The Palladium-Catalyzed Trifluoromethylation of Vinyl Sulfonates

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1021/ol202885w</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society (ACS)</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/81967</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
The Palladium-Catalyzed Trifluoromethylation of Vinyl Sulfonates

Eun Jin Cho† and Stephen L. Buchwald*
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA

Abstract

A method for the palladium-catalyzed trifluoromethylation of cyclohexenyl sulfonates has been developed. Various cyclohexenyl triflates and nonaflates underwent trifluoromethylation under mild reaction conditions using a catalyst system composed of Pd(dba)$_2$ or [(allyl)PdCl]$_2$ and the monodentate biaryl phosphine ligand tBuXPhos. The trifluoromethyl anion (CF$_3^-$) or its equivalent for the process was generated in situ from TMSCF$_3$ in combination with KF or TESCF$_3$ in combination with RbF.

The development of methods for the trifluoromethylation of organic compounds is of great importance since the introduction of a trifluoromethyl (CF$_3$) group can dramatically change the physical and biological activities of a molecule. In many instances, inclusion of a CF$_3$ group increases the metabolic stability, lipophilicity, bioavailability, and binding selectivity of a pharmaceutical candidate. Notably, many top-selling pharmaceuticals as well as agrochemicals contain a trifluoromethyl group.1a,1c

While a variety of processes for the construction of sp3 carbon-CF$_3$ bonds have been reported (using electrophilic, nucleophilic, and radical-based reagents),2 processes for the construction of sp2 carbon-CF$_3$ bonds are rarer. Traditional methods for the formation of benzotrifluorides require harsh reaction conditions such as the use of HF and SbF$_5$ at high temperature,3 precluding the use of highly functionalized substrates. In contrast, cross-coupling processes can facilitate the construction of sp2 carbon-CF$_3$ bonds under milder reaction conditions, rendering them more amenable to the late-stage modification of highly functionalized molecules.4 Toward this end, a variety of copper5- and palladium6-mediated reactions have recently been developed [Figure 1. (1)]. These transition metal-catalyzed trifluoromethylations, however, are mainly limited to the installation of aryl-CF$_3$ groups.

Trifluoromethylated alkenes are key structural components of many biologically active compounds and are featured in pharmaceuticals and agrochemicals such as panomifene7 and

1xbuchwal@mit.edu.
2Present Address: Department of Applied Chemistry, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 426-791, Korea.

Supporting Information Available: Experimental procedures and spectral data for products. This material is available free of charge via the Internet at http://pubs.acs.org.
bifenthrin. Despite the importance of these vinyl-CF₃ moieties, processes for their direct installation have not been well developed [Figure 1. (2)]. Typically, trifluoromethylated alkenes are generated from aldehydes, ketones, or alkynes via several synthetic manipulations. Regarding copper-mediated coupling processes, trifluoromethylations of vinylboronic acids were reported recently. However, the process reported by Chu and Qing required the use of stoichiometric quantity of copper with sensitive reagents and the process by Liu and Shen produced a mixture of alkene stereoisomers. Herein, we report the first palladium-catalyzed process for the trifluoromethylation of vinyl electrophiles. This method allows the conversion of cyclohexenyl triflates and nonaflates into trifluoromethylated alkenes under mild conditions. We found the use of Pd(dba)₂ or [(allyl)PdCl]₂ as the palladium source in conjunction with the electron-rich bulky biphenyl based ligand ‘BuXPhos provided the optimal results.

Our studies of the vinyl trifluoromethylation reaction began by evaluating various monodentate biaryl phosphine ligands (Scheme 1). 1-Cyclohexenyl trifluoromethanesulfonate 1a was used as a test substrate with 5 mol % Pd(dba)₂ and 10 mol % ligand in dioxane at 110 °C. Trifluoromethylltrimethylsilane (Ruppert’s reagent, TMSCF₃) was used as the trifluoromethyl anion (CF₃⁻) source in combination with KF as an activator. Interestingly, the cyclohexyl-substituted biaryl phosphine ligand 1 (BrettPhos), which was found to be the optimal ligand for the palladium-catalyzed trifluoromethylation of aryl chlorides under similar conditions was unsuccessful in providing any of the desired trifluoromethylated alkene 2a. In fact, only catalysts based on ligands with tert-butyl substitution on phosphorus were successful in promoting this transformation. In addition, it was found that catalysts based on ligands lacking substitution at the 3-position of the upper aromatic ring (L5 and L6) were the most effective in generating the desired trifluoro-methylated alkene products. Specifically, the use of ligand 1 (BuXPhos) provided the best results for this transformation and was chosen for further study.

We next investigated the substrate scope for the coupling process using various 4-phenyl-substituted cyclohexenyl halides and sulfonates with ligand 1 (Table 1). Both vinyl triflates and nonaflates (-ONf = OSO₂CF₂CF₂CF₂CF₃) participated in the reaction to give the desired trifluoromethylated alkene 2b (entries 4-12). In contrast, the trifluoromethylation of a vinyl chloride (entry 1) or bromide (entry 2) did not occur under these conditions.

The source of the trifluoromethyl anion or its equivalent was also examined with several combinations of TMSCF₃ or TESCF₃ (trifluoromethyltriethylsilane) and metal fluoride activators as shown in Table 1. The rate of in situ CF₃⁻ generation is crucial, since it decomposes readily to difluorocarbene (F₂C:) and fluoride (F⁻). We found that the highest yield of product was obtained by using TMSCF₃ and KF for triflate electrophiles (entry 4), while the use of TESCF₃ and RbF gave better results for nonaflate electrophiles (entry 10). Additionally, we found that switching the palladium source from Pd(dba)₂ to [(allyl)PdCl]₂ increased the yield of product for vinyl nonaflate substrates (entry 11).

With the optimized conditions in hand, we investigated the substrate scope of the vinyl trifluoromethylation reaction (Scheme 2). TMSCF₃ was employed with KF as the activator for the reactions of vinyl triflates while the TESCF₃/RbF system was used for reactions of vinyl nonaflates. Generally, 5 mol % palladium [5% Pd(dba)₂ or 2.5% [(allyl)PdCl]₂] was used with 10 mol % ‘BuXPhos in dioxane at 90 to 110 °C with a reaction time of 3 hours. A variety of six-membered vinyl triflates and vinyl nonaflates were transformed into trifluoromethylated alkenes in modest to high yield. Additionally, minor amounts (1-5%) of reduced starting materials (vinyl-H) were usually observed. Several functional groups are tolerated under the reaction conditions including ketals (2d), amides (2e), and...
heteroaromatic rings (2g). Conjugated alkenyl sulfonates such as those derived from 2-tetralone (2h, 2i), (+)-nootkatone (2j) and cholesterol (2k) also underwent the transformation, producing the corresponding trifluoromethylated alkenes in high yield. The reaction conditions also proved applicable to larger scale reactions, and trifluoroalkene products 2a and 2b were prepared on a 5 mmol scale in yields similar to those reported for the 1 mmol scale reactions. Conversely, we found that reactions of triflates conducted on a smaller scale (less than 0.5 mmol) with TMSCF$_3$ and KF gave the desired products in yields 10-20% lower than the those conducted on a larger scale.

While 3- or 4-alkyl substituted cyclohexenyl substrates work well in this reaction, cyclohexenyl sulfonates with substitution at the 2-position were less successful substrates. Though several 2-methyl-substituted substrates did undergo the trifluoromethylation under optimized conditions, these reactions proceeded slowly (Scheme 3). Longer reaction times failed to improve yields significantly due to a competing triflate decomposition pathway under these conditions. Interestingly, we found that a 2,2-disubstituted triflate was a competent substrate, with trifluoromethyl alkene 2n produced in 71% yield. Compared to six-membered fluoroalkylsulfonates, the analogous five-membered substrates demonstrated significantly reduced reactivity. For example, trifluoromethylation of cyclopentenyl fluoroalkyl-sulfonates did not go to completion even after being subjected to higher temperatures and catalyst loadings. Current efforts seek to develop suitable conditions for these more challenging substrates. In the case of reactions of larger cyclic (> 7-membered rings) or acyclic systems, alkyne or allene side products were observed as the major products. Further investigations revealed that the formation of alkenyes or allenenes was slow and did not go to completion in the absence of a palladium catalyst, while in the presence of palladium these products were obtained in quantitative yields in just one hour. These findings suggest that these side processes proceed primarily via competitive β-hydride elimination of alkenyl-Pd oxidative addition complexes. These results indicate that relatively slow transmetallation compared to β-hydride elimination likely results in this distribution of products.

We have developed a palladium-catalyzed trifluoromethylation of vinyl triflates and nonaflates, providing a direct method to access trifluoromethylated alkenes from vinyl electrophiles. A variety of trifluoromethylated cyclohexenes were generated under mild reaction conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the National Institutes of Health (Grant GM46059) for financial support of this work. We thank Dr. Meredith A. McGowan (Massachusetts Institute of Technology) and Dr. Andrew Parsons (Massachusetts Institute of Technology) for help with this manuscript.

References

(12). Substrates bearing aldehydes, ketones, unprotected OH or NH groups are not suitable for this process.

(13). The reason is unclear at the moment. The change of either concentration or surface area of the reaction did not affect the results.
Figure 1.
Construction of sp² carbon-CF₃ bonds
Scheme 1.
Ligand Screen for the Trifluoromethylation of Vinyl Triflate 1a.a,b
aReaction conditions: 1a (0.3 mmol), Pd(dba)\textsubscript{2} (5 mol %), ligand (10 mol %), TMSCF\textsubscript{3} (0.6 mmol), KF (0.6 mmol), dioxane (0.3 mL), 110 °C, 5 h. bThe yield was determined by 19F NMR spectroscopy with 4-fluorotoluene as an internal standard.
Scheme 2.
Scope of the Palladium-Catalyzed Trifluoromethylation of Vinyl Triflates and Vinyl Nonaflates \(^a,b\)

\(^a\)Reaction conditions: The exact amount of Pd catalyst used for each substrate is described in the ‘Supporting Information’. \(A\); \(\text{ROTf} (1.0 \text{ mmol}), 4-6 \text{ mol} \% \text{Pd(dba)}_2^{\alpha} \text{ or } [(\text{allyl})\text{PdCl}]_2^{\beta}, 8-12 \text{ mol} \% \text{^7BuXPhos (Pd/L = 1:2)}, \text{TMS} \text{CF}_3 (2.0 \text{ mmol}), \text{KF} (2.0 \text{ mmol}), \text{dioxane (1.0 mL)}, 90-110 \degree \text{C}, 3-10 \text{ h}. \(B\); \(\text{RONf} (1.0 \text{ mmol}), 4-6 \text{ mol} \% \text{Pd(dba)}_2^{\alpha} \text{ or } [(\text{allyl})\text{PdCl}]_2^{\beta}, 8-12 \text{ mol} \% \text{^7BuXPhos (Pd/L = 1:2)}, \text{TES} \text{CF}_3 (1.5 \text{ mmol}), \text{RbF(1.5-2.0 mmol), dioxane (1.0 mL)}, 90-110 \degree \text{C}, 3-10 \text{ h}. \(^b\)The given yields are isolated yields based on an average of at least two runs except \(2a\). The yield of \(2a\) was determined by \(^{19}\text{F} \text{NMR spectroscopy using 4-fluorotoluene as an internal standard due to its volatility.} \)

\[\text{1 (X = OTf or ONf)} \rightarrow \text{2}\]

\(2a\)
- 83\% (1e X = OTf, \(\alpha\))
- 71\% (1f X = ONf, \(\beta\))

\(2b\)
- 81\% (1b X = OTf, \(\alpha\))

\(2c\)
- 73\% (1c' X = ONf, \(\beta\))

\(2d\)
- 51\% (1d X = ONf, \(\beta\))

\(2e\)
- 53\% (1e X = OTf, \(\alpha\))
- 60\% (1f' X = ONf, \(\beta\))

\(2f\)
- 62\% (1f X = OTf, \(\alpha\))
- 76\% (1f' X = ONf, \(\beta\))

\(2g\)
- 84\% (1g X = OTf, \(\alpha\))

\(2h\)
- 75\% (1h X = OTf, \(\alpha\))
- 83\% (1h' X = ONf, \(\beta\))

\(2i\)
- 80\% (1i' X = ONf, \(\beta\))

\(2j\)
- 74\% (1j X = OTf, \(\alpha\))

\(2k\)
- 82\% (1k X = ONf, \(\beta\))
Scheme 3.
Trifluoromethylation of 2-Alkyl Substituted Cyclohexenyl Triflatesa,b

aReaction conditions: ROTf (1.0 mmol), 6 mol % Pd$^\alpha$ or $^\beta$, 12 mol % $^\beta$BuXPhos, TMSCF$_3$ (2.0 mmol), KF (2.0 mmol), dioxane (1.0 mL), 110 °C, 4-10 h. bThe given yields are determined by 19F-NMR spectroscopy. cThe given yields are isolated and based on an average of two runs.
Table 1
Optimization of the Trifluoromethylation of Vinyl Substratesa,b

<table>
<thead>
<tr>
<th>entry</th>
<th>X</th>
<th>R_3SiCF$_3$</th>
<th>MF</th>
<th>19F-NMR yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cl</td>
<td>TMSCF$_3$</td>
<td>KF</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>Br</td>
<td>TMSCF$_3$</td>
<td>KF</td>
<td>0%</td>
</tr>
<tr>
<td>3</td>
<td>OTf</td>
<td>TMSCF$_3$</td>
<td>NaF</td>
<td>0%</td>
</tr>
<tr>
<td>4</td>
<td>OTf</td>
<td>TMSCF$_3$</td>
<td>KF</td>
<td>71%</td>
</tr>
<tr>
<td>5</td>
<td>OTf</td>
<td>TMSCF$_3$</td>
<td>KF</td>
<td>49%</td>
</tr>
<tr>
<td>6</td>
<td>OTf</td>
<td>TMSCF$_3$</td>
<td>KF</td>
<td>55%</td>
</tr>
<tr>
<td>7</td>
<td>OTf</td>
<td>TMSCF$_3$</td>
<td>RbF</td>
<td>39%</td>
</tr>
<tr>
<td>8</td>
<td>ONf</td>
<td>TMSCF$_3$</td>
<td>KF</td>
<td>29%</td>
</tr>
<tr>
<td>9</td>
<td>ONf</td>
<td>TMSCF$_3$</td>
<td>KF</td>
<td>22%</td>
</tr>
<tr>
<td>10</td>
<td>ONf</td>
<td>TMSCF$_3$</td>
<td>RbF</td>
<td>43%</td>
</tr>
<tr>
<td>11c</td>
<td>ONf</td>
<td>TMSCF$_3$</td>
<td>RbF</td>
<td>65%</td>
</tr>
<tr>
<td>12</td>
<td>ONf</td>
<td>TMSCF$_3$</td>
<td>CsF</td>
<td>14%</td>
</tr>
</tbody>
</table>

aReaction conditions: RX (0.2 mmol), Pd(dba)$_2$ (5 mol %), t-BuXPhos (10 mol %), TMSCF$_3$ (0.4 mmol), KF (0.4 mmol), dioxane (0.2 mL), 110 °C, 5 h.

bThe given yield was determined by 19F NMR spectroscopy with 4-fluorotoluene as an internal standard.

c2.5 mol % [(allyl)PdCl]$_2$ was used as the palladium source.