Application of a New Chiral Phosphepine to the Catalytic Asymmetric Synthesis of Highly Functionalized Cyclopentenes That Bear an Array of Heteroatom-

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Application of a New Chiral Phosphepine to the Catalytic Asymmetric Synthesis of Highly Functionalized Cyclopentenes that Bear an Array of Heteroatom-Substituted Quaternary Stereocenters

Yuji Fujiwara and Gregory C. Fu*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

Abstract

Through the design and synthesis of a new chiral phosphepine, the first catalytic asymmetric method for the [3+2] cycloaddition of allenes with olefins has been developed that generates cyclopentenes that bear nitrogen-, phosphorus-, oxygen-, and sulfur-substituted quaternary stereocenters. A wide array of racemic γ-substituted allenes can be employed in this stereoconvergent process, which occurs with good enantioselectivity, diastereoselectivity, regioselectivity, and yield. Mechanistic studies, including a unique observation of a (modest) kinetic resolution of a racemic allene, are consistent with addition of the phosphepine to the allene being the turnover-limiting step of the catalytic cycle.

INTRODUCTION

Interest in the use of tertiary phosphines as nucleophilic catalysts, particularly for enantioselective processes, has increased substantially in recent years. One especially powerful method, initially reported by Lu, is a formal [3+2] cycloaddition reaction between electron-poor allenes (or alkynes) and olefins, which generates cyclopentenes that are useful as endpoints or as intermediates for further functionalization. Zhang described the first asymmetric variant of this process catalyzed by a chiral phosphine, and we and others have subsequently expanded the scope of this valuable transformation (eq 1).
The presence of a heteroatom, rather than a hydrogen or a carbon, substituent on the olefin (A in eq 1) could be expected to have a significant impact on both reactivity and stereoselectivity in these [3+2] cycloadditions. Indeed, to the best of our knowledge, there have been few reports of the use of heteroatom-substituted olefins as partners in Lu annihilations, and there have been no descriptions of catalytic asymmetric processes that generate heteroatom-substituted quaternary stereocenters. Nevertheless, the ability to accomplish bond construction of this type with good enantioselectivity through the use of such olefins would substantially enhance the utility of these cyclopentene-forming reactions. In this report, we establish that this objective can be achieved with the aid of a new chiral phosphine catalyst (1) (eq 2).

RESULTS AND DISCUSSION

The most well-studied examples of phosphine-catalyzed [3+2] cycloadditions of electron-poor allenes/alkynes with heteroatom-substituted olefins involve nitrogen substituents. Consequently, as the starting point for our effort to develop the first such catalytic enantioselective annihilations to generate heteroatom-bearing quaternary stereocenters, we chose to examine the reaction of a 5-methylenehydantoin (Table 1; product C can be transformed into a bioactive analogue of hydantocidin).

We surveyed a range of phosphines that have been useful in asymmetric catalysis, including nucleophilic catalysis. Several bidentate phosphines, such as DIPAMP, Ph-BPE, and (S,S)-Ph-TangPhos, were ineffective, affording little or no ee (Table 1, entries 1–3), whereas phosphines (2–4) provided somewhat promising enantioselectivity and yield (entries 4–6).
The addition of substituents to the 3,3′ positions of the 1,1′-binaphthyl framework has proved to be a valuable approach to enhancing the enantioselectivity afforded by an array of chiral catalysts.16 However, this strategy has not yet been exploited in the context of asymmetric nucleophilic catalysis by chiral phosphinephenes. We were therefore pleased to determine that replacement of the 3,3′ hydrogens of phosphinephene 4 with phenyl groups leads to improved ee (Table 1, entry 7 vs. entry 6).17,18 An examination of the X-ray crystal structure of this new phosphinephene catalyst reveals how the 3,3′ phenyl substituents extend the chiral environment of the binaphthyl unit in the direction of the nucleophilic phosphorus (Figure 1).

All studies to date of nucleophile-catalyzed enantioselective cycloadditions of allenes with olefins have focused primarily on the use of allenes that cannot undergo isomerization to 1,3-dienes (i.e., \(R=H \) in eq 1; the 1,3-dienes are unreactive toward cyclopentene formation).19,20 On the other hand, the ability to employ \(\gamma \)-substituted allenes as reaction partners would markedly increase the structural as well as the stereochemical (two stereocenters rather than one) diversity of the products generated through this powerful cycloaddition process.

We have established that the conditions described in entry 7 of Table 1 can in fact be applied directly to [3+2] annulations of a wide array of \(\gamma \)-substituted racemic allenes with a 5-methylene hydantoin, furnishing the desired highly functionalized cyclopentenes, which bear adjacent quaternary and tertiary stereocenters, in good stereoselectivity, regioselectivity, and yield (Table 2).21 With \(\gamma \) substituents that range in steric demand from Me to \(\text{CH}_2 \text{cyclopentyl} \), the cycloadditions proceed cleanly with excel lent enantioselectivity in the presence of 5% of new phosphinephene 1 (entries 1–3); in the case of a bulky \(i-\text{Pr} \) group, an increased catalyst loading (10%) is required in order to obtain a high yield (92%), and the cyclopentene is formed with moderate ee (77%) but excellent regioselectivity (50:1; entry 4). Functionalized \(\gamma \) substituents are compatible with the reaction conditions, including a phthalimide-containing group (entries 5–7). These are stereoconvergent processes where in both enantiomers of the racemic allene are being converted by the chiral catalyst into the same stereoisomer of the product with good selectivity.

With the first method in hand for catalytic enantioselective [3+2] cycloadditions of allenes with a heteroatom-substituted olefin to produce quaternary stereo-centers, we turned our attention to determining the scope of this process with respect to other substituents, with the goal of providing a versatile approach. Indeed, we have established that not only 5-methylene hydantoin, but also other pnictogen-bearing olefins, are suitable cycloaddition partners in the presence of phosphinephene catalyst 1 (Tables 3 and 4).22 Thus, an array of annulations of racemic \(\gamma \)-substituted allenes with nitrogen- and phosphorus-substituted olefins proceed in excel lent ee, regioselectivity, and diastereoselectivity (>20:1). We are not aware of a prior example of the use of a phosphorus-substituted alkene in such [3+2] cycloadditions (including non-asymmetric processes).

We have explored the possibility that the olefin coupling partner can bear other families of heteroatoms, e.g., chalcogens. In fact, \(C_2 \)-symmetric phosphinephene 1 catalyzes [3+2] cycloadditions of both oxygen- and sulfur-substituted olefins with \(\gamma \)-substituted allenes to generate highly functionalized cyclopentenes with good-to-excel lent stereoselectivity, regioselectivity (>20:1), and yield (Tables 5 and 6). To the best of our know ledge, oxygen-substituted alkenes have not previously been employed in annulations of this type.

These catalytic asymmetric cycloadditions of heteroatom-substituted olefins are not limited to couplings with allenooates. For example, allenamides are also suitable partners (eq 3).23
As far as we are aware, allenamides have not been reported by others to serve as substrates in phosphine-catalyzed [3+2] reactions with olefins.

The products of these catalytic asymmetric [3+2] cycloadditions can be converted into other potentially useful compounds. For example, the phthalimide can be deprotected to reveal a quaternary amino-acid ester (eq 4), the thioether can be unmasked to a tertiary thiol (eq 5), and the double bond of the cyclopentene can be functionalized with high diastereoselectivity to afford a cyclopentane that bears four contiguous stereocenters (two tertiary and two quaternary; eq 6).
Detailed mechanistic experiments have not yet been described for catalytic asymmetric [3+2] cycloadditions of allenes with olefins. For the process catalyzed by phosphine \(\text{I} \), specifically, the reaction illustrated in eq 7, the rate is dependent upon the concentration of the allene and the catalyst, but not the olefin. During the cycloaddition, the predominant phosphorus-containing species (>90% according to \({ }^{31} \text{P}\) NMR spectroscopy) is the phosphine itself, not a covalent adduct (e.g., \(\text{B} \) in eq 1). Furthermore, at partial conversion, we observe modest enantiomeric enrichment of the unreacted allene (30% ee at 93% conversion); to the best of our knowledge, this is the first example of a kinetic resolution in a phosphine-catalyzed allene/olefin [3+2] cycloaddition. Finally, we do not detect a nonlinear effect: the ee of the product correlates linearly with the ee of the catalyst. All of these data can be reconciled with a mechanism in which the rate-determining step of the catalytic cycle is the addition of the phosphine to the allene.

\[
\begin{align*}
\text{racemic} & \xrightarrow{\text{cat. } (S)\text{-I}} \text{catalyst-modified allene}
\end{align*}
\]

CONCLUSIONS

Although there have been numerous reports of phosphine-catalyzed [3+2] cycloadditions of allenes with olefins, a variety of noteworthy challenges had not been addressed. For example, with respect to non-asymmetric reactions, no processes had been described that employ phosphorus- or oxygen-substituted olefins to provide heteroatom-substituted quaternary centers; with regard to enantioselective transformations, there had been no success with any heteroatom-bearing olefin to produce a quaternary carbon, and there had been only limited progress (\(R=\text{Me} \) in eq 1) with \(\gamma \)-substituted allenes. By synthesizing and applying a new chiral phosphine (I), we have developed a versatile method that furnishes cyclopentenes with an array of heteroatom-substituted (N, P, O, and S) quaternary stereocenters in good ee, diastereoselectivity, regioselectivity, and yield. We have used catalyst I in stereoconvergent reactions of racemic \(\gamma \)-substituted allenes, which afford products with greater structural and stereochemical diversity as compared with unsubstituted allenes. Furthermore, for the first time, we have employed allenamides in phosphine-catalyzed [3+2] cycloadditions. The highly functionalized cyclopentenes that are generated in these catalytic asymmetric annihilations are poised for transformation into a variety of other target molecules. Mechanistic studies, including a unique observation of a (modest) kinetic resolution of the racemic allene, are consistent with addition of phosphine I to the allene being the turnover-limiting step of the catalytic cycle. This is the first report in which modification of the 3,3’ positions of the binaphthyl unit of a phosphine has been exploited in the context of asymmetric nucleophilic catalysis, and we anticipate that an array of other processes may benefit from this approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
Acknowledgments

Support has been provided by the National Institutes of Health (National Institute of General Medical Sciences, grant R01–GM57034) and Dainippon Sumitomo Pharma Co., Ltd. (fellowship for Y. F.). We thank Dr. Jonathan E. Wilson for a preliminary study.

References

17. Similar results are observed when chloroform is employed as the solvent and when the allene bears an isopropyl, rather than an ethyl, ester.

18. Phosphepine 1 can be handled conveniently in the air. After exposure of the solid phosphine to air for two months, no phosphine oxide was detected by 31P NMR spectroscopy. On the other hand, phosphepine 1 is susceptible to slow oxidation in solution (e.g., after exposure of a solution in CDCl$_3$ to air for 3 days, 15% of the phosphine had been converted into the phosphine oxide).

20. For isolated examples of catalytic asymmetric [3+2] cycloadditions of olefins with γ-substituted allenes that are prone to isomerize, see References 7b, g, and j. In each case, the only substituent that was investigated was a γ-methyl group.

21. Notes: (a) Under our standard reaction conditions: if the temperature of the reaction is lowered, there is a substantial decrease in rate and only a small improvement in ee; the cycloaddition proceeds more slowly in the presence of prolic additives such as pivalic acid or phenol; on a gram scale, the reaction illustrated in entry 3 of Table 2 proceeds in 92% ee and 99% yield (1.74 g of product; 17:1 regioselectivity); the ee of the product is constant throughout the cycloaddition; the phosphine oxide of phosphepine 1 does not catalyze the reaction; the addition of water (up to 5 equiv) leads to a decrease in yield (~20%), but no erosion in enantioselectivity. (b) Allenoates can be generated in one step via the treatment of an acid chloride with a commercially available olefinating agent such as (carbethoxymethylene)triphenylphosphorane.

22. We do not currently have a satisfactory understanding of the origin of the observed stereoselection, particularly with respect to the new stereocenter that is derived from the olefin.

23. For a review of the utility of Weinreb amides, see: Balasubramaniam S, Aidhen IS. Synthesis. 2008; 3707–3738.

Figure 1.
X-ray crystal structure of phosphine (R)-1 (for simplicity, a solvent molecule (CH$_2$Cl$_2$) has been omitted).
Table 1
Enantioselective [3+2] Cycloadditions with a Heteroatom-Substituted Olefin: Effect of the Choice of Phosphine Catalyst

<table>
<thead>
<tr>
<th>entry</th>
<th>chiral catalyst</th>
<th>ee (%)</th>
<th>C: D</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S,S)-DIPAMP</td>
<td><2</td>
<td>1.0: 1</td>
<td>59</td>
</tr>
<tr>
<td>2</td>
<td>(S,S)-Ph-BPE</td>
<td><2</td>
<td>1.0: 1</td>
<td>66</td>
</tr>
<tr>
<td>3</td>
<td>(S',R,R')-TangPhos</td>
<td>11</td>
<td>0.8: 1</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>(S)-2</td>
<td>-51</td>
<td>0.8: 1</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>(S)-3</td>
<td>59</td>
<td>1.1: 1</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>(S)-4</td>
<td>76</td>
<td>1.2: 1</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>(S)-1</td>
<td>97</td>
<td>1.3: 1</td>
<td>92</td>
</tr>
</tbody>
</table>

\(^{a}\) All data are the average of two experiments.

\(^{b}\) Enantiomeric excess of C. A negative value signifies that the R enantiomer was formed predominantly.

\(^{c}\) The yield was determined by HPLC analysis with the aid of an internal standard.
Table 2

Catalytic Enantioselective [3+2] Cycloadditions of γ-Substituted Allenes with a Nitrogen-Substituted Olefin

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>ee (%)</th>
<th>ratio</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>98</td>
<td>8:1</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>n-Pr</td>
<td>97</td>
<td>15:1</td>
<td>97</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>92</td>
<td>17:1</td>
<td>97</td>
</tr>
<tr>
<td>4d</td>
<td>i-Pr</td>
<td>77</td>
<td>50:1</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>(CH3)4OBn</td>
<td>96</td>
<td>11:1</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>(CH2)2CO2Me</td>
<td>95</td>
<td>13:1</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>98</td>
<td>9:1</td>
<td>83</td>
</tr>
</tbody>
</table>

a All data are the average of two experiments. For the determination of structure, including stereochemistry, see the Supporting Information.

b Ratio of regioisomers (determined by 1H NMR analysis of the unpurified reaction mixture); the ratio of diastereomers is $\geq 20:1$.

c Yield of purified product ($rr = 9\rightarrow 20:1$)

d Catalyst loading: 10%.
Table 3
Catalytic Enantioselective [3+2] Cycloadditions of γ-Substituted Allenes with a Phthalimide-Substituted Olefina

![Catalytic Enantioselective [3+2] Cycloadditions of γ-Substituted Allenes with a Phthalimide-Substituted Olefin](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>ee (%)</th>
<th>yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>98</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>98</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>CH$_2$C$_6$</td>
<td>98</td>
<td>86</td>
</tr>
</tbody>
</table>

a All data are the average of two experiments. For the determination of structure, including stereochemistry, see the Supporting Information.

b Yield of purified product; for each cycloaddition, the ratio of regioisomers and diastereomers is \geq20:1 (determined by 1H NMR analysis of the unpurified reaction mixture).
Table 4

Catalytic Enantioselective [3+2] Cycloadditions of γ-Substituted Allenes with a Phosphorus-Substituted Olefina

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>ee (%)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>99</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>CH$_2$CH$_2$Ph</td>
<td>97</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>CH$_2$CH$_2$Ph</td>
<td>97</td>
<td>87</td>
</tr>
</tbody>
</table>

a All data are the average of two experiments. For the determination of structure, including stereochemistry, see the Supporting Information.

b Yield of purified product; for each cycloaddition, the ratio of regioisomers and diastereomers is ≥20:1 (determined by 1H NMR analysis of the unpurified reaction mixture).
Table 5
Catalytic Enantioselective [3+2] Cycloadditions of γ-Substituted Allenes with an Oxygen-Substituted Olefin^a

![Reaction Scheme]

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>ee (%)</th>
<th>dr<sup>b</sup></th>
<th>yield (%)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>96</td>
<td>10: 1</td>
<td>79</td>
</tr>
<tr>
<td>2</td>
<td>n-Pr</td>
<td>89</td>
<td>11: 1</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>86</td>
<td>12: 1</td>
<td>83</td>
</tr>
</tbody>
</table>

^a All data are the average of two experiments. For the determination of structure, including stereochemistry, see the Supporting Information.

^bDetermined by ¹H NMR analysis of the unpurified reaction mixture; for each cycloaddition, the ratio of regioisomers is ≥20:1.

^cYield of purified product (dr ≥ 12: 1).
Table 6
Catalytic Enantioselective [3+2] Cycloadditions of γ-Substituted Allenes with a Sulfur-Substituted Olefin^a

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>ee (%)</th>
<th>dr<sup>b</sup></th>
<th>yield (%)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>98</td>
<td>7: 1</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>O<sup>1</sup></td>
<td>97</td>
<td>6: 1</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>CH<sub>2</sub>-</td>
<td>97</td>
<td>7: 1</td>
<td>90</td>
</tr>
</tbody>
</table>

^a All data are the average of two experiments. The absolute stereochemistry is tentatively assigned by analogy with Table 5.

^b Determined by ¹H NMR analysis of the unpurified reaction mixture; for each cycloaddition, the ratio of regioisomers is ≥20:1.

^c Yield of purified product (dr ≥ 8: 1).