < q_2 < 1$, which by Proposition 4(ii) suggests that $p_2 = 1$, a contradiction.

(ii) Assume by contradiction that $p_1 < p_2$, hence $p_1 < 1$. If $p_1 = 0$ then $q_1 = 0$, which cannot be an equilibrium by Assumption 1; otherwise, $0 < p_1 < 1$, which by Proposition 4(i) suggests that $q_1 = 0$, a contradiction. \qed

It follows by the above lemma that if there exist two different equilibria $(p_1, q_1), (p_2, q_2)$, then (without loss of generality) (a) $p_1 > p_2$, $q_1 > q_2$, or (and) $p_1 > p_2$, $q_1 > q_2$. We can easily show that both (a) and (b) lead to a contradiction. Indeed, (a) implies that $C \geq J_A(p_1, q_1) > J_A(p_2, q_2) \geq C$, (where the first and third inequality follow from (2), and the second since the congestion in equilibrium 1 is strictly higher than in equilibrium 2), which is obviously a contradiction. Similarly, assuming (b), we obtain the following contradicting inequality $C \geq J_O(p_1, q_1) > J_O(p_2, q_2) \geq C$. We conclude that we cannot have multiple equilibria, hence the Nash equilibrium is unique.

4.3 Characterization of the Nash Equilibrium

Next, we characterize the equilibrium behavior of the SUs for a given cost C.

Proposition 4, together with Assumption 1 implies that a Nash equilibrium pair (p, q) can only have one of the following three forms: (a) $(1, q), 0 < q < 1$ (b) $(1, 0)$, and (c) $(p, 0), 0 < p < 1$. In the following theorem, we identify three ranges of the total dedicated band cost for which the above three forms of equilibrium are observed, and explicitly obtain the equilibrium probabilities as a function of C.

Theorem 6. The equilibrium probabilities p and q can be characterized as a function of the cost C as follows:

(i) If $J_O(1, 0) < C < J_O(1, 1)$, the Nash equilibrium pair is $(1, q(C))$, where

\[q(C) = \frac{\mu \eta \xi (\mu - \lambda) - (\eta + \xi)}{\lambda (\eta \mu \xi + \eta \mu - \lambda (\eta + \xi))}. \]

(ii) If $J_A(1, 0) \leq C \leq J_O(1, 1)$, the Nash equilibrium pair is $(1, 0)$. That is, all SUs take the PU band if available, and no SU takes the PU band if it is occupied.

(iii) If $J_A(0, 0) < C < J_A(1, 0)$, the equilibrium pair is $(p(C), 0)$, with

\[p(C) = \frac{\mu}{\lambda} - \frac{1 + \frac{\xi}{\eta C}}{C}. \]

In this case, a fraction $p(C)$ of the users who find the server available join the free spectrum, while all the users who arrive to find the server occupied acquire dedicated spectrum.
Proof. If C satisfies case (ii), we see that the equilibrium conditions (2,3) are satisfied with $p = 1$ and $q = 0$. Next suppose that C satisfies case (i). Consider the function $J_0(1, q), q \in (0,1)$ which, as we might expect, is continuous and increasing in q. As a result, there exists a unique $0 < q(C) < 1$ such that $J_0(1, q) = C$. Indeed, this equation can be explicitly inverted to yield $q(C)$ in (17). Thus, the equilibrium condition (3) is satisfied with equality. Further, since $q < 1$, proposition (4) implies $p = 1$, and it follows that $(1, q(C))$ is an equilibrium pair. Case (iii) follows along similar lines.

Note that using the relation between C and \tilde{C}, (1), we can also obtain the equilibrium probabilities in terms of the band price \tilde{C}. With some abuse of notation, (1) and (17) together yield

$$q(\tilde{C}) = \frac{K \tilde{C} - L}{AC + B},$$

with $K = \mu \eta^2 (\mu - \lambda) / \alpha$, $L = \mu \eta^2 (\mu - \lambda + \xi) + \mu \eta^2$, $A = \lambda \xi \eta \mu / \alpha$ and $B = \lambda \eta \xi + \mu \lambda \eta - \lambda^2 (\eta + \xi)$. Similarly, from (1) and (18),

$$p(\tilde{C}) = \frac{\mu}{\lambda} - \frac{1 + \frac{\xi}{\lambda}}{(C + a/\mu) \lambda}.$$

Fig. 4 shows a plot of the probabilities p and q as a function of the band price \tilde{C} for a particular system.

5. OPTIMAL BAND PRICING

Since the SU strategy depends on the cost of a dedicated band, a service provider may wish to price the dedicated bands so as to maximize its revenue. We make here the assumption that the dedicated spectrum is owned by a single provider (a monopoly), who may unilaterally adjust the price \tilde{C}. The natural tradeoff the monopoly faces is between obtaining more revenue per customer and attracting more customers to the dedicated spectrum by reducing the price per customer.

Fig. 5 depicts the (equilibrium) total revenue as a function of the price \tilde{C} for a given game instance. Note that the obtained function is neither concave nor convex, which might indicate that the optimal price can be solved for only numerically. However, we show below that the optimal price can be obtained very efficiently, requiring the revenue comparison under a maximum of only four alternatives, each of which given in a closed-form formula. This appealing result is formalized in the next theorem.

Theorem 7. For any given set of system parameters, consider the following four band prices:

$$\tilde{C}_1^* = \frac{1}{A} \sqrt{\frac{B(KB + AL)}{K - A}} - \frac{B}{A},$$

(where $K = \mu \eta^2 (\mu - \lambda) / \alpha$, $L = \mu \eta^2 (\mu - \lambda + \xi) + \mu \eta^2$, $A = \lambda \xi \eta \mu / \alpha$ and $B = \lambda \eta \xi + \mu \lambda \eta - \lambda^2 (\eta + \xi)$; $\tilde{C}_2^* = J_0(1,0) - \frac{a}{\mu}$;

$$\tilde{C}_3^* = \alpha \sqrt{\frac{(\eta + \xi)}{\mu (\mu \eta - \lambda (\eta + \xi))}} - \frac{\alpha}{\mu}.$$

$\tilde{C}_4^\ast = \frac{\alpha \eta}{\mu}.$ Let us define \tilde{C}_2^\ast and $\tilde{C}_3^* \tilde{C}_4^*$ to be candidate prices. Further, \tilde{C}_1^* is a candidate price if $J_0(1,0) < \tilde{C}_1^* + \frac{\alpha}{\mu} + J_0(1,1)$, and \tilde{C}_3^* is a candidate price if $J_4(0,0) < \tilde{C}_3^* + \frac{a}{\mu} < J_4(1,0)$. Then the globally optimal pricing policy is an index policy, which compares the revenues generated under each of the candidate prices, of which there are at most four.

Proof. The proof follows by separately considering each of the three cost subregions given in Theorem 6, as summarized in the next three lemmas.

Lemma 2. In the price range $J_0(1,0) < \tilde{C} + \alpha / \mu < J_0(1,1)$, the band price that maximizes the average revenue earned from the dedicated spectrum is given by

$$\tilde{C}_1^* = \frac{1}{A} \sqrt{\frac{B(KB + AL)}{K - A}} - \frac{B}{A},$$

as long as \tilde{C}_1^* lies in the above range. If \tilde{C}_1^* does not lie in the range of interest, then the revenue generated is monotonically decreasing in the band price, and the optimal band price will be given by the next proposition.

Proof. In this case, a fraction $1 - q(\tilde{C})$ of the users acquire dedicated spectrum when the PU is present, while no SU acquires dedicated spectrum if the PU is absent. The average number of customers who acquire spectrum in a unit time is thus equal to $(1 - q(\tilde{C})) \frac{(C + \alpha/\mu) \lambda}{\alpha}$. Since each customer pays a monetary cost C^\ast, the rate of revenue generation is

$$\tilde{C}(1 - q(\tilde{C})) \frac{\lambda \xi}{\xi + \eta}.$$

Using basic Calculus, we can show that the rate of revenue generation is concave in \tilde{C}. The stationary point of the concave function, which is given by \tilde{C}_1^*, would be the optimal value for this range of band price, if it lies in the said range. If not, it can be shown that the revenue rate is monotonically decreasing in the band price, and Lemma 3 would take over.

Lemma 3. In the price range $J_4(1,0) \leq \tilde{C} + \alpha / \mu \leq J_0(1,0)$, the band price that maximizes the average revenue earned is given by $\tilde{C}_3^* = J_0(1,0) - \frac{a}{\mu}$. In other words, it is optimal to price the spectrum at the highest value that leads to the equilibrium pair $(1,0)$.

\(^{a}\)Since we are interested in the revenue generated, the delay cost α/μ is not considered.
bands before making its spectrum decision. The spectrum
decision is (as before) between committing to one of the
sensed PU bands, based on the conditional delay estimates,
or acquiring dedicated spectrum for a fixed unified price \(\hat{C} \).

The study of the above model in its full generality (i.e.,
each SU may sense some subset of the available PU bands)
naturally becomes an extremely difficult problem, even if
one settles for numeric solutions. However, once additional
assumptions are made, it may be possible to solve for the
equilibrium point (and related aspects), either explicitly or
numerically. We consider in this section a specific tractable
scenario, and conclude by briefly mentioning an additional
model which is subject of on-going investigation.

We consider next a simplified case of limited-sensing abil-
ities, where each SU can sense only a single PU band before
making its spectrum decision. This case is formally modeled
as having a heterogenous SU population of \(N \) types, where
all SUs of the \(i \)-th type sense the \(i \)-th PU band \((i = 1, \ldots, N)\).
The arrival rate of each type \(i \) is denoted \(\lambda_i \), and it is as-
sumed that all \(i \)-type SUs have the same service-time distri-
bution (exponential with mean \(1/\mu_i \), regardless whether
they commit to their sensed band or acquire dedicated spec-
trum) and the same delay cost coefficient \(\alpha_i \).

A Nash equilibrium for the above defined system is char-
acterized by \(\{ (p_i, q_i) \}_{i=1}^N \), where \(p_i \) is the probability
that \(i \)-type SUs commit to the \(i \)-th PU band and \(q_i \) is the probability
that they acquire dedicated spectrum. It can be easily
seen that for a given price \(\hat{C} \), the equilibrium analysis dec-
couples and can be solved separately for each PU band, by
using the analysis of the preceding sections. Specifically,
the conditional delays for each PU band can be derived using
Theorem 1, with \(\eta_i, \xi_i \) and \(\lambda_i \) replaced by \(\eta_i, \xi_i, \) and \(\lambda_i \).
Then, the equilibrium probabilities \(\{ p_i, q_i \} \) can be obtained
from Theorem 6.

The challenging issue which we next consider is how to set
the optimal (revenue-maximizing) price \(\hat{C} \). Once the equi-
librium probabilities are known for each \(i \), the total revenue
obtained from dedicated spectrum sales can be computed
using the expression

\[
R(\hat{C}) = \sum_{i=1}^{N} \lambda_i \hat{C} (1 - p_i) \eta_i + \frac{(1 - q_i) \xi_i}{\eta_i + \xi_i}.
\]

Fig. 6 depicts the total revenue \(R(\hat{C}) \) as a function of the
price \(\hat{C} \) for a specific problem instance with three PU bands.
The optimal price is seen to be \(\hat{C}^* = 0.88 \) monetary units.
The equilibrium probabilities corresponding equilibrium prob-
babilities are given by \((0.893, 0), (1, 0), \) and \((1, 0)\) respectively.
The figure demonstrates that even for a relatively small \(N \),
there are numerous price ranges to be considered, and the
analytical optimization of band price is very cumbersome
due to the intricate structure of the curve. Nonetheless,
as the associated optimization problem is over a scalar vari-
able \(\hat{C} \), one can always numerically solve for the optimal
price in an efficient way, using standard search techniques
(see, e.g., [36]).

We conclude this section by briefly mentioning an addi-
tional relevant model of a system with multiple PU bands.
Assume that the number of PU bands \(N \) is relatively small
and that each SU can sense all \(N \) bands prior to its decision.
Without further assumptions, we need an exponential num-
ber of probabilities to describe an equilibrium point, since
there are \(2^N \) possible subsets of PU bands that could be

\[
\end{align*}

Proof. In this case, all the users who sense an available
server take the PU band while the users who sense an occu-
pied server acquire dedicated spectrum. Thus, it is clearly
advantageous in terms of revenue to choose the highest band
price allowed, which is equal to \(J_D(1, 0) \).

Finally, we consider the optimal pricing corresponding to
case (iii) of Theorem 6.

Lemma 4. In the cost range \(J_A(0, 0) \leq \hat{C} + \alpha_i/\mu < J_A(1, 0) \),
the pricing that maximizes the average revenue earned from
the dedicated spectrum is given by

\[
\hat{C}_A^* = \alpha \sqrt{\frac{\eta + \xi}{\mu(\mu \eta - \lambda(\eta + \xi))}} - \frac{\alpha}{\mu},
\]
as long as \(\hat{C}_A^* \) lies in the said range. If not, the optimum
band price is

\[
\hat{C}_A^* = J_A(0, 0) - \frac{\alpha}{\mu} = \frac{\alpha \xi}{\mu \eta}.
\]

Proof. In this range, the rate of revenue generation is
given by \(\hat{C} \lambda (1 - \frac{1}{\mu + \xi} q(\hat{C})) \), which is easily shown to be
concave in \(\hat{C} \). The rest of the proof is akin to Lemma 2.

Once the local optimum prices are determined according to
the above lemmas, we can find the globally optimum price,
by comparing the revenues under each locally optimum
band price. This concludes the proof of Theorem 7.

Returning to the example in Fig. 5, we see that the global
optimum band price for the given game-instance is \(\hat{C}_3^* =
0.16 \).

6. MULTIPLE PRIMARY-USER BANDS

In this section, we consider the problem of choosing be-
tween free and dedicated spectrum, where several PU bands
are available. Let \(N \) be the number of PUs in the system,
each owning a different band. We denote by \(\xi_i \) and \(\eta_i \) the
sojourn parameters of the PU in the \(i \)-th PU band. We as-
sume that each SU can sense only a small number of PU

\[
\begin{align*}
\text{Figure 5: An example of the revenue generated as} & \text{ a function of the band-price } \hat{C} \text{ when the system parameters are } \\
\text{each owning a different band. We denote by } & \xi_i \text{ and } \eta_i \text{ the sojourn parameters of the PU in the } i \text{th PU band.}
\end{align*}
\]
available at any time. It turns out that the state-space of this problem can be simplified significantly when the parameters of the PU sojourns, \(\xi \) and \(\eta \), are equal in all the bands. This assumption lends a certain symmetry to the problem, which reduces the state-space of the SU occupancy to \(O(N) \). Consequently, the corresponding steady state probabilities can be solved numerically quite efficiently.

7. CONCLUDING REMARKS

In this paper, we considered the decision-making process of Secondary Users who have the option of either acquiring dedicated spectrum or sharing free yet unreliable bands. We fully characterized the resulting Nash equilibrium for the single-band case. We also demonstrated how the equilibrium analysis can be exploited from the viewpoint of a monopoly who owns dedicated spectrum and wishes to maximize revenue. Finally, the case of multiple PU bands was briefly discussed.

Overall, this paper uses a novel paradigm to provide a first step towards a theoretical understanding of decision processes in dynamic spectrum access systems. Our study integrates tools and ideas from queueing theory, game theory, and network economics.

There are still many problems and extensions that can be dealt with. For example, we plan to extend the model to account for other distributions beside the exponential distribution. Moreover, in future work, we plan to incorporate into the model additional costs associated with using free spectrum, e.g., the energy-cost of spectrum sensing. Overhead costs associated with renting dedicated spectrum can be considered as well, such as the cost of communication during the rent agreement, and congestion effects when dedicated spectrum is not widely available. For multiple PU bands, one may consider SUs with partial sensing abilities (e.g., may sense only a subset of the bands) and their effect on the performance. It is also of interest to analyze scenarios in which the dedicated spectrum is owned by multiple providers that compete over the spectrum market share (e.g., the model of [32]).

In this paper, we have considered basic decision-making of SUs, who choose between dedicated or free spectrum upon arrival. It is also of great interest to examine more sophisticated decision sets and user types, for example, impatient SUs who purchase a dedicated band whenever their waiting time for free spectrum exceeds some threshold. Such study would naturally require extending the user model, perhaps by building on call-center research (see, e.g., [16]).

Finally, as indicated in the IEEE 802.22 standard, white spaces can be allocated either by employing MAC protocols or through a spectrum broker, which divides the available bandwidth between the SUs. Studying the former model requires encapsulating the analysis of distributed MAC protocols within our framework. For the latter model, we plan to consider the case in which the broker allocates the spectrum band to the SUs and also announces the congestion levels for potential SUs.

Acknowledgement

This work was supported by NSF grants CNS-0915988, CNS-0916263, CNS-10-54856, CIAN NSF ERC under grant EEC-0812072, ARO MURI grant W911NF-08-1-0238, and a Marie Curie International Fellowship within the 7th European Community Framework Programme. We would like to thank Ed Coffman, Moshe Haviv, Rafael Hassin, Yoav Kerner, and Adam Wierman for helpful discussions. We would like to thank the reviewers and Sanjay Shakkottai for helpful comments.

8. REFERENCES

APPENDIX

On the correctness of the ASTA property. We argue that conditioned upon a PU being absent (or present), an arriving SU sees time average occupancies, i.e., that it sees the same conditional distribution as an external observer. In other words, we will show that $\overline{N}_A = \hat{N}_A$ and $\overline{N}_O = \hat{N}_O$. We argue along the same lines as in [4]. Let us first consider the condition on the PU being present. For some small $\delta > 0$, let $A(t, t+\delta)$ denote the event that a SU arrives in the time interval $(t, t+\delta)$. As shown in [4], the ASTA property would hold conditioned on the PU being present if the following condition is satisfied.

$$\mathbb{P}\{A(t, t+\delta)\mid N_O(t) = n\} = \mathbb{P}\{A(t, t+\delta)\}. \quad (19)$$
Now, conditioned on the PU being present, the arrival process is Poisson with rate \(q\lambda \), and therefore arrival event \(A(t, t + \delta) \) is independent of how many packets there are in the system. Thus, (19) holds under in this case. A similar argument would prove that ASTA also holds conditioned on the PU being absent.

In order to illuminate the situation further, we show that ASTA does not hold for an unconditional arrival. Consider an arbitrary arrival into the queue. It is not known whether the PU is present or not. Suppose for the sake of easy argument that \(p\lambda \) is very small, \(q\lambda \), and \(\mu \) are very large, and that \(\eta = \xi \) and both are very small compared to \(\mu \). In such a case, we can deduce from (6) and (7) that large queue occupancies are likely when the PU is present and small occupancies are typical when the PU is absent. Therefore, the conditional probability \(\mathbb{P}\{A(t, t + \delta)|N(t) = n\} \) is actually dependent on \(n \). For example, conditioned on a very large occupancy, it is more likely that the PU is present, so that the probability of an arrival is closer to \(q\lambda\delta \), whereas, the unconditional probability of arrival is given by

\[
\mathbb{P}\{A(t, t + \delta)\} = \delta \frac{p\lambda \eta + q\lambda \xi}{\eta + \xi}.
\]

Thus, \(\mathbb{P}\{A(t, t + \delta)|N(t) = n\} \neq \mathbb{P}\{A(t, t + \delta)\} \), and ASTA does not hold for an unconditional arrival.