Phenyl Ring Dynamics in a Tetraphenylethylene-Bridged Metal–Organic Framework: Implications for the Mechanism of Aggregation-Induced Emission

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1021/ja306042w</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society (ACS)</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Nov 05 10:57:50 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/82041</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Phenyl Ring Dynamics in a Tetraphenylethylene-Bridged Metal-Organic Framework: Implications for the Mechanism of Aggregation-Induced Emission

Natalia B. Shustova†, Ta-Chung Ong†‡, Anthony F. Cozzolino†, Vladimir K. Michaelis†‡, Robert G. Griffin†‡*, and Mircea Dincă†*

†Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 02139
‡Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 02139

Abstract

Molecules that exhibit emission in the solid state, especially those known as aggregation-induced emission (AIE) chromophores, have found applications in areas as varied as light-emitting diodes and biological sensors. Despite numerous studies, the mechanism of fluorescence quenching in AIE chromophores is still not completely understood. To this end, much interest has focused on understanding the low frequency vibrational dynamics of prototypical systems such as tetraphenylethylene (TPE), in the hope that such studies would provide more general principles towards the design of new sensors and electronic materials. We hereby show that a perdeuterated TPE-based metal-organic framework (MOF) serves as an excellent platform for studying the low energy vibrational modes of AIE-type chromophores. In particular, we use solid-state 2H and 13C NMR experiments to investigate the phenyl ring dynamics of TPE cores that are coordinatively trapped inside a MOF and find a phenyl ring flipping energy barrier of 43(6) kJ/mol. DFT calculations are then used to deconvolute the electronic and steric contributions to this flipping barrier. Finally, we couple the NMR and DFT studies with variable temperature X-ray diffraction experiments to propose that both the ethylenic C=C bond twist and the torsion of the phenyl rings are important for quenching emission in TPE, but that the former may gate the latter. To conclude, we use these findings to propose a set of design criteria for the development of tunable turn-on porous sensors constructed from AIE-type molecules, particularly as applied to the design of new multifunctional MOFs.

Introduction

The relaxation of singlet excited states in light-absorbing molecules occurs either by emission of a photon, giving rise to fluorescence, or non-adiabatically, through non-radiative decay pathways.1 In most cases, chromophores that show high fluorescence quantum yields in dilute solutions become non-fluorescent in colloids and in the solid-state, where intermolecular interactions such as π-stacking often cause self-quenching.2 This effect, sometimes referred to as aggregation-caused quenching, poses significant difficulties for the development of solid-state fluorescence devices such as organic light-emitting diodes and luminescence-based sensors.2–4 A diametrically-opposed effect is operative, however, in a
select class of chromophores that exhibit weak or almost no fluorescence in dilute solutions, but show high fluorescence quantum yields in colloidal aggregates and in the solid state.5,6 This opposite effect, known as aggregation-induced emission (AIE), is observed in molecules that contain groups executing fast discrete diffusion, such as twofold or threefold hops by phenyl or trimethylsilyl rotors, respectively. These moieties are bonded to relatively inflexible backbones such as ethylenic C=C bonds or rigid rings such as silole.7–9 The discovery of the AIE effect and its wide potential for applicability in biological and environmental sensors,10–14 solid-state lighting devices,4,6,15 and luminescent polymers16,17 has sparked a rapid expansion of the field in the past decade. Despite these advancements, the exact mechanism of AIE continues to be a subject of interest for theoreticians and experimentalists alike; deciphering it unequivocally would clearly be beneficial for the \textit{ab-initio} development of new classes of AIE molecules.18,19 Generally, AIE arises because rotor-containing molecules exhibit low frequency vibrational modes in the gas phase or in dilute solutions. These modes are responsible for very fast non-radiative decay of the singlet excited state but are eliminated in the solid state due to intermolecular steric interactions. For instance, tetraphenylethylene (TPE), one of the most accessible and simplest AIE-type chromophores, exhibits low-frequency phenyl torsion modes and C=C twist modes (Figure 1) that are deactivated in the solid state by close intermolecular arene···H and Ph···Ph interactions.5,19,20 Understanding the relative contribution and effect of these vibrational modes and conformational changes is one of the keys to making more efficient and more sensitive fluorescence turn-on sensors from rotor-containing chromophores.

To this end, we sought to understand the mechanism that induces fluorescence in a TPE-based metal-organic framework (MOF) reported recently by us.21 Although the formation of close intermolecular contacts had previously been presumed necessary for turning on emission in rotor-containing chromophores,5 we showed that coordination of phenyl groups to metal atoms within MOFs also turns on the fluorescence of the TPE cores. One such material, \textit{Zn\textsubscript{2}(TCPE)(solvent)\textsubscript{2}} (\textit{1H}; TCPE = tetrakis(4-carboxyphenyl)ethylene), exhibits arene···H and Ph···Ph interactions on neighboring TPE cores that are 1.5 Å longer than in molecular TPE aggregates (Figure 1).21 Although these distances are sufficient to allow unimpeded rotation/flipping of the phenyl rings,22 \textit{1H} is fluorescent. We surmised that because the carboxylate groups in \textit{H\textsubscript{4}TCPE} are installed in the para position, phenyl ring flipping and/or libration in \textit{1H} is not completely eliminated, and that understanding the mechanism of fluorescence turn-on in \textit{1H} would therefore aid in the design of efficient emitters and more sensitive, guest-induced turn-on fluorescence sensors. Our interest in studying the dynamics of phenyl ring motion in TPE-based MOFs was therefore motivated by the possibility of providing general principles towards the formation of high-surface area turn-on fluorescent sensors from AIE-type chromophores. In doing so, we were also hoping to shed more light on the mechanism of aggregation-induced emission and thereby provide guidance for the development of new chromophores in this rapidly expanding area.

With these goals in mind, we synthesized a deuterated TPE-based MOF that is structurally analogous to \textit{1H} and employed 2H NMR spectroscopy and 13C cross-polarized magic angle spinning solid-state (CP MAS) NMR spectroscopy to determine the activation barrier for phenyl ring flipping in this material. In conjunction with temperature-dependent single-crystal and powder X-ray diffraction analysis and density functional theoretical calculations, these results reveal that fluorescence is turned-on in TPE-based MOFs by \textit{drawing} of the TPE core rather than the presence of close intermolecular Ph···Ph interactions, as is typical for molecular constructs of rotor-containing chromophores. Accordingly, we propose that both the C=C bond twist and the torsion of the phenyl rings are important for quenching emission in TPE, but that the former may gate the latter. We use these findings to propose a set of design criteria for the development of tunable turn-on porous sensors constructed from AIE-type molecules.
Results

Synthesis and temperature-dependent structural studies

Synthesis of a deuterated TPE-based MOF started from deuterio-tetra(4-carboxy)phenylethylene, H$_4$TCPE-d$_{16}$, which was accessed from perdeuterated benzene in four steps, shown in Scheme 1. Treatment of C$_6$D$_6$ with oxalyl chloride in carbon disulfide produced benzophenone-d$_{10}$, which was subsequently homocoupled under McMurry condensation conditions23 to yield TPE-d$_{20}$. Bromination of TPE-d$_{20}$ with neat Br$_2$ followed by copper-catalyzed halide-for-cyanide exchange and basic hydrolysis of the nitrile groups gave the desired tetracarboxylate ligand, H$_4$TCPE-d$_{16}$ in 31% overall yield. Heating a solution of H$_4$TCPE-d$_{16}$ and Zn(NO$_3$)$_2$·6H$_2$O in a mixture of ethanol and N,N-diethylformamide (DEF) at 75 °C for three days produced yellow block-shaped crystals of Zn$_2$(TCPE-d$_{16}$)(DEF)$_2$·2DEF (1a).

An X-ray diffraction study of a single crystal of 1a revealed a structure in which Zn$_2$(O$_2$C-)$_4$ paddlewheel units are bridged by TCPE$_{4-}^{4-}$d$_{16}$ ligands in infinite two-dimensional sheets whose connectivity is identical to that found in 1H.21 The sheets adopt a staggered conformation to give similar, but not identical lattice parameters to those of 1H, as shown in Table S1. Despite the slight shift in the stacking arrangement of the 2D sheets in 1a relative to 1H, the two related structures exhibit almost identical fluorescence spectra and thermal behavior, evidenced in the thermogravimetric analysis traces shown in Figure S1. As in 1H, thermal treatment of 1a produces several significant structural transformations. Since these are crucial for the interpretation of the NMR data, we undertook variable temperature X-ray diffraction studies of both TPE-d$_{20}$ and 1. Thus, the X-ray crystal structure of TPE-d$_{20}$ was determined at 93 K, 298 K, and 373 K. TPE-d$_{20}$ maintains the monoclinic P2$_1$ space group at all three temperatures, with no significant changes in lattice parameters, molecular packing, or Ph···Ph ring intermolecular distance. As shown in Table S2, the shortest interchromophore contacts (Ph···Ph ring contacts) are 3.583(3)–3.635(5) Å, while the twist of the C=C bond (Figure 1) is 8.84–10.16°. Over the entire temperature range, the shortest intermolecular TPE contacts change by no more than 0.052(6) Å, and the change in the C=C twist angle is less than 1.32°. Single crystal X-ray structures of 1 were also determined at 100 K and 373 K. As shown in Figure 2, 1 adopts a monoclinic structure at 100 K (1a), but undergoes a symmetry-increasing transformation to an orthorhombic phase while heating to 373 K, which we designate as 1b. Importantly, powder X-ray diffraction analysis revealed that the 2D sheets do not change their relative positioning upon transformation from 1a to 1b. Determination of the unit cell parameters of 1a at room temperature confirmed only very small deviations from the orthorhombic cell determined at 373 K for 1b. Apart from the small deviation in overall symmetry, important structural differences between the structures of 1a and 1b include the lack of guest DEF molecules in the latter, an extension of the shortest Ph···Ph contacts from 4.744(9) to 5.10(1) Å and a reduction of the ethylene twist angle from 5.35° to 3.83°. The lack of guest DEF molecules in 1b, formulated as Zn$_2$(TCPE-d$_{16}$)(DEF)$_2$, is in agreement with the thermogravimetric analysis (TGA) and elemental analysis data (vide infra).

Continued heating at 200 °C caused a complete loss of Zn-coordinated DEF molecules. PXRD analysis revealed that this is also accompanied by a drastic structural rearrangement to a desolvated form of 1, Zn$_2$(TCPE-d$_{16}$) (1c). Because single crystals of 1b do not survive their transformation into 1c, we sought to match the observed PXRD pattern of 1c with a structural model. This was accomplished by implementing an original computational routine in Matlab®, which simulate PXRD patterns of possible phases by changing the interlayer distance and relative displacement of 2D layers. In this case, the structure of 1b was used as an initial model, and we considered the possibility that 1c is related to the former by simple
translations of the 2D sheets in the \textit{ab} plane and/or by changes in the inter-sheet separation. Modulation of these parameters using our routine provided a structural model for \textbf{1c} that exhibited a good match with the observed pattern (Figure S2). Although the relatively poor crystallinity of \textbf{1c} prevented a full Rietveld refinement even from synchrotron-collected data, our computational routine revealed that \textbf{1c} is a new orthorhombic phase with parameters of 12.66, 8.40, and 21.62 Å.

The one notable difference between \textbf{1b} and \textbf{1c} is the much reduced interlayer distance, which decreases from 8.7 Å in the former to 4.2 Å in the latter (Figure 2). The contraction of the interlayer distance brings the Zn$_2$(O$_2$C$^-$)$_4$ paddlewheel units in neighboring 2D sheets in close proximity and prompts the formation of covalent linkages between Zn atoms in one sheet and carboxylate oxygen atoms in adjacent sheets. The absence of all DEF molecules from \textbf{1c} was confirmed by thermogravimetric analysis, which showed a mass loss of 36.2% below 200 °C, in agreement with the 35.4% expected for the elimination of four DEF molecules from \textbf{1a} (Figure S1).

\textbf{1H, 13C, and 2H NMR Spectroscopic Studies}

Variable temperature 1H NMR spectra of TPE and H$_4$TCPE were recorded in CD$_2$Cl$_2$ and CD$_3$OD, respectively, between 183 K and 293 K. The phenyl ring protons appear as a pair of doublets with chemical shifts of 7.14 and 7.81 ppm ($^3J_{HH} = 8$ Hz) for H$_4$TCPE, and two multiplets with shifts at 7.03 and 7.10 ppm for TPE itself. As shown in Figure S3, cooling to 183 K broadens the 1H resonances in both TPE and H$_4$TCPE, but the two different proton signals do not coalesce, suggesting that the phenyl rings in both molecules are in the fast exchange regime in solution even at 183 K. To confirm the expected slow exchange regime of phenyl rings in TPE-d_{20} in the solid state, 2H NMR spectra of crystalline samples of this molecule were recorded between 298 and 423 K. As shown in Figure S4, the 2H NMR spectra of solid TPE-d_{20} in this temperature range exhibit two peaks separated by $Q = 128$ kHz. This yields a Pake pattern characteristic of C-2H vectors in the slow exchange regime ($\tau > 10^{-3}–10^{-4}$ s). 2H quadrupolar echo spectroscopy was also used to investigate the phenyl ring dynamics in \textbf{1a} and \textbf{1c}. As shown in Figure S5, \textbf{1c} showed almost identical Pake patterns up to 423 K, the highest temperature achievable with our NMR probe. In contrast, freshly synthesized \textbf{1a} showed Pake patterns only between room temperature and approximately 323 K. Heating \textbf{1a} above 323 K caused the line shape to evolve into a pattern wherein a second set of symmetric peaks with a smaller splitting of Q/4 = 32 kHz emerged along with a third wider splitting being $-5Q/-4 = 160$ kHz. As shown in Figure 3, the intensity of this central set gradually increased at the expense of the original outer signal up to 423 K. An isotropic signal also became apparent above 323 K, likely indicative of the increased mobility of the guest DEF molecules. Indeed, this isotropic signal disappeared after prolonged heating at 423 K, indicating the loss of the guest molecules and conversion to \textbf{1b}. Upon cooling of \textbf{1b}, the reverse evolution of the quadrupolar signal was observed; the twofold flip pattern at 423 K gradually evolved into a typical slow-exchange Pake pattern at 323 K.

To simulate the spectra we assumed a model consisting of a single population of phenyl rings undergoing discrete two-fold flips. The model was used for simulations of the 2H quadrupolar line shapes for five temperatures during the cooling cycle of \textbf{1b} between 421 K and 321 K.25,26 The simulations yielded flipping rates of 1.2×10^6, 2.0×10^5, 3.2×10^4, 1.8×10^4, and 1.0×10^4 Hz at 421, 369, 345, 321, and 300 K, respectively. To obtain an activation energy and pre-exponential factor for phenyl ring flipping in \textbf{1b}, the natural logarithm of the rates was plotted against the inverse of the respective temperatures to give an Arrhenius plot. A line fit to this graph, shown in Figure 4, gave activation energy and pre-exponential factor values of 43(6) kJ/mol and 2.2×10^{11} Hz, respectively. Although 2H...
NMR revealed a wealth of information about the phenyl ring dynamics in 1b, it was not suitable to interrogate the same in 1c, where the phenyl ring motion remains in the slow regime (<10^4 Hz) regardless of the temperature (vide supra). Because ^13C CP MAS NMR spectroscopy can be used to probe motions down to frequencies of ~10^2 Hz, ^27^13C CP MAS-NMR spectra were acquired for 1c and its protonated relative (fully desolv-ated 1H) at room temperature. As shown in Figure 5, both deuterated and protonated versions of the MOFs exhibit isotropic peaks at 135, 137 and 153 ppm for the phenyl ring carbon atoms, and 147 and 181 ppm for the ethylene and carboxylate carbon atoms, respectively.

Theoretical Studies

DFT was employed to calculate the activation barrier for ring flipping in 1b. The barrier was estimated by modeling the potential energy surface (PES) of TCPE bound by four Zn_2(O_2C−)_4 paddlewheels. The metal coordination sphere was completed with three bridging formate ligands and two terminal water ligands (Figure 6).

The PES was constructed by varying one C_Ar−C_Ar−C=C dihedral angle from 0 to 180° and is depicted in Figure 7. The Zn and oxygen atom coordinates were fixed in order to mimic the rigidity imposed by the framework. Notably, a very similar PES could be obtained using H_4TCPE with the oxygen atom coordinates fixed to those found in the 1 (Figure S7) with significant savings in computational resources. The lowest energy structure structure from the PES, which was deemed closest to the absolute minimum energy conformation, was used as a starting point for a geometry optimization to find the absolute minimum. Because of the size of the system under investigation, a transition state was not modeled. Under these parameters, the activation energy for a ring flip in 1b was estimated at 49 kJ/mol.

The DFT-estimated activation barrier for phenyl ring-flipping in TPE in the gas phase is 24 kJ/mol. This value was determined by first modeling the PES by varying the C_Ar−C_Ar−C=C dihedral angle from 0 to 180° and 180 to 0° with no additional constraints (Figure 8). To correct for false maxima that could arise due to the high number of degrees of freedom, a minimum energy PES was constructed by convoluting PESs calculated in the forward and reverse directions of phenyl ring rotation. As before, the lowest energy structure on the convoluted PES was used as a starting point for a geometry optimization and was confirmed by a frequency calculation that provided no negative values. Notably, we calculated a barrier of 49 kJ/mole for the truncated model of 1b in the vicinity of 0°, a value that is approximately 25 kJ/mol higher in energy than that calculated for TPE at the same angle. The structure of TPE at the maxima reveals an ethylene core that has undergone significant structural deviation from the minimum energy structure involving the C_Ar−C=C−C_Ar and C_Ar−C_Ar−C=C dihedral angles as well as the C_Ar−C_(ethylene)−C_Ar and C_Ar−C=C bond angles (Figure 6), whereas the constraints imposed by the rigid framework in 1b prevent the ethylene core from undergoing similar distortions (Tables S3–S6). The structural distortions in TPE correspond to the lowest energy vibrational modes (Table 1) that occur well below kT (206 cm⁻¹ at 298 K).

In order to deconvolute the steric from the electronic effects in the barriers in the PESs for the truncated model of 1b and for TPE, PESs for the ring flipping of the phenyl ring in styrene and benzoic acid were constructed under the assumption that the PESs for these two systems provide a rotational barrier that is free of steric effects. In both cases, the minimum in energy occurs when the C_Ar−C_Ar−C=C dihedral angle is 0°, which corresponds to the geometry that maximizes the conjugation between the phenyl ring and the pendant group (Figure S6). The associated calculated activation energies for phenyl ring flipping in styrene and benzoic acid are 18 kJ/mol and 27 kJ/mol, respectively.
Discussion

The structure of 1a consists of a two-dimensional framework composed of paddlewheel \(\text{Zn}_2(\text{O}_2\text{C}_2)_4 \) secondary building units that are bridged by TCPE\(^{4-}\)d\(\text{L}_6 \) ligands (Figures 1 and 2). The structure contains both bound DEF molecules, which occupy the axial sites on Zn atoms in the Zn\(\text{Zn}_2 \) paddlewheels, and guest DEF molecules, which occupy the pores. The latter likely prevent fast flipping of the TPE phenyl rings, and \(^2\text{H} \) NMR spectra of 1a accordingly reveal Pake patterns characteristic of slow-exchange (< 10\(^4 \) Hz). The Pake patterns persist up to 373 K, but heating 1a above this temperature starts liberating the guest DEF molecules, thereby activating the phenyl ring flips. Indeed, \(^2\text{H} \) NMR spectra at 373 K, 396 K, and 423 K reveal an isotropic signal that can be attributed to solvent motion, and dynamic quadrupole patterns that can be fit to discrete 180° phenyl ring flips with respective frequencies shown in Figure 3. Because both guest solvent loss and activation of phenyl ring dynamics take place during heating of 1a, the two processes are convoluted and prevent an Arrhenius analysis. Instead, the sample was kept at 423 K for 24 hours to eliminate all of the guest solvent molecules and complete conversion of 1a into 1b, as identified by the disappearance of the isotropic signal attributed to mobile DEF. \(^2\text{H} \) NMR data was again collected for 1b on cooling back to room temperature, with data points at 421, 369, 345, 321, and 300 K. Because no guest solvent molecules are present in 1b, the data could be plotted in Arrhenius fashion, as shown in Figure 4. The experimentally determined activation energy for the phenyl ring flip in 1b, 43(6) kJ/mol, is larger than that expected for free TPE by approximately 20 kJ/mol. This suggests that indeed, the torsion of the phenyl ring in 1b is impeded relative to solution-phase TPE, and is likely the cause of fluorescence turn-on in the TPE-based MOF. The pre-exponential factor, which can be interpreted as the barrier-less flipping rate of the pure phenylene bridge,\(^{28,29}\) is 2.2×10\(^{11} \) Hz and is somewhat smaller than those of phenylene bridges in related porous materials such as MOF-5\(^{30,31}\) and periodically-ordered mesoporous organosilica.\(^{22}\) It is conceivable, however, that intramolecular steric effects converge to decrease the pre-exponential factor in TPE derivatives relative to phenylene itself.

One essential aspect of the NMR data interpretation relates to the stability and identity of the sample during the heating cycle. As for 1H, heating of 1a above 150 °C causes loss of both bound and unbound DEF molecules and is accompanied by significant structural changes and formation of a new phase, 1c. In 1c, fused 2D sheets bring phenyl rings on adjacent TPE cores in close proximity, giving rise to short Ph--Ph contacts of ~ 5 Å (measured between the centroids of the phenyl rings), in line with those observed in molecular crystals of TPE derivatives and solid TPE itself.\(^{32}\)

Expectedly, just like TPE, 1c exhibits Pake patterns at both low and high temperature, reinforcing the observation that close-packed TPE cores prohibit torsional motion of their phenyl(ene) components. Importantly, however, if 1b is heated below 150 °C (i.e. the temperature range of our NMR experiments) its structure and the large Ph--Ph separation conducive to fast phenyl ring flipping, is maintained. This important fact was verified by both single crystal and powder X-ray analysis. Thus, single crystal X-ray diffraction of 1b at 100 °C showed that no significant structural changes occur relative to 1a. Although single crystals of 1b do not survive heating at 150 °C, powder X-ray analysis of the sample used for the NMR experiments showed a pattern that matched that of 1b, with only small peaks corresponding to the completely desolvated phase, 1c (see Figure 2 and below). Because phenyl ring motion in 1c is in the slow-exchange regime in this temperature range, its presence does not affect the dynamic line shapes used for the Arrhenius plot for 1b, and are a minor contributor only to the Pake singularities with large quadrupolar splitting. In addition, \(^{13}\text{C} \) CP-MAS NMR spectra of 1c and of fully desolvated 1H illustrate that both of these compounds exhibit similar resolution and line shape, which is consistent with a rigid
lattice with motion that is slower than what is detectable with this technique (< 10^2 Hz) (Figure 5). This finding agrees with the 2H NMR results, which show that the ring motions are in the slow exchange regime.

To understand the origin of the activation barrier in 1b, especially in comparison to TPE itself, the ring flipping process in both 1b and TPE was probed by DFT calculations. The calculated values of the activation barriers for ring flipping in a truncated model of 1b and gas-phase TPE are 49 kJ/mol and 24 kJ/mol, respectively. Clearly, despite the axial symmetry of phenylene rings in H$_4$TCPE, which should allow fast flipping in a sterically unhindered environment such as the pores of 1b, phenyl ring flipping in 1b is much more sluggish than in TPE itself. To understand the origin of the increased barrier in 1b and the differences between the PESs of 1b and TPE, a more detailed look at the steric and electronic contributions to these was performed. The electronic contribution was probed by considering ring flipping in styrene and benzoic acid, as well as vinylbenzoic acid (Figures S6 and S8). These molecules have similar electronic structures to the benzoate units in the truncated model of 1b, but their phenyl groups lack vicinal phenyl rings that could sterically hinder rotation. The barrier to phenyl ring flipping in these can therefore be assumed to be completely electronic in origin. The electronic component of the PES for ring flipping in TPE could therefore be reconstructed from the PES of styrene, even though the energy contributions were not necessarily expected to be additive. This implied that the barrier for ring flipping in gas-phase TPE is almost completely electronic in origin, and the steric interactions expected to occur at a C$_{Ar}$–C$_{Ar}$–C=C dihedral angle of 0° are avoided due to a number of small geometrical distortions that correspond to low energy vibrational modes (Table 1). Rationalizing the shape of the PES of 1b is more complicated because it cannot be reconstructed by simply summing the contributions from the PESs of styrene and benzoic acid. Because in 1b itself the ethylene core is perpendicular to the carboxylate groups, the effect of the electronic contribution to the overall barrier for ring flipping is expected to be rather insignificant (Figure S8). To attest this, an atoms-in-molecules analysis of the C–C single bonds at select points on the PES was performed (Table S7).

Since the density at the critical point is indicative of the bond order, the sum of the electron densities at each of the C–C single bond critical points should be indicative of the amount of electron delocalization throughout the molecule, and, by extension, the stability of the conformation at each point. Figure 7 illustrates how the sum of the densities at the C–C critical points mirrors the shape of PES. A key point is that the lowest total density, which should correspond to the least stable conformation is found at a local maximum. This indicates that the global maximum found at 5° (49 kJ/mol) is not entirely electronic in origin and must have a considerable steric contribution. Investigation of the geometry at the maximum in the PES of 1 (Figure 6) shows that the ortho-hydrogen atom on one phenyl ring is directed into the π-cloud of the vicinal cis-phenyl ring. Unlike in gas-phase TPE, where low energy geometric distortions to the TPE core allow the steric maximum to be avoided (Figure 6), the TPE core in 1b is drawn tight, thereby forcing the phenyl rings to remain in close proximity during the ring flipping process.

This computational analysis highlights the following points:

1. Low-energy vibrational modes in the TPE core minimize inter-ring steric interactions and allow ring flipping to occur with a low barrier (25 kJ/mol).

2. The drawing of the TPE core by the framework forces these steric interactions to occur, leading to a significantly higher barrier for ring flipping (49 kJ/mol) that is in good agreement with the experimentally derived barrier.
The relative importance of the C=C bond twist and phenyl ring torsion in quenching the fluorescence in molecular TPE derivatives has been addressed before and it was concluded that the latter has higher contribution to the non-radiative decay of the excited state. Our results are in line with this observation and allow us to establish a connection between the two: diminution of the C=C twist angle by drawing of the TPE core in 1b causes a larger steric barrier for phenyl torsion/flipping, suggesting that a relatively large C=C twist angle or a flexible core is required for a low-barrier phenyl ring torsion. The activation barrier for ring flipping in 1b is comparable to the activation energies for phenylene-linked porous materials. For instance, activation energies for 1,4-aromatic dicarboxylate-based MOFs range from 21–53 kJ/mol (Table 2). Although some of these are higher than the activation energy for ring flipping in 1b, the differences can be entirely attributed to conjugation-stabilized conformations in which the carboxylate groups and the phenylene ring are coplanar. We confirmed computationally that the PES constructed for ring-flipping in terephthalic acid gives an activation energy of 50 kJ/mol when both carboxylate groups are held coplanar, in good agreement with experimentally observed activation energies for MOFs constructed from this ligand. In the absence of conjugating groups, exemplified by the pyra-zine-bridged structures, a much lower activation energy is found. In these, because pyrazine is primarily a sigma-donating ligand, there is little energetic cost for ring flipping, which must only overcome a weak 3-type interaction with the d^{10} metal ion. Importantly, because the origin of the activation barrier in 1b is enforced partly by coordination in a rigid lattice and is therefore not inherently borne in the ligand, strategies can be envisioned for reducing the activation barrier for ring-flipping. These strategies include:

1. Designing MOFs where AIE-type chromophores are well separated spatially. This is necessary to avoid aggregation in the empty material, and to ensure porosity for analyte adsorption.

2. Maintaining the flexibility in the TPE core to ensure that low-energy vibrational modes are not eliminated in the empty material. This could be implemented, for instance, by leaving two dangling/unsubstituted phenyl rings which should maintain dynamics in the fast flipping regime.

3. Minimizing ligand conjugation to reduce the contribution of an electronic component to the ring-flipping barrier. This could be achieved for instance by enforcing a perpendicular orientation between the ethylene core and the metal-binding functional groups, as in 1, by using acetylene spacers to ‘insulate’ the phenyl ring from orientation-inducing conjugation, or by using non-conjugating ligating groups.

The criteria outlined above would allow the design of true turn-on MOF sensors. In such sensors, AIE-type chromophores with low-barrier ring flipping would completely quench the fluorescence in the empty porous materials. Fluorescence would then only be turned-on in the presence of analyte guests that can hinder the rotation of the phenylene ring, thereby eliminating the low-energy non-radiative excited state quenching pathways. MOFs are ideal candidates for incorporating such strategies because they lend themselves to modular synthetic design. We envision that these strategies are not limited to TPE-based ligands and should be more broadly applicable to the construction of switchable luminescent MOFs from a wide variety of AIE-type ligands.

Experimental section

Materials

Zn(NO\(_3\))\(_2\)·6H\(_2\)O (98%, Strem Chemicals), Br\(_2\) (≥99.5%, Sigma-Aldrich), CuCN (99%, Strem Chemicals), Zn (dust, 98.6%, Mallinckrodt), oxalyl chloride (98%, Alfa Ae-sar),
TiCl₄ (≥ 99%, Sigma-Aldrich), MgSO₄ (98%, VWR), AlCl₃ (≥ 99%, Sigma-Aldrich), N,N'-dimethylethylenediamine (99%, Sigma-Aldrich), dichloromethane (HPLC grade, Honeywell), methanol (99.9%, VWR), DEF (> 95%, TCI America), N,N-diethylformamide (99.8%, VWR), ethanol (ACS grade, Mallinckrodt), ethylene glycol (AR grade, Mallinckrodt), ethyl acetate (VWR), tetrahydrofuran (ACS grade, Mallinckrodt), toluene (Sigma-Aldrich, ACS), C₆D₆ (Cambridge Isotopes), CDCl₃ (Cambridge Isotopes), CD₃OD (Cambridge Isotopes), and DMSO-d₆ (Cambridge Isotopes) were used as received.

Tetraphenylethylene-d₂₀ (C₂₆D₂₀, TPE-d₂₀). The synthetic sequence for the preparation of this material is shown in Scheme 1. Benzophenone-d₁₀ was synthesized from benzened based on a known procedure, and was then heated (5.47 g, 0.03 mmol) to reflux in the presence of TiCl₄ (8.60 g, 0.05 mmol) and Zn dust (5.90 g, 0.09 mol) under McMurry conditions to give 4.60 g (0.01 mol) of perdeutero-tetraphenylethylene (87% yield).

Tetrakis(4-cyanophenyl)ethylene-d₁₆ (C₃₀D₁₆N₄, H₄TCNPE-d₁₆). H₄TCNPE-d₁₆ was prepared from TPE-d₂₀ following a recently published synthetic route for the protonated analogue. C NMR (CDCl₃, 500 MHz) δ = 111.78 (s), 118.56 (s), 131.56 (t), 132.14 (t), 141.75 (s), 145.82 (s) ppm. IR (neat, cm⁻¹): 2294 (w), 2225 (vs), 1573 (s), 1414 (w), 1321 (m), 1291 (w), 1109 (m), 869 (w), 827 (m), 759 (w), 743 (w), 718 (w), 677 (w). Elemental analysis calculated for C₃₀D₁₆N₄: C, 80.36; H(D), 3.72; N, 12.49. Found: C, 80.10; H(D) 3.75; N, 12.30.

Tetrakis(4-carboxyphenyl)ethylene-d₁₆ (C₃₀H₄D₁₆O₈, H₄TCPE-d₁₆). H₄TCPE-d₁₆ was synthesized by hydrolysis of the corresponding nitrile following the published procedure for the protonated analogue. H NMR (CH₃OH, 500 MHz): δ = 7.19 (br), 7.86 (br) ppm; C NMR (CDCl₃, 500 MHz): δ = 128.8 (m), 129.29 (s), 130.49 (m), 141.10 (s), 146.32 (s), 166.96 (s) ppm. IR (neat, cm⁻¹): 2972 (w, b), 2225 (w), 1687 (vs), 1578 (s), 1542 (m), 1439 (m), 1376 (w), 1327 (w), 1259 (b, s), 1206 (s), 1078 (w), 871 (w), 841 (w), 816 (w), 746 (w), 691 (w). Elemental analysis calculated for C₃₀H₁₆D₁₆O₈·H₂O: C, 66.4; H(D), 4.21. Found: C, 66.09; H(D), 3.93.

Synthesis of Zn₂(TCPE-d₁₆)(DEF)₂-2DEF (1a)

This compound was synthesized in an identical procedure as 1H. IR (neat, cm⁻¹): 2979 (w), 2939 (w), 2878 (w), 2272 (w), 1634 (vs), 1578 (m), 1559 (m), 1442 (s), 1382 (vs), 1309 (w), 1265 (w), 1215 (w), 1106 (w), 881 (w), 832 (w), 820 (w), 703 (w), 677 (w). Elemental analysis calculated for 1a·H₂O: C, 55.92; H(D), 5.91; N, 5.22. Found C 55.74, H 5.73, N 5.10.

X-ray crystal structure determination

Diffraction-quality single crystals of 1a, 1b, and TPE-d₂₀ were mounted using mineral oil and epoxy on Kapton loops. Diffraction data (θ- and ω-scans) at 100 K, 298 K, and 373 K were collected on a Bruker-AXS X8 Kappa Duo diffractometer coupled to a Smart APEX II CCD detector with MoKα radiation (λ = 0.71073 Å) from an IPμS-micro source. Absorption and polarization corrections were applied using SADABS. The structure was solved by direct methods using SHELXS and refined against F² on all data by full-matrix least squares.
All non-hydrogen atoms were refined anisotropically and were included in the model at geometrically calculated positions. The crystallographic data for TPE-d_{20} and I are shown in Table S1.

2H NMR Spectroscopy

Experiments were conducted on a home-built spectrometer (courtesy of Dr. Dave Ruben) operating at 61 MHz for 2H using a single-channel transmission line probe with 3.2 mm coil. Spectra were obtained using a quad-rupolar echo sequence with an 8-step phase cycling using a $\pi/2$ pulse of 2.0 μs and a delay of 30 μs between the two pulses. Phenyl ring motional dynamics were determined by simulations of the experimental 2H powder lineshapes using TURBOPOWDER.

13C MAS NMR Spectroscopy

Experiments were performed at 16.4 T (697.8 MHz, 1H) using a home-built spectrometer (courtesy of Dr. Dave Ruben) and a 3.2 mm Chemagnetics triple-channel magic-angle spinning probe. Samples were ground using a mortar and pestle and packed in 3.2 mm ZrO$_2$ rotors (~28 μL sample volume). Spectra were acquired at spinning frequencies of 10 kHz, with 512–4096 co-added transients and recycle delays between 3 and 120 seconds, using either a Bloch decay or Cross-Polarization (ν_{rf} of 83 kHz for 1H and 13C, $\tau_{CP} = 2.0$ ms) and two pulse phase modulation (TPPM) proton decoupling for naturally abundant 13C deuterated and protonated samples. 13C experiments were referenced to adamantane at 38.48 ppm relative to TMS.

Computational Details

Calculations were performed using the ORCA 2.8 quantum chemistry program package from the development team at the University of Bonn. In all cases the LDA and GGA functionals employed were those of Perdew and Wang (PW-LDA, PW91). Calculations were performed using the TZV basis set for hydrogen, the TZV(p) basis set for main group atoms and TZV(2pf) for zinc. Spin-restricted Kohn–Sham determinants have been chosen to describe the closed-shell wavefunctions, employing the RI approximation and the tight SCF convergence criteria provided by ORCA. Numerical frequency calculations were performed on the optimized structures when size would permit. The atoms in molecules analysis was performed using Xaim.

Other physical measurements

Thermogravimetric analysis (TGA) was performed on a TA Instruments Q500 Thermogravimetric Analyzer at a heating rate of 0.5 °C/min under a nitrogen gas flow of 90 mL/min. Infrared spectra were obtained on a PerkinElmer Spectrum 400 FT-IR/FT-FIR Spectrometer equipped with a Pike Technologies GladiATR attenuated total reflectance accessory. Solution NMR spectra were collected on a Varian 300 or a Varian Inova-500 NMR spectrometer. 2H spectra were referenced to the natural abundance 2H peak in protonated solvents; 13C and 1H spectra were referenced to natural abundance 13C peaks and residual 1H peaks of deuterated solvents, respectively. Powder X-ray diffraction patterns for 1a and 1b were recorded on a Bruker Advance D8 diffractometer using Nickel-filtered Cu-Kα radiation ($\lambda = 1.5418$ Å), with accelerating voltage and current of 40 kV and 40 mA, respectively. A PXRD pattern for 1c was collected at station 11-B at the Argonne National Laboratory using synchrotron radiation ($\lambda = 0.413073$ Å). Samples for PXRD were prepared by placing a thin layer of the appropriate material on a silicon (510) crystal plate for 1a and 1b, and by sealing 1c in a Kapton capillary.
Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001088 (MIT). We would like to thank the 11 B-sector team at the Advanced Photon Source, Argonne National Laboratory, which was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Grants from the NSF also provided instrument support to the DCIF and single crystal X-ray diffraction facility at MIT (CHE-9801960 and EB002026). V.K.M. thanks the Natural Sciences and Engineering Research Council of Canada for a postdoctoral fellowship. We thank Tarun Narayan for writing the Matlab routine for modeling the structure of 1c, and Minyuan Li for assistance with the production of the TOC graphic.

References

J Am Chem Soc. Author manuscript; available in PMC 2013 September 12.
69. Ortiz, JC.; Bo, C. Tarra-gona. Spain: Xaim-Universitat Rovira i Virgili.
 http://www.quimica.urv.es/XAIM/
Figure 1.
The planes used to define the twist in the ethylene core (left), and a portion of the X-ray crystal structure of Zn₂(TCPE) that is representative of both 1H and 1 (right). Orange, red, blue, and grey spheres represent Zn, O, N, and C atoms, respectively. H/D atoms were removed for clarity.
Figure 2.
Temperature-dependent X-ray diffraction studies of 1. Left column: PXRD patterns of (a) 1a calculated from the X-ray crystal structure determined at 100 K, (b) 1a collected at room temperature, (c) 1b calculated from X-ray structure at 373 K, (d) the sample used in the 2H NMR study, and (e) 1c. Right column: X-ray crystal structures of 1a collected at 100 K, 1b collected at 373 K, and the simulated structure of 1c based on the PXRD data. Golden, red, blue, and grey spheres represent Zn, O, N, and C atoms, respectively. Guest DEF molecules are shown in pink. H/D atoms have been removed for clarity.
Figure 3.
Experimental and simulated quadrupolar spin-echo solid-state 2H NMR spectra of 1a during heating and transformation into 1b (left), and of 1b during cooling (right).
Figure 4.
Arrhenius plot of the two-fold phenyl exchange rate in 1b during cooling.
Figure 5.
13C CP-MAS NMR spectra of fully desolvated 1H (top) and 1c (bottom).
Figure 6. DFT-calculated structures of truncated formate-capped models of 1b with a fixed orientation of one phenyl ring at 125° (left) and 5° (middle), and of TPE with a fixed orientation of the phenyl ring at 0° (right). The scheme illustrates the distortion in the TPE core that occurs to minimize the steric repulsion, namely in-plane bends of the CAr-C=C angles and the C=C twist. The models are depicted without hydrogen atoms for clarity. Yellow, red, and grey spheres represent Zn, O, and C atoms, respectively. The carbon atoms that define the dihedral angles used to model the PESs are shown in purple.
Figure 7.
The PES for the flipping of one phenyl ring in a truncated model of 1b (○) and sum of the electron density at the C–C single bond critical points (●). The electron density axis has been reversed and scaled for clarity. Lines have been added as a visual guide.
Figure 8.
The PES for the flipping of one phenyl ring in a model of TPE. The solid line with black circles indicates the lowest energy surface constructed from the forward (solid gray line and hollow circles) and the reverse (hashed gray line) direction ring-flip PESs.
Scheme 1.
Synthesis of $\text{H}_4\text{TCPE-}d_{16}$.
Table 1

DFT-calculated low-energy vibrational modes for TPE.

<table>
<thead>
<tr>
<th>Energy (cm⁻¹)</th>
<th>Vibrational Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>υ₁ \ C–C=C–C torsion</td>
</tr>
<tr>
<td>29</td>
<td>υ₂ \ C_ar–C_ar–C=C torsion</td>
</tr>
<tr>
<td>39</td>
<td>υ₃ \ C_ar–C_ar–C=C torsion</td>
</tr>
<tr>
<td>54</td>
<td>υ₄ \ Aryl rocking</td>
</tr>
<tr>
<td>58</td>
<td>υ₅ \ C_ar–C_ar–C=C torsion</td>
</tr>
<tr>
<td>65</td>
<td>υ₆ \ Aryl rocking</td>
</tr>
<tr>
<td>69</td>
<td>υ₇ \ C_ar–C_ar–C=C torsion</td>
</tr>
<tr>
<td>72</td>
<td>υ₈ \ C_ar–C_ar–C=C torsion</td>
</tr>
<tr>
<td>78</td>
<td>υ₉ \ C_ar–C_ar–C=C torsion</td>
</tr>
</tbody>
</table>
Table 2

Activation energies and discrete flipping models for known, structurally-rigid porous materials

<table>
<thead>
<tr>
<th>Compound</th>
<th>Flipping fragment</th>
<th>Bonds affected (torsion angle)</th>
<th>E_a, kJ/mol</th>
<th>k_{eq}, s$^{-1}$</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn$_4$O(BDC)$_3$</td>
<td></td>
<td>$2 \times C_{Ar}-C_{COOH}(0^\circ)$</td>
<td>47±8</td>
<td>2.4×1012</td>
<td>2 site jumps</td>
</tr>
<tr>
<td>Zn$_4$O(BDC-NH$_2$)$_3$</td>
<td></td>
<td>$2 \times C_{Ar}-C_{COOH}(0^\circ)$</td>
<td>21±8</td>
<td>1.3×107</td>
<td>2 site jumps</td>
</tr>
<tr>
<td>VO(BDC)$_3$</td>
<td></td>
<td>$2 \times C_{Ar}-C_{COOH}(0^\circ)$</td>
<td>45</td>
<td>0.88×1011</td>
<td>2 site jumps</td>
</tr>
<tr>
<td>Cr(OH)(BDC)(H$_2$O)$_3$</td>
<td></td>
<td>$2 \times C_{Ar}-C_{COOH}(0^\circ)$</td>
<td>41</td>
<td>1.26×1011</td>
<td>2 site jumps</td>
</tr>
<tr>
<td>Zn$_4$O(BDC-Br)$_3$</td>
<td></td>
<td>$2 \times C_{Ar}-C_{COOH}(0^\circ)$</td>
<td>31</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Zn$_4$O(BDC-NH$_2$)$_3$</td>
<td></td>
<td>$2 \times C_{Ar}-C_{COOH}(0^\circ)$</td>
<td>21±8</td>
<td>1.3×107</td>
<td>2 site jumps</td>
</tr>
</tbody>
</table>

J Am Chem Soc. Author manuscript; available in PMC 2013 September 12.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Flipping fragment</th>
<th>Bonds affected (torsion angle)</th>
<th>(E_a), kJ/mol</th>
<th>(k_0), s(^{-1})</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(Pz)(Pt(CN)(_4))(^{\text{44,45}})</td>
<td></td>
<td>(2 \times \text{M–N}_{\text{pz}})</td>
<td>30(2)</td>
<td>3.0(\times)10(^{12})</td>
<td>4 site jumps</td>
</tr>
<tr>
<td>CdNa(STP)(Pz)(_{0.5})(H(_2)O)(^{\text{45}})</td>
<td></td>
<td>(2 \times \text{M–N}_{\text{pz}})</td>
<td>7.5</td>
<td>2.4(\times)10(^{6})</td>
<td>4 site jumps</td>
</tr>
<tr>
<td>Zn(_2)(NDC)(_2)(dabco)(^{\text{45,46}})</td>
<td></td>
<td>(2 \times \text{C}\text{Ar}–\text{C}\text{COOH (0°)})</td>
<td>53</td>
<td>–</td>
<td>4 site jumps</td>
</tr>
<tr>
<td>Periodically Ordered Mesoporous Organosilica(^{\text{22}})</td>
<td></td>
<td>(2 \times \text{C}\text{Ar}–\text{C}\text{C=C})</td>
<td>38</td>
<td>1.7(\times)10(^{12})</td>
<td>2 site jumps</td>
</tr>
<tr>
<td>Periodically Ordered Mesoporous Organosilica(^{\text{47}})</td>
<td></td>
<td>(2 \times \text{C}\text{Ar}–\text{Si}{\text{trisolate}})</td>
<td>55</td>
<td>–</td>
<td>2 site jumps</td>
</tr>
<tr>
<td>Compound(^d)</td>
<td>Flipping fragment</td>
<td>Bonds affected (torsion angle)(^b)</td>
<td>(E_a), kJ/mol</td>
<td>(k_0), s(^{-1})</td>
<td>Model</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>(\text{Zr}_6\text{(OH)}_2\text{O}4\text{BDC}){\text{6}}) (\text{UIO-66(Zr)})</td>
<td>(2 \times \text{C}\text{Ar}-\text{C}\text{COOH})</td>
<td>30±2</td>
<td>0.5±0.8×10(^{12})</td>
<td>2 site jumps</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)BDC = 1,4-benzenedicarboxylate; BDC-NH\(_2\) = 2-amino-1,4-benzenedicarboxylate; BDC-Br = 2-bromo-1,4-benzenedicarboxylate; Pz = pyrazine; STP = 2-sulfoterephthalate; NDC = 1,4-naphthalenedicarboxylate; dabco = 1,4-diazabicyclooctane.

\(^b\)The torsion angle refers to the dihedral angle defined by the two para carboxylate groups.

\(^c\)Pre-exponential factor in Arrhenius equation.