The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1002/anie.201204710</td>
</tr>
<tr>
<td>Publisher</td>
<td>Wiley Blackwell</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Dec 16 19:01:33 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/81968</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike 3.0</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/3.0/</td>
</tr>
</tbody>
</table>
Catalyst-Controlled Chemoselective Arylation of 2-Aminobenzimidazoles

Dr. Satoshi Ueda and Prof. Dr. Stephen L. Buchwald
Department of Chemistry, Room 18-490 Massachusetts Institute of Technology Cambridge MA 02139 (USA) Fax: (+) 617-253-3297
Stephen L. Buchwald: sbuchwal@mit.edu

Abstract

The chemoselective and complementary Pd- and Cu-catalyzed N-arylation of 2-aminobenzimidazoles is described. Selective N-arylation of the amino-group was achieved with a Pd-catalyzed method, while selective N-arylation of azole nitrogen was achieved with a Cu-catalyzed procedure. The utility of these complementary sets of conditions is demonstrated in several two-step, selective syntheses of di-arylated aminoazoles.

Keywords

palladium; copper; C-N coupling; aminoazole; N-arylation

Transition-metal catalyzed heteroatom-arylation reactions are emerging as valuable tools in organic synthesis, fuelled by the identification of more efficient catalyst systems with increased substrate scopes. The synthetic utility of these transformations is increased if catalysts are both highly reactive and selective. This is particularly important for substrates with multiple heteroatom sites capable of undergoing reaction. Furthermore, the development of complementary sets of catalysts or conditions for the selective arylation of substrates possessing multiple nucleophilic sites enables the rapid, protecting group-free generation of molecular complexity with minimal synthetic manipulations. In this context, we have developed sets of procedures for the Pd- and Cu-catalyzed chemoselective arylation of aminobenzamides,\[2a\] 5-aminooxindole,\[2a\] 4-(2-aminoethyl)aniline,\[2a\] amino alcohols,\[2b\] oxindoles,\[2c\] and aminophenols.\[2d\]

During our work on the N-arylation of nitrogen-containing heterocycles,\[3\] we became interested in the use of 2-aminobenzimidazoles as potential substrates for chemoselective N-arylation reactions. Both N1-aryl-2-aminobenzimidazoles and 2-arylaminobenzimidazoles are found in a variety of medicinally important compounds including integrin α4β1 antagonists,\[4\] mTOR inhibitors,\[5\] aurora kinase inhibitors,\[6\] Tie-2 kinase inhibitors,\[7\] Ca channel blockers,\[8\] and CXCR2 antagonists.\[9\] Thus, the selective syntheses of both of these isomers from a common core structure represent attractive alternatives to other previously-employed routes\[10–11\] and could provide rapid access to a diverse array of potentially bioactive 2-aminobenzimidazole derivatives (Scheme 1).

While the efficient Cu-\[12\] and Pd-catalyzed\[13\] N1-arylations of some benzimidazole derivatives with aryl halides have been described, the chemoselective N-arylation of
unprotected 2-aminobenzimidazoles with aryl halides has received little attention.[14–16] Potential challenges of such an approach include the formation of regioisomers and/or polyarylated products due to the presence of three adjacent nucleophilic nitrogens (N\textsubscript{1}, N\textsubscript{3} and C2-amino group), as well as the tautomeric nature of 2-aminobenzimidazoles. Herein, we report the successful development of an orthogonal set of Pd- and Cu-catalyzed chemoselective conditions for the N-arylation of unprotected 2-aminobenzimidazoles and related aminoazoles.

We initiated our investigation by examining the Pd-catalyzed coupling of 2-aminobenzimidazole and bromobenzene (Table 1). With Pd\textsubscript{2}(dba)\textsubscript{3} (0.1 mol%), L\textsubscript{1} (0.2 mol %), and K\textsubscript{3}PO\textsubscript{4}, the N-arylation went smoothly to give 2-anilinobenzimidazole \textit{1a} in 92\% yield and without formation of regioisomer \textit{1b} or poly-arylated products (entry 1). The use of other biaryl phosphine ligands (L\textsubscript{2}–L\textsubscript{4}) provided low yields of product under these conditions. Replacing K\textsubscript{3}PO\textsubscript{4} with other bases also resulted in lower yield of the product (entries 5–6).

Turning our attention to finding conditions for the selective formation of the \textit{N}\textsubscript{1}-arylated product (\textit{2a}), we found that reactions with a Cu-catalyst system (iodobenzene/ bromobenzene, CuI, L\textsubscript{5}[17] and Cs\textsubscript{2}CO\textsubscript{3}) were completely chemoselective, providing no trace either of regioisomer \textit{1a} or of any poly-arylated products (entries 7–8). The use of other ligands (L\textsubscript{6}–L\textsubscript{8}) and bases did not alter this chemoselectivity, but rather gave lower yields of \textit{1b} (entries 9–13). Thus, complete selectivity and complementarity can be achieved using Pd- and Cu-based catalyst systems.

We next explored the scope of the Pd-catalyzed selective N-arylation of aminoazoles, and found that a variety of 2-aminobenzimidazoles and 2-aminimidazole could be coupled chemoselectively with both electron-rich and electron-poor aryl halides, as well as with an \textit{ortho}-substituted aryl halide (Table 2, 1b–1h).[18] For 3-amin-5-alkylpyrazoles the primary amino groups were also selectively and efficiently arylated using 0.2–0.5 mol% catalyst. Though the selective Pd-catalyzed N-arylation of 3-aminopyrazoles has been previously reported, relatively high catalyst loadings (5 mol% Pd and 10 mol% L\textsubscript{4}) and the use of a strong base (NaOtBu) were required.[13a]

The scope of the Cu-catalyzed \textit{N}\textsubscript{1}-selective arylation was also investigated (Table 3). Reactions of 2-aminobenzimidazoles and 2-aminimidazole with a variety of functionalized aryl iodides gave \textit{N}\textsubscript{1}-arylated products \textit{2b}–\textit{2f} and \textit{2i} selectively and in good yields. The N-arylation of unsymmetrical 2-amino-4-methylbenzimidazole reacted at the less sterically hindered \textit{N}\textsubscript{1}-position to provide \textit{2g}. Both electron-rich, \textit{2e}, \textit{g} and electron-deficient aryl halides reacted smoothly to give products in high yield. Lastly, reactions of 2-
alkylaminobenzimidazoles gave N\(^1\)-arylated products 2j and 2k in good yields. Not surprisingly, the process showed good functional group compatibility.

Having established a complementary set of Pd- and Cu-catalyzed chemoselective arylation methods, we sought to apply our methods to selective two-step syntheses of diarylaminoazoles from unprotected aminoazoles using sequential Pd- and Cu-catalyzed reactions (or vice versa). Parent 2-aminobenzimidazole could be selectively arylated via an initial Pd-catalyzed N-arylation of 2-aminobenzimidazole, followed by a subsequent Cu-catalyzed arylation to give 3. Diarylated 3-aminoindazole 4 was prepared via a Cu-catalyzed reaction of 3-aminoindazole, followed by arylation via the Pd-catalyzed method. In both cases, the reaction order was important. In the first case, only a trace amount of 3 was obtained when the Pd-catalyzed system was used as the second step. For the synthesis of 4, the use of a Pd-catalyst for the first arylation of 3-aminoindazole gave a mixture of mono- and di-arylated products.\(^{[19]}\)

In summary, we have developed an orthogonal set of Pd- and Cu-catalyzed N-arylations of 2-aminobenzimidazoles and related aminoazoles. Selective N-arylation of the primary amino-group of 2-aminobenzimidazoles was achieved via Pd-catalyzed methods, while selective N-arylation of the azole nitrogen was achieved with Cu-catalysis. These general protocols are compatible with a variety of aryl halides and give facile access to an array of both isomers of N-arylaminoazoles from common aminoazole precursors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work is supported by National Institutes of Health (GM58160). S.U. thanks the Japan Society for the Promotion of Sciences (JSPS) for a Postdoctoral Fellowship for Research Abroad. We thank Dr. Meredith A. McGowan for help with preparation of this manuscript.

References

18. For the arylation of 2-aminoimidazole sulfate, the use of DMF as solvent was crucial to obtain the desired product 1h.

19. See supporting information for details.
Scheme 1.
Chemoselective arylation of 2-aminobenzimidazole

\[
\begin{align*}
\text{N3} & \quad \text{N} \quad \text{N} \\
\text{N} & \quad \text{N} \\
\text{C2-NH}_2-\text{arylation} & \\
\text{N1-arylation} & \\
\end{align*}
\]
Scheme 2.
Selective syntheses of diarylaminoazoles
Table 1

Reaction optimization[^a]

<table>
<thead>
<tr>
<th>entry</th>
<th>metal source (mol %)</th>
<th>ligand (mol %)</th>
<th>X</th>
<th>base (1.5 eq.)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(dba)$_2$ (0.1)</td>
<td>L1 (0.2)</td>
<td>Br</td>
<td>K$_3$PO$_4$</td>
<td>1a/92</td>
</tr>
<tr>
<td>2</td>
<td>Pd(dba)$_2$ (0.1)</td>
<td>L2 (0.2)</td>
<td>Br</td>
<td>K$_3$PO$_4$</td>
<td>1a/5</td>
</tr>
<tr>
<td>3</td>
<td>Pd(dba)$_2$ (0.1)</td>
<td>L3 (0.2)</td>
<td>Br</td>
<td>K$_3$PO$_4$</td>
<td>1a/23</td>
</tr>
<tr>
<td>4</td>
<td>Pd(dba)$_2$ (0.1)</td>
<td>L4 (0.2)</td>
<td>Br</td>
<td>K$_3$PO$_4$</td>
<td>1a/5</td>
</tr>
<tr>
<td>5</td>
<td>Pd(dba)$_2$ (0.1)</td>
<td>L1 (0.2)</td>
<td>Br</td>
<td>Cs$_2$CO$_3$</td>
<td>1a/14</td>
</tr>
<tr>
<td>6</td>
<td>Pd(dba)$_2$ (0.1)</td>
<td>L1 (0.2)</td>
<td>Br</td>
<td>NaO$_2$-Bu</td>
<td>1a/5</td>
</tr>
<tr>
<td>7</td>
<td>CuI (10)</td>
<td>L5 (15)</td>
<td>I</td>
<td>Cs$_2$CO$_3$</td>
<td>2a/89</td>
</tr>
<tr>
<td>8[^b]</td>
<td>CuI (10)</td>
<td>L5 (15)</td>
<td>Br</td>
<td>Cs$_2$CO$_3$</td>
<td>2a/70</td>
</tr>
<tr>
<td>9</td>
<td>CuI (10)</td>
<td>L6 (15)</td>
<td>I</td>
<td>Cs$_2$CO$_3$</td>
<td>2a/10</td>
</tr>
<tr>
<td>10</td>
<td>CuI (10)</td>
<td>L7 (15)</td>
<td>I</td>
<td>Cs$_2$CO$_3$</td>
<td>2a/45</td>
</tr>
<tr>
<td>11</td>
<td>CuI (10)</td>
<td>L8 (15)</td>
<td>I</td>
<td>Cs$_2$CO$_3$</td>
<td>2a/5</td>
</tr>
<tr>
<td>12</td>
<td>CuI (10)</td>
<td>L5 (15)</td>
<td>I</td>
<td>K$_3$CO$_3$</td>
<td>2a/45</td>
</tr>
<tr>
<td>13</td>
<td>CuI (10)</td>
<td>L5 (15)</td>
<td>I</td>
<td>K$_3$PO$_4$</td>
<td>2a/39</td>
</tr>
</tbody>
</table>

[^a]: Conditions for entries 1–6: PhBr (1 mmol), 2-aminobenzimidazole (1.1 mmol), base (1.5 mmol), Pd(dba)$_2$ (0.1 mol%), ligand (0.2 mol%), t-BuOH (1.5 mL), 120 °C, 5 h. Conditions for entries 7–13: PhI or PhBr (1 mmol), 2-aminobenzimidazole (1.1 mmol), base (1.5 mmol), CuI (10 mol%), ligand (15 mol%), t-BuOH (1.5 mL), 90 °C, 16 h.

[^b]: Reaction was performed at 120 °C.
Table 2

Scope of the Pd-catalyzed N-arylation\(^{[a]}\)

<table>
<thead>
<tr>
<th>R</th>
<th>X</th>
<th>Yield (%)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Br</td>
<td>89%</td>
<td>X = Br, 0.2 mol% Pd</td>
</tr>
<tr>
<td></td>
<td>Cl</td>
<td>91%</td>
<td>X = Br, 0.4 mol% Pd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90%</td>
<td>X = Cl, 0.4 mol% Pd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84%</td>
<td>X = Br, 0.5 mol% Pd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61%(^{[b]})</td>
<td>X = Br, 1 mol% Pd</td>
</tr>
</tbody>
</table>

\(^{[a]}\) Aryl halide (1 mmol), aminoazole (1.1 mmol), K\(_2\)PO\(_4\) (1.5 mmol), Pd\(_2\)(dba)\(_3\) (0.1–0.5 mol%), L\(_1\) (0.2–1 mol%), t-BuOH (1.5 mL), 120 °C, 5 h. Yield of isolated product, average of two runs.

\(^{[b]}\) 2-aminoimidazole sulfate (1.1 mmol), K\(_2\)PO\(_4\) (2.5 mmol) and DMF were used.
Table 3

Scope of the Cu-catalyzed N-arylation\([a]\)

\[
\begin{array}{cccc}
\text{R} & \text{X} & \text{N} & \text{N} \\
\text{H}_2\text{N} & \text{H}_2\text{N} & \text{H}_2\text{N} & \text{H}_2\text{N} \\
2b & 73\% & 2c & 85\% \\
& (X = \text{i}) & & (X = \text{i}) \\
\text{H}_2\text{N} & \text{H}_2\text{N} & \text{Me} & \text{Me} \\
2d & 84\% & 2e & 88\%\text{b} \\
& (X = \text{i}) & & (X = \text{i}) \\
\text{H}_2\text{N} & \text{H}_2\text{N} & \text{Cl} & \text{Cl} \\
2f & 79\% & 2h & 86\%\text{c} \\
& (X = \text{i}) & & (X = \text{Br}) \\
\text{H}_2\text{N} & \text{MeO} & \text{Me} & \text{Cl} \\
2g & 86\% & 2i & 86\% \text{c} \\
& (X = \text{i}) & & (X = \text{i}) \\
\text{Cl} & \text{Me} & \text{H}_2\text{N} & \text{Cl} \\
2j & 79\% & 2k & 86\%\text{c} \\
& & & (X = \text{i}) \\
\end{array}
\]

\([a]\) Aryl halide (1 mmol), aminooazole (1.1 mmol), \(\text{Cs}_2\text{CO}_3\) (1.5 mmol), Cu (10 mol%), \(\text{L}5\) (15 mol%), t-BuOH (1.5 mL), 90–110 °C, 16 h. Yield of isolated product, average of two runs.

\([b]\) 0.5 mmol scale.

\([c]\) 2-aminoimidazole sulfate (1.1 mmol), \(\text{Cs}_2\text{CO}_3\) (2.5 mmol) were used.