Alkylation of Dinitrogen in \([(\text{HIPTNCH}_2\text{CH}_2)_3\text{N}]\text{Mo}\) Complexes (HIPT = 3,5-(2,4,6-i-Pr_3C_6H_2)C_6H_3).

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Alkylation of Dinitrogen in [(HIPTNCH₂CH₂)_3N]Mo Complexes
(HIPT = 3,5-(2,4,6-i-Pr₃C₆H₂)₂C₆H₃)

Thomas Kupfer† and Richard R. Schrock*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract
In this paper we explore the ethylation of dinitrogen (employing [Et₃O][BArf₄]; Arf = 3,5-(CF₃)₂C₆H₃) in [HIPTN₃N]Mo (Mo) complexes ([HIPTN₃N]⁻ = [N(CH₂CH₂NHIPT)₃]⁻; HIPT = 3,5-(2,4,6-i-Pr₃C₆H₂)₂C₆H₃) with the objective of developing a catalytic cycle for the conversion of dinitrogen into triethylamine. A number of possible intermediates in a hypothetical catalytic cycle have been isolated and characterized; they are MoN=NEt, [Mo≡NNEt₂][BArf₄], Mo≡NEt, MoNEt₂, and [Mo(NEt₃)][BArf₄]. Except for MoNEt₂, all compounds were synthesized from other proposed intermediates in a hypothetical catalytic reaction. All alkylated species are significantly more stable than their protonated counterparts, especially the Mo(V) species, Mo≡NEt and Mo≡NEt. The tendency for both Mo≡NEt₂ and Mo≡NEt to be readily oxidized by [Et₃O][BArf₄] (as well as by [H(Et₂O)₂][BArf₄], [Mo=NNEt₂][BArf₄], and [Mo=NH][BArf₄]) suggest that their alkylation is unlikely to be part of a catalytic cycle. All efforts to generate NEt₃ in several stoichiometric or catalytic runs employing MoN₂ and Mo≡N as starting materials were unsuccessful, in part because of the slow speed of most alkylations relative to protonations. In related chemistry that employs a ligand containing 3,5-(4-t-BuC₆H₄)₂C₆H₃ amido substituents alkylations were much faster, but a preliminary exploration revealed no evidence of catalytic formation of triethylamine.

Introduction
Ever since the discovery of the first transition metal dinitrogen complex, [Ru(NH₃)₅(N₂)]²⁺, scientists have been trying to reduce dinitrogen to ammonia or to prepare organic compounds from dinitrogen under mild conditions. Although the groups of Chatt and Hidai made significant advances toward the catalytic reduction of dinitrogen to ammonia, no catalytic reduction under mild conditions was achieved. Chatt proposed that coordination of dinitrogen to the appropriate single metal could activate it toward addition of the first proton or electron and that subsequent alternating addition of a proton and an electron would result in formation of two equivalents of ammonia.

Two systems are known in which dinitrogen is reduced under mild conditions. The first is in which dinitrogen is reduced catalytically to a ~10:1 mixture of hydrazine and ammonia in methanol employing a relatively strong reducing agent such as sodium amalgam. The reaction requires molybdenum and is catalytic with respect to it. Hydrazine is the primary product, with ammonia being formed through a metal-catalyzed disproportionation of hydrazine to dinitrogen and ammonia. Shilov proposed that dinitrogen is bound and reduced to hydrazine between two metal centers.

†Present address: Institut für Anorganische Chemie, Universität Würzburg, Germany.
The second system catalytically reduces dinitrogen to ammonia as the primary product at a molybdenum center in a complex that contains the [HIPTN\textsubscript{3}]3- ligand, where HIPT = 3,5-(2,4,6-i-Pr\textsubscript{3}C\textsubscript{6}H\textsubscript{2})\textsubscript{2}C\textsubscript{6}H\textsubscript{3} (HexalIsoPropylTerphenyl; see Figure 1).11-18 The [HIPTN\textsubscript{3}]3- ligand discourages bimetallic chemistry by sterically protecting the metal coordination site, and also provides increased solubility of Mo complexes in nonpolar solvents. The proposed catalytic reduction of dinitrogen to ammonia that involves [HIPTN\textsubscript{3}]Mo complexes is shown in Figure 2 (R = H; [HIPTN\textsubscript{3}]Mo = Mo0). The oxidation states of Mo in the system range from Mo(III) to Mo(VI). Eight of these intermediates have been prepared and crystallographically characterized; they are Mo\textsubscript{N}, [Mo2+,, MoN=NH, [MoN=NH\textsubscript{2}]+, MoN=N, [MoN=NH4], [MoN(NH\textsubscript{3})4], and Mo(NH\textsubscript{3}). All hypothetical compounds that could not be observed and/or isolated were Mo(V) species, e.g., MoN=NH\textsubscript{2} (not observed) and MoN=NH (observed, but not isolable). Calculations by Reiher and his group on complexes with the full [HIPTN\textsubscript{3}]3- ligand set are consistent with the proposed catalytic scheme.19-21 Turnover employing CrCp+2 as the reducing agent and [2,6-Lut][BAR\textsubscript{f}\textsubscript{4}] (BAR\textsubscript{f} = 3,5-(CF\textsubscript{3})\textsubscript{2}C\textsubscript{6}H\textsubscript{3}) as the proton source in heptane is limited to approximately four equivalents of dinitrogen out of a possible six, as a consequence, it is proposed, of the [HIPTN\textsubscript{3}]3- ligand being removed from the metal under catalytic conditions. The only other product of the catalytic reduction is dihydrogen.

We became interested in alkylation of dinitrogen and its derivatives in the [HIPTN\textsubscript{3}]Mo system for two reasons. First, alkylated dinitrogen and related ligands are likely to be much more robust than their protonated counterparts, a result that might lead to a more detailed understanding of the catalytic reduction of dinitrogen to ammonia. Second, trialkylamines might be synthesized directly from dinitrogen via an analogous set of intermediates to that proposed for reduction to ammonia (Figure 2; R = alkyl). Transition metal-mediated reduction of dinitrogen to form amines under homogeneous catalysis conditions has been reported by Hidai22 and by Mori.23 Both processes require alkali metals as reducing agents and mechanistic details are unknown. Although alkylations of dinitrogen and reduced dinitrogen fragments have been explored in the chemistry of relatively low oxidation state Mo and W dinitrogen complexes,2,5 similar alkylations of relatively high oxidation state molybdenum-based triamidoamine complexes has been investigated only sporadically.24-26 In this paper we explore the possibility that triethylamine might be prepared catalytically in the [HIPTN\textsubscript{3}]Mo system.

Results and Discussion

Synthesis of [Et\textsubscript{3}O][BAR\textsubscript{f}\textsubscript{4}]

The proton source that was chosen for the catalytic reduction of dinitrogen by [HIPTN\textsubscript{3}]Mo catalysts was [2,6-Lut][BAR\textsubscript{f}\textsubscript{4}] (2,6-Lut = 2,6-dimethylpyridinium). Since [2,6-Lut][BAR\textsubscript{f}\textsubscript{4}] is relatively insoluble in heptane (the reaction solvent), the direct reduction of protons to H\textsubscript{2} by CrCp+2, the reducing agent that is slowly added to the mixture, is minimized. Alkylation agents that contain the [BAR\textsubscript{f}\textsubscript{4}]- anion would be most desirable as they would perturb the system minimally. Therefore turned to the possibility of employing [R\textsubscript{3}O][BAR\textsubscript{f}\textsubscript{4}] reagents. All attempts to prepare [Me\textsubscript{3}O][BAR\textsubscript{f}\textsubscript{4}] by treating commercially available [Me\textsubscript{3}O][BF\textsubscript{4}] with Na [BAR\textsubscript{f}\textsubscript{4}] under various conditions yielded only complex mixtures. [Et\textsubscript{3}O][BAR\textsubscript{f}\textsubscript{4}] has been mentioned briefly in the literature, although experimental details of its synthesis were not provided.27 The reaction between [Et\textsubscript{3}O][BF\textsubscript{4}] and 1.05 equiv of Na[BAR\textsubscript{f}\textsubscript{4}] proceeded smoothly in diethyl ether over a period of three days to give [Et\textsubscript{3}O][BAR\textsubscript{f}\textsubscript{4}] in yields of 90 to 95% as a white solid. [Et\textsubscript{3}O][BAR\textsubscript{f}\textsubscript{4}] became the reagent of choice for exploring dinitrogen alkylation reactions.
Synthesis of MoN=NEt

The first plausible intermediate in a hypothetical catalytic alkylation that begins with MoN$_2$ is Mo-N=NEt (3 in Figure 2; R = Et). Diamagnetic MoN=NEt is accessible through reduction of MoCl with excess Na sand under an atmosphere of dry N$_2$ in THF to give [MoN$_2$]$^-$ in situ, followed by addition of [Et$_3$O][BAR$_4^f$] in diethyl ether; MoN=NEt prepared in this manner can be isolated in a moderate yield (42%). The yield of MoN=NEt is higher (69%) when [Bu$_4$N][MoN$_2$] is first prepared and purified, and is then treated with [Et$_3$O][BAR$_4^f$] in ether (equation 1); this is the preferred method. MoN=NEt also is obtained in 54% yield from MoN$_2$, [Et$_3$O][BAR$_4^f$], and CrCp$_2^+$ in benzene at room temperature after two days. After recrystallization from heptane, MoN=NEt was isolated as a pale yellow, crystalline solid.

$$[\text{Bu}_4\text{N}][\text{MoN}_2]+[\text{Et}_3\text{O}][\text{BAR}_4^f] \rightarrow \text{MoN=NEt}+[\text{Bu}_4\text{N}][\text{BAR}_4^f]+\text{Et}_2\text{O} \quad (1)$$

The 1H NMR spectrum of MoN=NEt in C$_6$D$_6$ displays a triplet at 0.87 ppm and a quartet at 3.31 ppm for the ethyl group, as well as the expected resonances for the [HIPTN$_3$]Mo core. MoN=NEt can be heated to 80 °C for several days in solution with no sign of decomposition. (MoN=NH is known to decompose to MoH under similar conditions.16) The oxidation of MoN=NEt is fully reversible in PhF (0.1 M [Bu$_4$N][BAR$_4^f$]; $E_{1/2} = -0.18$ V; vs. Fc/Fc$^+$) at scan rates between 50 and 700 mV/s (Table 1; Figure 3); the oxidized species is assigned as [MoN=NEt]$^+$. In contrast, oxidation of MoN=NH begins near 0 V but is irreversible.17 Attempts to prepare [MoN=NEt][BAR$_4^f$] through oxidation of MoN=NEt with [Fc][BAR$_4^f$] (Fc = FeCp$_2$) or silver salts such as Ag[BAR$_4^f$] in benzene, diethyl ether, or methylene chloride have been unsuccessful; only immediate decomposition to unidentified species was observed.

Two plausible products in a reaction between MoN$_2$ and [Et$_3$O][BAR$_4^f$] are [MoN=NEt] [BAR$_4^f$] (2 in Figure 2; R = Et) or a species in which an amido nitrogen is alkylated. The latter would be analogous to an unstable and potentially important intermediate observed when MoN$_2$ is treated with [LutH][BAR$_4^f$] in fluoro benzene,17 in which an amido nitrogen has been protonated. However, under a variety of conditions (solvent, temperature, stoichiometry) no significant amounts (<10%) of any identifiable alkylated species were formed. Since alkylation of an amido nitrogen is not likely to be reversible, the synthesis of MoN=NEt from MoN$_2$, [Et$_3$O][BAR$_4^f$], and CrCp$_2^+$ in benzene at room temperature noted above must proceed either through formation first of a small amount of [MoN=NEt]$^+$ (followed by reduction) or a small amount of [MoN$_2$]$^-$ (followed by alkylation).

Synthesis and reduction of [Mo=NEt$_2$][BAR$_4^f$]

Alkylation of MoN=NEt with 1 equiv of [Et$_3$O][BAR$_4^f$] in CH$_2$Cl$_2$ afforded diamagnetic [Mo=NEt$_2$][BAR$_4^f$] as an orange solid in 89% isolated yield (equation 2). According to 1H

$$\text{MoN=NEt}+\text{[Et}_3\text{O}][\text{BAR}_4^f] \rightarrow \text{[Mo=NEt}_2][\text{BAR}_4^f]+\text{Et}_2\text{O} \quad (2)$$

NMR spectroscopy of the reaction mixture, the conversion proceeds without formation of any significant side products. The reaction is complete within 10 - 15 minutes at initial concentrations of 0.047 M in MoN=NEt and [Et$_3$O][BAR$_4^f$], and within 1 h at initial concentrations of 0.024 M of each. Disappearance of the proton resonances for [Et$_3$O][BAR$_4^f$] were monitored by 1H NMR in order to obtain a second order rate constant of $k_2 = 0.23$ L·mol$^{-1}$·s$^{-1}$. The cyclic voltammogram of [Mo=NEt$_2$][BAR$_4^f$] in PhF (0.1 M [Bu$_4$N][BAR$_4^f$]) at a scan rate of 50 mV/s reveals an irreversible reduction at -1.87 V ($I_{pE}; E_{1/2} = -1.76 \ldots$)
V; vs. Fc/Fc) which we assign to the [Mo=NNEt₂]⁺/0 couple. This couple is shifted by about ~200–300 mV compared to the [Mo=NNH₂]⁺/0 couple (Table 1). Like most of the other Mo compounds described here, [Mo=NNEt₂][BAR₄]⁺ is highly soluble even in pentane, and X-ray quality crystals could not be obtained.

Reduction of [Mo=NNH₂][BAR₄]⁺ with 1 equiv of CrCp*₂ in benzene yielded [CrCp*₂][BAR₄]⁻ and a red, paramagnetic species in ~90% yield according to ¹H NMR spectroscopy of the reaction mixture (equation 3). This species is tentatively assigned as the neutral Mo(V) hydrazido complex, [Mo=NNEt₂]⁺. [Mo=NNH₂]⁺ is much more stable than [Mo=NNEt₂]⁺, which cannot be observed upon attempts to generate it in situ. The ¹H NMR spectrum of [Mo=NNEt₂]⁺ displays only broad peaks in the diamagnetic region and no characteristic paramagnetically shifted resonances. Attempts to obtain analytically pure material have failed so far, in part because traces of CrCp*₂ and [CrCp*₂][BAR₄]⁻ are present, but also because [Mo=NNEt₂]⁺ decomposes slowly in solution over a period of days. Attempts to alkylate [Mo=NNEt₂]⁺ with [Et₃O][BAR₄]⁻ (5 → 6 in Figure 2) resulted only in one electron oxidation of [Mo=NNEt₂]⁺ to reform [Mo=NNEt₂][BAR₄]⁻ in 90–95% yield and butane, which was observed by ¹H NMR spectroscopy of the volatile products. As the electrochemical potentials suggest, [Mo=NNH₂][BAR₄]⁻ should oxidize [Mo=NNEt₂]⁺. It does so readily (equation 4). [Mo=NNEt₂]⁺ is also oxidized by [H(OEt₂)]⁻[BAR₄]⁻ in C₆D₆ and CD₂Cl₂ in virtually 100% yield.

\[
[\text{Mo}N\text{NEt₂}][\text{BAR}_4^+] + \text{CrCp}^*₂ \rightarrow [\text{Mo}N\text{NEt₂}][\text{BAR}_4^+] + [\text{CrCp}^*₂][\text{BAR}_4^+] \tag{3}
\]

Syntesis of [Mo=NET][BAR₄]⁻ and Mo=NET

Treatment of Mo≡N with 1 equiv of [Et₃O][BAR₄]⁻ in CH₂Cl₂ cleanly afforded diamagnetic [Mo=NET][BAR₄]⁻ in high yields (up to 93%) as the only product (equation 5). The reaction required about 13 h to go to completion at initial concentrations of 0.047 M.

\[
[\text{Mo}=\text{NET}][\text{BAR}_4^+] \rightarrow [\text{Mo}=\text{NET}][\text{BAR}_4^+] + \text{ET}_2\text{O} \tag{5}
\]

[Mo=NET][BAR₄]⁻ was isolated as an orange solid. The high solubility of [Mo=NET][BAR₄]⁻ in all common solvents, and therefore failure to obtain single crystals suitable for an X-ray study, again prevented structural elucidation. The electrochemistry of [Mo=NET][BAR₄]⁻ is comparable to that observed for [Mo=NNEt₂][BAR₄]⁻. An irreversible reduction is observed at −1.82 V at a scan rate of 50 mV/s (Iₚc; E½ = −1.64 V; vs. Fc/Fc⁺; recorded in PhF and 0.1 M [Bu₄N][BAR₄]⁻); we assign this reduction to the [Mo=NET]⁺/0 couple.

In spite of the irreversible [Mo=NET]⁺/0 couple observed in the CV of [Mo=NET][BAR₄]⁻, [Mo=NET][BAR₄]⁻ can be reduced with 1 equiv of CrCp*₂ in benzene to give analytically pure Mo=NET in virtually 100% yield (equation 6). Mo=NET is stable both in the solid state.
and in solution over a period of several weeks at room temperature. The stability of \(\text{Mo}=\text{NEt} \) contrasts with the instability of \(\text{Mo}=\text{NH} \),\(^{17} \) which is prone to decomposition in the absence of excess reducing agent to form \(\text{Mo}=\text{N} \) and \([\text{Mo}(\text{NH}_3)]^+ \). As expected for a paramagnetic Mo (V) \(d^1 \) species, the \(^1\)H NMR Spectrum of \(\text{Mo}=\text{NEt} \) shows only broad resonances in the diamagnetic region. No characteristic, paramagnetically shifted resonances for either the ethylene backbone or the ethyl protons could be observed readily at room temperature. The electrochemical oxidation of \(\text{Mo}=\text{NEt} \) to \([\text{Mo}=\text{NEt}]^+ \) is fully reversible in PhF \((E_{\text{red}} = -1.64 \) V; \(\text{vs. Fc/Fc}^+ \); 0.1 M [Bu\(_4\)N][BAr\(_4\)]\(_2\), Table 1). We cannot explain why the reduction of \([\text{Mo}=\text{NEt}][\text{BAr}_4]_2 \) is irreversible (\textit{vide supra}) while the oxidation of \(\text{Mo}=\text{NEt} \) is reversible.

The reactivity of \(\text{Mo}=\text{NEt} \) towards protonation and alkylation is comparable to that observed for \(\text{Mo}=\text{NNEt} \) described above. The reaction between \(\text{Mo}=\text{NEt} \) and 1 equiv of [Et\(_3\)O] \([\text{BAr}_4]_2 \) in various solvents at various temperatures only led to clean oxidation of \(\text{Mo}=\text{NEt} \) to \([\text{Mo}=\text{NEt}][\text{BAr}_4]_2 \) and formation of butane \(\text{(by proton NMR; not quantitated). No evidence for formation of} \) \([\text{Mo}(\text{NEt})_2][\text{BAr}_4]_2 \) was obtained. Addition of \([\text{H(OEt})_2][\text{BAr}_4]_2 \) to \(\text{Mo}=\text{NEt} \) in C\(_6\)D\(_6\) and CD\(_2\)Cl\(_2\) also led simply to oxidation of \(\text{Mo}=\text{NEt} \) to \([\text{Mo}=\text{NEt}][\text{BAr}_4]_2 \). As expected on the basis of electrochemical potentials (Table 1), \(\text{Mo}=\text{NEt} \) readily reduces \(\text{Mo}=\text{NH} \) \([\text{BAr}_4]_2 \) in benzene.

Synthesis of cationic \([\text{Mo}(\text{amine})]^+ \) complexes

We turned to reactions between \(\text{MoCl} \) and Na[BAR\(_4\)] \((\text{Ar} = \text{Ph, Ar}^f) \) in the presence of NR\(_3\), R\(_2\)NH, or RNH\(_2\) \((R = \text{Me, Et}) \) in order to determine whether the crowded HIT system would allow alkyl amines to coordinate to the metal, just as ammonia does.

\[[\text{Mo}(\text{EtNH}_2)][\text{BAr}_4]_2 \] was isolated as a red-brown, crystalline solid in good yield (75%) as shown in equation 7 \((\text{amine} = \text{EtNH}_2) \). Its \(^1\)H NMR spectrum displays paramagnetically shifted resonances for the ethylene backbone at -16.6 ppm and -98.9 ppm. Reduction of

\[\text{MoCl} + \text{Na}[\text{BAr}_4]_2 + \text{amine} \rightarrow [\text{Mo}(\text{amine})][\text{BAr}_4]_2 + \text{NaCl} \] \hspace{1cm} (7)

\[[\text{Mo}(\text{EtNH}_2)][\text{BAr}_4]_2 \] with 1 equiv of CrCp\(^*\)_2 in C\(_6\)D\(_6\) under an atmosphere of \(\text{N}_2 \) afforded \(\text{MoN}_2 \), [CrCp\(^*\)_2][BAR\(_4\)]\(_2\), and free EtNH\(_2\) in less than 15 minutes. The complete exchange of the ethylamine ligand in presumed intermediate \(\text{Mo}(\text{EtNH}_2) \) by dinitrogen contrasts with what is found for the reaction between \(\text{Mo}(\text{NH}_3) \) and \(\text{N}_2 \), a reaction for which \(K_{\text{eq}} = 1.16(6) \) in benzene at 22 °C.\(^{17} \) Whether the reaction between \(\text{Mo}(\text{EtNH}_2) \) and dinitrogen is zero order or first order in dinitrogen \((\text{as it is for the reaction between} \) \(\text{Mo}(\text{NH}_3) \) and \(\text{N}_2 \) \) is not known. The CV of \([\text{Mo}(\text{EtNH}_2)][\text{BAr}_4]_2 \) under argon shows a quasireversible reduction couple in PhF \((E_{\text{red}} = -1.83 \) V; 0.1 M [Bu\(_4\)N][BAr\(_4\)]\(_2\), Table 1) that we assign as \([\text{Mo}(\text{EtNH}_2)]^+ \). Interestingly, even though CrCp\(^*\)_2 is technically not a good enough reducing agent in PhF to accomplish the reduction of \([\text{Mo}(\text{EtNH}_2)][\text{BAr}_4]_2 \) \((E_{\text{red}} = -1.63 \) V; Table 1), the reduction proceeds quantitatively. Evidently precipitation of [CrCp\(^*\)_2][BAR\(_4\)]\(_2\) provides the additional driving force to complete the reduction in PhF.\(^{12,13,15,17,18} \) [\(\text{Mo}(\text{MeNH}_2) \)][BAR\(_4\)]\(_2\) and [\(\text{Mo}(\text{Me}_2\text{NH}) \)][BAR\(_4\)]\(_2\) could be generated and characterized \textit{in situ} through \(^1\)H NMR spectroscopy of the reaction mixtures by methods analogous to that shown in equation 7 to a failure to form what is proposed to be the required \(\text{Mo}(\text{Cl})(\text{amine}) \) intermediate. We therefore turned to alternative approaches.
A successful synthesis of $\text{[Mo(ET$_2$NH)][BAR$_4$]}$ is analogous to the reaction between MoH and $\text{[2,6-LutH][C}_6\text{F}_{5})_4$, to yield $\text{[Mo(2,6-LutH)][C}_6\text{F}_{5})_4]$.17 $\text{[ET$_2$NH][BAR$_4$]}$ and $\text{[ET$_3$NH][BAR$_4$]}$ were prepared by salt metathesis reactions of Na[BAR$_4$] with either [NEt$_2$]Cl or [ET$_3$NH]Cl, respectively, and isolated as white solids in high yields. Treatment of a benzene solution of MoH with 1.1 equiv of [ET$_2$NH][BAR$_4$] at room temperature smoothly afforded $\text{[Mo(ET$_2$NH)][BAR$_4$]}$ within 2 h (equation 8). $\text{[Mo(ET$_2$NH)][BAR$_4$]}$ is the sole Mo species present at any significant concentration in the crude reaction mixture. $\text{[Mo(ET$_2$NH)][BAR$_4$]}$ was isolated as an analytically pure red, crystalline solid in yields up to 84% after recrystallization from pentane. The 1H NMR spectrum of $\text{[Mo(ET$_2$NH)][BAR$_4$]}$ in C$_6$D$_6$ features two paramagnetically shifted resonances at -9.8 ppm and -88.3 ppm, similar to those observed for the ethylene backbone protons in $\text{[Mo(ET$_3$NH)][BAR$_4$]}$ (vide supra). The reduction of $\text{[Mo(ET$_3$NH)][BAR$_4$]}$ with one equivalent of CrCp* within 2 h (equation 8). $\text{[Mo(ET$_3$NH)][BAR$_4$]}$ was noticeably more stable than NH$_2$Cl, which led to the formation of Mo$_2$N$_2$ (attempted isolation of which led to the formation of Mo$_2$N$_2$). The reduction of $\text{[Mo(ET$_3$NH)][BAR$_4$]}$ produced free Et$_2$NH within 15 minutes, as judged by 1H NMR spectroscopy of the reaction mixture. The presumed intermediate $\text{[Mo(ET$_2$NH)]}$ was not observed.

All efforts to prepare $\text{[Mo(NEt$_3$)][BAR$_4$]}$ in a reaction between MoH and [ET$_3$NH][BAR$_4$] in several solvents (C$_6$H$_6$, CH$_2$Cl, PhF, NEt$_3$) were not successful, even at temperatures up to 100 °C.

Synthesis and characterization of MoNEt$_2$

Since we could not prepare $\text{[MoNEt$_2$][BAR$_4$]}$ through the reaction of Mo=Net with [ET$_3$O][BAR$_4$] (vide supra), we do not have the option to prepare MoNEt$_2$ through reduction of $\text{[MoNEt$_2$]}^+$. Therefore we had to devise an alternative synthesis of MoNEt$_2$.

MoNEt$_2$ was isolated as a green solid in a yield of 54% upon treatment of $\text{[Mo(NH$_3$)][BPh$_4$]}$ with LiNEt$_2$ in diethyl ether (equation 9). The reaction had to be conducted in the absence of N$_2$, otherwise significant amounts of MoN$_2$ were formed as a side product. In the absence of N$_2$, the conversion proceeded cleanly in 2 h and the 1H NMR spectrum of the crude reaction mixture indicated that MoNEt$_2$ was present in a yield of 90–95%. MoNEt$_2$ is noticeably more stable than NH$_2$Cl (attempted isolation of which led to the formation of Mo$_2$N$_2$), and could be stored in the solid-state for several weeks at 30 °C without decomposition. We could not prepare MoNEt$_2$ through substitution of the chloride ligand in MoCl by LiNEt$_2$ or through deprotonation of $\text{[Mo(ET$_3$NH)][BAR$_4$]}$ with LiNEt$_2$, Li[N(SiMe$_3$)$_2$], or KO-t-Bu, an approach that was successful for preparing MoNH$_2$.17

The 1H NMR spectrum of MoNEt$_2$ at room temperature features paramagnetically shifted resonances for the ethylene backbone at -6.5 ppm and -39.5 ppm, which is suggestive of a ground-state high-spin d^2 Mo configuration or a high-spin/low-spin equilibrium, as found in the related compounds $\text{[RNCH$_2CH_2$N]MoNMe}_2\text{[R = SiMe$_3$]_2}$ or C$_6$F$_5$$_2$.24,28 The resonances of the ethyl groups are also significantly shifted to -1.0 ppm (NCH$_2$CH$_3$) and -66.6 ppm (NCH$_2$CH$_3$). The temperature-dependence of the four resonances observed in the 1H
NMR spectrum of MoNEt2 in the range −70 °C to +80 °C allowed us to determine the spin multiplicity of MoNEt2 in the ground-state. A plot of the chemical shift of each resonance vs. 1/T revealed a linear relationship for all, as expected for a Curie-Weiss paramagnet in solution (Figure 4). The methyl resonances in the diethylamide group were almost independent of T as a consequence of their being further away from Mo than the C protons in the ligand and the methylene protons in the diethylamide group. Thus, in contrast to the low-spin ground-state d^2 configurations found for [(RNCH$_2$CH$_2$)$_2$N]MoNMe$_2$ (R = SiMe$_3$ or C$_6$F$_5$), MoNEt$_2$ has a high-spin ground-state d^2 configuration.

The second temperature dependent process that is observed in NMR spectra of MoNEt$_2$ is loss of C$_3$ symmetry at low temperature (Figure 5). As the temperature is lowered the ligand is locked into a C$_3$ configuration and the dimethylamido group no longer freely rotates. At 200 K at least nine resonances are observed for the two former ethylene backbone protons.

The cyclic voltammogram of MoNEt$_2$ in PhF (0.1 M [Bu$_4$N][BAr$_4$]) reveals a quasireversible oxidation process at $E_1/2 = −0.98$ V (vs. Fe/Fe$^+$), as well as an irreversible process at $−1.74$ V (vs. Fe/Fe$^+$; scan rate 50 mV/s; Table 1). We assign the former to the one electron oxidation of MoNEt$_2$ to [MoNEt$_2$]$^+$, while the nature of the latter is not known. Chemical oxidation of MoNEt$_2$ with [Fc][BAr$_4$]$_2$ in toluene over a period of three days is accompanied by a gradual color change of the deep blue solution to deep red. Ferrocene is formed along with a new species with paramagnetically shifted resonances at $−8.2$, $−21.3$, $−35.7$, and $−104.3$ ppm. Unfortunately, side products are also formed in minor amounts upon oxidation of MoNEt$_2$, and the identity of the major product, which we propose is [MoNEt$_2$]$^+$, cannot be confirmed.

In order to be able to compare compounds that contain the same dialkylamido ligand, MoNMe$_2$ was prepared through reaction of [Mo(NH$_3$)$_3$][BPh$_4$] with LiNMe$_2$ in diethyl ether in the absence of dinitrogen. MoNMe$_2$ was obtained as a dark green solid in a moderate yield (39%). MoNMe$_2$ is significantly less stable than MoNEt$_2$ both in the solid-state and in solution. Decomposition of MoNMe$_2$ to undefined products was observed within 24 h in C$_6$D$_6$ solution and within 5 d in the solid-state. The 1H NMR spectrum of MoNMe$_2$ in C$_6$D$_6$ displays paramagnetically shifted resonances for the ethylene backbone at $−3.0$ ppm and $−40.4$ ppm at room temperature, as well as for the amine methyl groups at $−28.3$ ppm. Variable temperature proton NMR spectra of MoNMe$_2$ in toluene-d_8 in a range of $−20$ °C to $+80$ °C (Figure 6) are analogous to those obtained for MoNEt$_2$. Therefore, we conclude that MoNMe$_2$ also has a high-spin ground state d^2 configuration. A low-spin d^2 configuration (e.g., for [(RNCH$_2$CH$_2$)$_2$N]MoNMe$_2$ (R = SiMe$_3$ or C$_6$F$_5$)) would suggest that the amido ligand is planar, while a high-spin d^2 configuration for MoNEt$_2$ and MoNMe$_2$ would suggest that the amido ligand is not planar, i.e., pyramidal. We propose that a planar geometry for a diethylamino or dimethylamido group in MoNEt$_2$ and MoNMe$_2$ must not be possible because of steric interaction with the isopropyl HIPT substituents. It should be noted that the energy difference between high spin and low spin forms of [(RNCH$_2$CH$_2$)$_2$N]MoNMe$_2$ (R = SiMe$_3$ or C$_6$F$_5$) is small (~2 kcal/mol), so the steric interaction that is required for the lowest energy state to be high spin instead of low spin need not be dramatic.

Alkylation and Reduction of MoNEt$_2$

Alkylation of MoNEt$_2$ with one equivalent of [Et$_3$O][BAr$_4$] in diethyl ether in the absence of dinitrogen cleanly afforded [Mo(NEt$_3$)][BAr$_4$] as a deep red solid in 61% yield after 20 h (equation 10). This result demonstrates that triethylamine can coordinate to the metal in a

$$\text{MoNEt}_2+[\text{Et}_3\text{O}][\text{BAr}_4^+] \rightarrow [\text{Mo(NEt}_3)[\text{BAr}_4^+] + \text{Et}_3\text{O} \quad (10)$$

J Am Chem Soc. Author manuscript; available in PMC 2010 September 9.
Attempts to generate triethylamine

We first attempted to generate triethylamine in the HIPTN system. MoN2 and Mo=N were chosen as starting compounds in experiments that employed [Et3O][Bar4] and CrCp*2. Addition of 7 equiv of [Et3O][Bar4] and 8 equiv of CrCp*2 to a benzene solution of MoN2 or 3.5 equiv of [Et3O][Bar4] and 4.2 equiv of CrCp*2 to a benzene solution of Mo=N led to no detectible NEt3 or [Et3N][Bar4] by 1H NMR spectroscopy or gas chromatography. [Et3O][Bar4] is almost insoluble in benzene but is consumed and diethyl ether is formed. The solid residues contained [CrCp*2][Bar4] and either a mixture of Mo=NNEt and [Mo=NNEt2][Bar4], or unreacted Mo=N.

Several experiments were conducted in a manner analogous to that employed for the catalytic reduction of dinitrogen to ammonia except the CrCp*2 was added over a period of 10 - 16 hours. In all cases, no NEt3 was formed, as judged by gas chromatography, and the residues...
Summary and Conclusions

We have prepared several possible intermediates in a hypothetical catalytic reduction of dinitrogen to triethylamine with (HIPTN$_3$)Mo species, among them MoN=NEt, [Mo=NNEt$_2$][BAr$_4$], [Mo=NNEt$_2$, [Mo=NEt][BAr$_4$], Mo=NEt, MoN=Et, and [MoNEt$_3$] [BAr$_4$]. Mo=NNEt$_2$ and Mo=NEt are especially interesting since Mo=NNH$_2$ has not been observed, and Mo=NH loses dihydrogen to give Mo=N upon attempted isolation. The protio analog of MoN=Et$_2$ (MoNH$_2$) is also unstable with respect to loss of dihydrogen to give Mo=N. We were surprised to find that both Mo=NNEt$_2$ and Mo=NEt are oxidized by [Et$_3$O] [BAr$_4$] to reform the cationic Mo(VI) species, instead of being alkylated. Mo=NNEt$_2$ is also oxidized by [Mo=NNH$_2$]$_2$ or [H(Et$_3$O)$_2$][BAr$_4$]. Therefore it seems unlikely that it will be possible to complete a catalytic cycle in which Mo=NNEt$_2$ must be alkylated (5 → 6; Figure 2) and Mo=NEt must be alkylated (9 → 10; Figure 2).

We know that reduction of [Mo=NNH$_2$]$_2$ with CrCp* gives Mo=N=NH, Mo=N, [Mo (NH$_3$)$_2$]$_2$, Mo(NH$_3$), and ammonia. Mo=NNH$_2$ is proposed to be the first product of reduction of [Mo=NNH$_2$]$^+$, but Mo=NNH$_2$ is then protonated, possibly by [Mo=NNH$_2$]$_2$+$^+$ in a base-catalyzed proton transfer, to give [Mo=NNH$_3$]$^+$ (and Mo=NNH), and [Mo=NNH$_3$]$^+$ is then reduced by CrCp* or some other species in solution (including Mo=NNH$_2$) to give Mo=N and ammonia. Therefore Mo=NNH$_2$ and [Mo=NNH$_3$]$^+$ are most likely intermediates, but how they are formed and consumed is unclear.

All efforts to generate NEt$_3$ employing (HIPTN$_3$)Mo species failed, a result that is consistent with slow alkylations. However, efforts to generate NEt$_3$ in the (DTBN$_3$)Mo also have failed so far, or at least NEt$_3$ was not formed catalytically. Nevertheless, sterically less demanding triamidoamine ligands would seem to be more likely to allow formation of NEt$_3$ catalytically in a manner analogous to that proposed for catalytic formation of ammonia. Unlike protonation of an amido nitrogen in the ligand, alkylation of an amido nitrogen in the ligand would likely be irreversible and probably would lead to dissociation of the amine donor from the metal. Some evidence to support this proposal exists in triamidoamine chemistry of molybdenum.$^{24-26}$ Alkylation of an amido nitrogen in the [HIPTN$_3$]3- ligand could be regarded as another potential pitfall in the catalytic formation of triethylamine by a sequence of reactions analogous to those proposed for catalytic formation of ammonia.

Experimental Section

General—Air- and moisture-sensitive compounds were manipulated under an atmosphere of dry N$_2$ or argon by standard Schlenk techniques or in a glove-box using flame- and oven-dried.
glassware. HPLC grade pentane, benzene, toluene, ether, THF and CH$_2$Cl$_2$ were sparged with dinitrogen, passed through activated alumina, and stored over 4 Å Linde-type molecular sieves prior to use. Heptane, octane, NEt$_3$ and NEt$_2$H were dried by refluxing over molten potassium, vacuum transferred, degassed, and stored over molecular sieves. Gaseous H$_2$NMe, HNMe$_2$, NM$_2$, and NEt$_2$H were condensed onto sodium sand, stirred over a period of 3 h at -40 °C, and vacuum transferred into the reaction vessel. PhF was dried over CaH$_2$, degassed, and vacuum distilled prior to use. Benzene-d$_6$, toluene-d$_8$, and methylene chloride-d$_2$ were freeze-pump-thaw degassed, and stored over activated molecular sieves for at least two days prior to use.

MoCl$_6$, MoN$_2$, [Bu$_4$N][MoN$_2$], Mo=NH, [Mo(NH$_3$)][BF$_4$], MoH$_2$, [Mo=NNH$_2$][BAR$_3$], [Mo=NH][BAR$_3$], (DTBTN$_3$)MoCl$_6$, [H(OEt$_2$)$_2$][BAR$_4$], Na[BAR$_4$], Ag[BAR$_4$], CrCp$_2$, and [Fc][BAR$_4$] were prepared according to known methods. [Bu$_4$N][BAR$_4$] was prepared by salt metathesis of [Bu$_4$N]Cl with Na[BAR$_4$] in diethyl ether, and recrystallized from CH$_2$Cl$_2$/pentane. [NEt$_2$H$_2$][BAR$_4$] and [NEt$_3$H][BAR$_4$] were synthesized by reaction of NEt$_3$HCl and NEt$_3$HCl with Na[BAR$_4$] in diethyl ether. All other chemicals were obtained commercially, and used without further purification. NMR spectra were recorded on a Bruker Avance 400 spectrometer (1H, 400 MHz; 13C, 100 MHz), and VT NMR spectra on Varian Inova 500 spectrometers (1H, 500 MHz). Chemical shifts for 1H NMR spectra were referenced to the residual 1H NMR resonance of the deuterated solvent, those of the 13C NMR spectra to the 13C NMR resonances of the solvent itself, and are reported as parts per million relative to tetramethylsilane. 1B NMR spectra were referenced externally to a solution of B(OH)$_3$ in D$_2$O. Electrochemical measurements were carried out in an argon filled glove-box using a CHI 620C potentiostat, 0.1 M [Bu$_4$N][BAR$_4$/PhF electrolytes, and a standard three-electrode cell assembly with a glassy carbon (3.0 mm dia.) disk working electrode, a platinum wire auxiliary electrode, and a reference electrode consisting of an AgCl-coated silver wire submerged in 0.1 M [Bu$_4$N][BAR$_4$/PhF electrolyte. All measurements were referenced externally and/or internally with FeCp$_2$. Elemental analyses were performed by Midwest Microlabs, Indianapolis, IN.

$[Et_3O][BAR_4]$—A mixture of [Et$_3$O][BF$_4$] (0.15 g, 0.79 mmol) and Na[BAR$_4$] (0.74 g, 0.83 mmol, 1.05 equiv) was stirred in Et$_2$O (10 mL) at room temperature for 3 d. The solvent removed in vacuo. The residue was extracted with CH$_2$Cl$_2$, and the extract was filtered through Celite. Removal of all volatiles afforded [Et$_3$O][BAR$_4$] (0.72 g, 0.74 mmol, 94%) as a white solid, which was washed with pentane and dried in vacuo. A concentrated CH$_2$Cl$_2$ solution was layered with pentane, and cooled to -30 °C to afford analytically pure [Et$_3$O][BAR$_4$]: 1H NMR (400 MHz, CD$_2$Cl$_2$, 297 K) δ 1.61 (t, 9H, C$_3$H$_7$O), 4.61 (q, 6H, C$_6$H$_2$O), 7.60 (s, 8H, BAR$_2$); 1B$_3$ (1H) NMR (128 MHz, CD$_2$Cl$_2$, 297 K) δ -26.0. Anal. Calcd (%) for C$_{38}$H$_{27}$BF$_2$O$_3$: C, 47.23; H, 2.82. Found: C, 47.30; H, 2.80.

(HIPTN$_3$N)MoN=NEt

Method A: (HIPTN$_3$N)MoCl (0.15 g, 87.37 μmol) was reduced with sodium sand (38 .1mg, 0.87 mmol, 10 equiv) in THF (4 mL) under an atmosphere of dinitrogen to form [(HIPTN$_3$N)MoN=NEt]$_2$; as reported in the literature. The deep green reaction mixture was filtered through Celite, and the solvents were removed from the filtrate in vacuo. The residue was dissolved in ether (2 mL). The mixture was cooled to -30 °C, and treated dropwise with a solution of [Et$_3$O][BAR$_4$] (84.4 mg, 87.37 μmol, 1 equiv) in ether (2 mL). The reaction was allowed to stir at ambient temperatures over a period of 24 h, and the solvent was subsequently removed under vacuum. The residue was extracted into pentane and filtered through Celite. After removal of all volatiles, the crude product was recrystallized from heptane at -30 °C to afford (HIPTN$_3$N)MoN=NEt (63.8 mg, 36.69 μmol, 42%) as a pale yellow, crystalline solid in several crops: 1H NMR (400 MHz, C$_6$D$_6$, 297 K) δ 0.87 (t, 3H, -NCH$_2$CH$_3$), 1.14 (d, 36H, -CH (CH$_3$)$_2$), 1.22 (d, 36H, -CH(CH$_3$)$_2$), 1.38 (d, 36H, -CH(CH$_3$)$_2$), 2.08 (br t, 6H, -NCH$_2$CH$_2$N-), 2.94 (m, 6H, -CH(CH$_3$)$_2$), 3.32 (m, 12H, -CH(CH$_3$)$_2$), 3.31 (q, 2H, J Am Chem Soc. Author manuscript; available in PMC 2010 September 9.
−NCH₂CH₃), 3.72 (br t, 6H, −NCH₂CH₂N−), 6.68 (s, 3H, 4,4′,4″-TerH), 7.20 (s, 12H, 3,5,3′, 5′,3″,5″-TipH), 7.29 (s, 6H, 2,6,2′,6′,2″,6″-TerH). Anal. Calcld (%) for C₁₁₆H₁₆₄MoN₆ (1738.52): C, 80.14; H, 9.51; N, 4.83. Found: C, 79.84; H, 9.54; N, 4.85.

Method B (preferred): An ether solution (8 mL) of [Et₂O][Bar₄] (0.52 g, 0.54 mmol, 1.05 equiv) was cooled to −30 °C, and treated with solid [Bu₄N][(HIPTN₃)MoN₂] (1.00 g, 0.51 mmol). A red solution formed within 30 min and was stirred for 20 h. The volatile components were removed in vacuo, and the residue was dried at 50 °C for 3 h. The residue was extracted into pentane and the mixture was filtered through Celite. All volatiles were removed and the crude product was recrystallized from heptane at −30 °C to afford (HIPTN₃)MoN=NEt (0.61 g total, 0.35 mmol, 69%) in several crops.

Method C: A solid mixture of (HIPTN₃)MoN₂ (25.0 mg, 14.62 μmol), [Et₂O][Ba₂f₄] (14.2 mg, 14.62 μmol, 1 equiv), and CrCp*₂ (6.2 mg, 14.62 μmol, 1 equiv) was stirred in benzene (7 mL) at RT over a period of two days. All volatile components were removed in vacuo, and the residue was extracted into pentane. The extract was filtered through Celite and the volatiles were removed from the filtrate in vacuo again. The crude product was recrystallized from heptane at −30 °C to afford (HIPTN₃)MoN=NEt (13.7 mg, 7.90 μmol, 54%).

[(HIPTN₃)Mo=NEt₂][Ba₂f₄]—An CH₂Cl₂ solution (3 mL) of (HIPTN₃)Mo=NEt₂ (0.15 g, 86.28 μmol) and [Et₂O][Ba₂f₄] (83.4 mg, 86.28 μmol, 1 equiv) was stirred at RT for 1 h to give a dark orange solution. Volatiles were removed in vacuo and the solid residue was extracted into pentane. The extracts were filtered through Celite, and the solvents were removed from the filtrate in vacuo. The remaining material was dried at 60 °C under high vacuum to yield [(HIPTN₃)Mo=NEt₂][Ba₂f₄] (0.20 g, 76.79 μmol, 89%) as an orange, amorphous solid: 1H NMR (400 MHz, C₆D₆, 297 K) δ 6.66 (t, 6H, −NCH₂CH₃), 1.08 (d, 36H, −CH(CH₃)₂), 1.14 (d, 36H, −CH(CH₃)₂), 1.42 (d, 36H, −CH(CH₃)₂), 2.52 (br t, 6H, −NCH₂CH₂N−), 2.81 (m, 12H, −CH(CH₃)₂), 2.98 (m, 12H, −CH(CH₃)₂, −NCH₂CH₃), 3.77 (br t, 6H, −NCH₂CH₂N−), 6.89 (s, 9H, 2,4,6,2′,4′,6′,2″,4″,6″-TerH), 7.19 (s, 12H, 3,5,3′,5′,3″, 5″-TipH), 7.75 (s, 4H, Ba₂f₄), 8.45 (s, 8H, Ba₂f₄). Anal. Calcld (%) for C₁₅₀H₁₈₁BF₂₉MoN₆ (2630.8): C, 68.48; H, 6.93; N, 3.19. Found: C, 68.73; H, 7.00; N, 3.10.

[(HIPTN₃)Mo=NEt₂][Ba₂f₄]—A solution of [(HIPTN₃)Mo=NEt₂][Ba₂f₄] (0.10 g, 39.53 μmol) in benzene (6 mL) was treated with solid CrCp*₂ (12.7 mg, 39.53 μmol, 1 equiv), and stirred for 18 h at RT, during which time a yellow precipitate and a dark red solution formed. All volatiles were removed in vacuo, and the residue was extracted with pentane. The extracts were filtered through a medium porosity frit to yield a deep red filtrate and yellow [CrCp*₂] [Ba₂f₄] (45.9 mg, 38.74 μmol, 98%). The filtrate was brought to dryness to afford a deep red solid. The 1H NMR spectroscopy of the crude reaction mixture indicated the formation of (HIPTN₃)Mo=NEt₂ with a purity of 90%. All attempts to further purify the crude product have been unsuccessful: 1H NMR (400 MHz, C₆D₆, 297 K) δ 1.22 (br m, 72H, −CH(CH₃)₂), 1.35 (br s, 36H, −CH(CH₃)₂), 2.91 (br m, 12H, −CH(CH₃)₂), 3.18 (br m, 6H, −CH(CH₃)₂), 7.08 (br s, 12H, 3,5,3′,5′,3″, 5″-TipH), all other signals were not observed at RT.

[(HIPTN₃)Mo=N≡N][Ba₂f₄]—A CH₂Cl₂ solution (5 mL) of (HIPTN₃)Mo=N≡N (0.40 g, 0.24 mmol) and [Et₂O][Ba₂f₄] (0.23 g, 0.24 mmol, 1 equiv) was stirred at RT for 18 h to give a dark orange solution. Volatiles were removed in vacuo, and the solid residue was extracted with pentane. The extracts were filtered through Celite, and the filtrate was brought to dryness. The remaining material was dried at 60 °C under high vacuum to yield [(HIPTN₃)Mo=N≡N][Ba₂f₄] (0.57 g, 0.22 mmol, 93%) as an orange, amorphous solid: 1H NMR (400 MHz, CDCl₃, 297 K) δ 0.62 (t, 3H, −NCH₂CH₃), 0.85 (d, 36H, −CH(CH₃)₂), 0.96 (d, 36H, −CH (CH₃)₂), 1.28 (d, 36H, −CH(CH₃)₂), 2.51 (m, 12H, −CH(CH₃)₂), 2.91 (m, 6H, −CH(CH₃)₂),
3.27 (br t, 6H, −NCH₂CH₂N−), 3.59 (q, 2H, −NCH₂CH₃), 4.28 (br t, 6H, −NCH₂CH₂N−), 6.80 (s, 3H, 4.4′,4″-TerH), 6.84 (s, 6H, 2.6′,2′,6″,6″-TerH), 6.98 (s, 12H, 3.5′,3′,5″,5″-TipH), 7.56 (s, 4H, BAř2), 7.72 (s, 8H, BAř2); ¹H NMR (400 MHz, C₆D₆, 297 K); δ = 0.68 (t, 3H, −NCH₂CH₃), 1.00 (d, 36H, −CH(CH₃)₂), 1.10 (d, 36H, −CH(CH₃)₂), 1.34 (d, 36H, −CH(CH₃)₂), 2.30 (br t, 6H, −NCH₂CH₂N−), 2.69 (m, 12H, −CH(CH₃)₂), 2.91 (m, 6H, −CH(CH₃)₂), 3.64 (m, 8H, −NCH₂CH₂N−, −NCH₂CH₃), 6.74 (s, 3H, 4.4′,4″-TerH), 6.82 (s, 6H, 2.6′,2′,6″,6″-TerH), 7.14 (s, 12H, 3.5′,3′,5″,5″-TipH), 7.69 (s, 4H, BAř2), 8.34 (s, 8H, BAř2). Anal. Calcd (%) for C₁₄₈H₁₇₆BF₂₄MoN₅ (2589.73): C, 68.69; H, 6.86; N, 2.71. Found: C, 68.48; H, 6.83; N, 2.88.

HIPTN₂NMo=NEt—A solution of [(HIPTN₂N)Mo=NEt][BAř₂] (0.25 g, 96.61 μmol) in benzene (6 mL) was treated with solid CrCp+₂ (31.2 mg, 96.61 μmol, 1 equiv), and the mixture was stirred for 18 h at RT, during which time a yellow precipitate and a dark red solution formed. All volatiles were removed in vacuo at 60 °C, and the residue was extracted with pentane. The extracts were filtered through a medium porosity frit, yielding a deep red filtrate and yellow [CrCp+₂][BAř₂] (0.11 g, 93.71 μmol, 97%). The filtrate was taken to dryness in vacuo to afford a deep red solid, which was again extracted with pentane. The mixture was filtered through Celite and all volatiles were removed in vacuo to yield (HIPTN₂N)Mo=NEt (0.15 g, 85.98 μmol, 89%) as a red, crystalline solid; ¹H NMR (400 MHz, C₆D₆, 297 K) δ = 0.91 (br t, 3H, −NCH₂CH₃), 1.31 (br s, 72H, −CH(CH₃)₂), 1.40 (br s, 36H, −CH(CH₃)₂), 2.95 (br m, 12H, −CH(CH₃)₂), 3.16 (br m, 6H, −CH(CH₃)₂), 7.06 (br s, 12H, 3.5′,3′,5″,5″-TipH); the other signals could not be observed at RT. Anal. Calcd (%) for C₁₁₆H₁₆₆MoN₅ (1724.52): C, 80.79; H, 9.59; N, 4.06. Found: C, 80.52; H, 9.23; N, 4.29.

Reaction of (HIPTN₂N)Mo=NEt with [Et₃O][BAř₂]—Degassed CD₂Cl₂ (0.6 mL) was added to a solid mixture of (HIPTN₂N)Mo=NEt (20.3 mg, 11.77 μmol) and [Et₃O][BAř₂] (11.4 mg, 11.77 μmol, 1 equiv). The mixture was thawed to 22 °C, and allowed to react for 1 h, during which time an orange solution formed. The gaseous components of the reaction mixture were vacuum transferred onto frozen and degassed CD₂Cl₂ (0.6 mL). The ¹H NMR spectrum of the volatiles indicated the presence of butane: ¹H NMR (400 MHz, CD₂Cl₂, 297 K) δ = 0.88 (t, 6H, CH₂CH₃), 1.28 (m, 4H, CH₂CH₃).

[(HIPTN₂N)Mo(H₂NEt)][BAř₂]—Gaseous H₂NEt was condensed onto Na sand and the mixture was stirred over a period of 4 h at −30 °C. Two equivalents (57 mL, 0.29 mmol, 95 Torr) were transferred onto a frozen solution of (HIPTN₂N)MoCl (0.25 g, 0.15 mmol) and Na [BAř₂] (0.15 g, 0.15 mmol, 1.05 equiv) in CH₂Cl₂ (10 mL). The mixture was allowed to thaw to RT, and was stirred for another 2 h. During this time, the reaction mixture turned red brown in color. The volatiles were removed in vacuo, and the residue was extracted into pentane. The extract was filtered through Celite. The filtrate was reduced in volume and stored at −30 °C to afford [(HIPTN₂N)Mo(H₂NEt)][BAř₂] (0.28 g, 0.11 mmol, 75%) as a red brown, microcrystalline solid. The product was washed with cold pentane and dried in vacuo: ¹H NMR (400 MHz, C₆D₆, 297 K) δ = −98.9 (br s, 6H, −NCH₂CH₂N−), −16.6 (br s, 6H, −NCH₂CH₂N−), −2.63 (br s, 2H, −H₂NCH₂CH₃), 0.56 (br s, 3H, −NCH₂CH₃), 1.09 (br s, 36H, −CH(CH₃)₂), 1.17 (br s, 36H, −CH(CH₃)₂), 1.40 (br s, 36H, −CH(CH₃)₂), 2.77 (br m, 12H, −CH(CH₃)₂), 2.99 (br m, 8H, −CH(CH₃)₂, −NCH₂CH₃), 7.25 (br s, 12H, 3.5′,3′,5″,5″-TipH), 7.64 (s, 4H, BAř₂), 8.28 (s, 8H, BAř₂), 9.73 (br s, TerH); the other signals could not be observed at RT. Anal. Calcd (%) for C₁₄₈H₁₇₈BF₂₄MoN₅ (2589.74): C, 68.64; H, 6.93; N, 2.70. Found: C, 68.43; H, 6.94; N, 2.80.

[(HIPTN₂N)Mo(NEt₂H)][BAř₂]—A solid mixture of (HIPTN₂N)MoH (0.25 g, 0.15 mmol) and [H₂NEt₂][BAř₂] (0.15 g, 0.16 mmol, 1.1 equiv) was treated with benzene (3 mL) and stirred over a period of 2 h at RT. All volatiles were removed in vacuo, the residue extracted
into pentane, and filtered through Celite. Removal of all volatile components under high vacuum at 60 °C for 3 h yielded [(HIPTN₃N)Mo(NH₂)][BAr₄²⁻] (0.33 g, 0.13 mmol, 84%) as a red brown solid: ¹H NMR (400 MHz, C₆D₆, 297 K): δ = -88.3 (br s, 6H, -NCH₂CH₂N⁻), -9.8 (br s, 6H, -NCH₂CH₂N⁻), 0.89 (t, 6H, -CH(CH₃)₂), 1.17 (br s, 72H, -CH(CH₃)₂), 1.40 (d, 36H, -CH(CH₃)₂), 2.31 (br s, 4H, -NCH₂CH₂), 2.90 (br m, 6H, -CH(CH₃)₂), 3.00 (br m, 12H, -CH(CH₃)₂), 7.23 (s, 12H, 3.5',3',3',5',5'″-TipH), 7.64 (s, 4H, BAr⁻²), 8.26 (s, 8H, BAr⁻²), 10.6 (br s, TerH); the other signals could not be observed at RT. Anal. Calcd (%) for C₁₅₉H₁₈₂BF₂₄MoN₅ (2617.8): C, 68.82; H, 7.01; N, 2.68. Found: C, 68.92; H, 7.09; N, 2.72.

[(HIPTN₃N)MoNEt₂]—Diethyl ether (10 mL) was freeze-pump-thaw degassed thoroughly and condensed onto a solid mixture of [(HIPTN₃N)Mo(NH₃)]BPH₄ (0.45 g, 0.22 mmol) and LiNEt₂ (1.8 mg, 0.22 mmol, 1 equiv). The reaction mixture was allowed to warm to ambient temperature, and was stirred for 2 h. All volatiles were removed in vacuo, and the residue was extracted into pentane under an atmosphere of argon. The mixture was filtered through Celite and the filtrate was brought to dryness in vacuo. The crude reaction product was recrystallized from heptane at -30 °C. (HIPTN₃N)MoNEt₂ (0.21 g, 0.12 mmol, 54%) was isolated as a green, microcrystalline solid: ¹H NMR (500 MHz, toluene-d₈, 293 K) δ = -66.6 (br s, 6H, -NCH₂CH₂N⁻), -39.5 (br s, 6H, -NCH₂CH₂N⁻), -6.5 (br s, 6H, -NCH₂CH₂N⁻), -1.97 (br s, TerH), -1.01 (br s, 4H, -NCH₂CH₂), 1.01 (br s, 36H, -CH(CH₃)₂), 1.25 (br s, 36H, -CH(CH₃)₂), 1.40 (d, 36H, -CH(CH₃)₂), 2.97 (br m, 6H, -CH(CH₃)₂), 3.05 (br s, 12H, -CH(CH₃)₂), 7.15 (s, 12H, 3.5',3',3',5',5''-TipH); other resonances could not be observed. Anal. Calcd (%) for C₁₅₉H₁₈₂MoN₅ (1753.58): C, 80.82; H, 9.71; N, 3.99. Found: C, 81.04; H, 9.54; N, 2.69.

[(HIPTN₃N)MoNMe₂]—Diethyl ether (20 mL) was freeze-pump-thaw degassed thoroughly and condensed onto a solid mixture of [(HIPTN₃N)Mo(NH₃)]BPH₄ (0.97 g, 0.48 mmol) and LiNMe₂ (24.5 mg, 0.48 mmol, 1 equiv). The reaction mixture was allowed to warm to ambient temperature, and was stirred for 2 h. All volatiles were removed in vacuo, and the residue extracted into heptane/pentane under an atmosphere of argon. The mixture was filtered through Celite and the filtrate was cooled to -30 °C. (HIPTN₃N)MoNMe₂ (0.32 g, 0.19 mmol, 39%) was isolated as a green solid: ¹H NMR (400 MHz, C₆D₆, 293 K) δ = -40.4 (br s, 6H, -NCH₂CH₂N⁻), -28.3 (br s, 6H, -NCH₂), -3.0 (br s, 6H, -NCH₂CH₂N⁻), -0.21 (br s, TerH), 1.21 (br s, 36H, -CH(CH₃)₂), 1.35 (s, 36H, -CH(CH₃)₂), 1.47 (d, 36H, -CH(CH₃)₂), 2.99 (br m, 6H, -CH(CH₃)₂), 3.12 (br s, 12H, -CH(CH₃)₂), 7.19 (s, 12H, 3.5',3',3',5',5''-TipH); 7.19 (br s, 3H, TerH). Anal. Calcd (%) for C₁₅₉H₁₈₂MoN₅ (1753.58): C, 80.82; H, 9.71; N, 3.99. Found: C, 81.04; H, 9.54; N, 3.86.

[(HIPTN₃N)Mo(NEt₃)][BAr₄²⁻]—Diethyl ether (1 mL) was condensed onto a solid mixture of (HIPTN₃N)MoNEt₂ (15.1 mg, 8.55 μmol) and [Et₃O][BAr₄²⁻] (8.3 mg, 8.55 μmol, 1 equiv). The reaction mixture was thawed and stirred for further 16 h at ambient temperature, during which time the solution became deep red. All volatiles were removed in vacuo and the residue was extracted with pentane. The mixture was filtered through Celite and the red filtrate was brought to dryness in vacuo to afford [(HIPTN₃N)Mo(NEt₃)][BAr₄²⁻] (13.8 mg, 5.21 μmol, 61%) as a red solid: ¹H NMR (400 MHz, C₆D₆, 297 K) δ = -99.1 (br s, 6H, -NCH₂CH₂N⁻), -16.3 (br s, 6H, -NCH₂CH₂N⁻), -10.8 (br s, 6H, -NCH₂CH₂), -2.5 (br s, 9H, -NCH₂CH₂), 1.09 (br s, 36H, -CH(CH₃)₂), 1.17 (br s, 36H, -CH(CH₃)₂), 1.40 (d, 36H, -CH(CH₃)₂), 2.78 (br m, 12H, -CH(CH₃)₂), 2.99 (br m, 6H, -CH(CH₃)₂), 3.00 (br m, 12H, -NCH₂CH₂), 7.30 (s, 12H, 3.5',3',5',3',5''-TipH), 7.64 (s, 4H, BAr⁻²), 8.27 (s, 8H, BAr⁻²), 9.6 (br s, TerH); other resonances could not be observed. Anal. Calcd (%) for C₁₅₂H₁₈₆BF₂₄MoN₅ (2645.85): C, 69.00; H, 7.09; N, 2.65. Found: C, 68.86; H, 6.69; N, 2.69.
(DTBTN$_3$N)Mo≡N—THF (4 mL) was added to a solid mixture of (DTBTN$_3$N)MoCl (0.35 g, 0.27 mmol) and NaN$_3$ (34.6 mg, 0.53 mmol, 2 equiv), and the reaction mixture was stirred at RT for 3 d. The volatile components were removed in vacuo, and the solid residue extracted into benzene. The extracts were filtered through Celite, and taken to dryness in vacuo. The remaining material was recrystallized from Et$_2$O/pentane to afford (DTBTN$_3$N)Mo≡N (33; 0.25 g, 0.20 mmol, 74%) as an orange powder. 1H NMR (400 MHz, C$_6$D$_6$, 297 K): δ 1.23 (s, 54H, $-\text{C}(\text{CH}_3)_3$), 2.25 (br t, 6H, $-\text{NCH}_2\text{CH}_2\text{N}^-$), 3.61 (br t, 6H, $-\text{NCH}_2\text{CH}_2\text{N}^-$), 7.27 (d, 12H, 3,5,3$'$,5$''$,3$'''$-Bu-C$_6H_4$), 7.75 (d, 12H, 2,6,2$'$,6$''$,6$'''$-Bu-C$_6H_4$), 7.76 (s, 3H, 4,4$'$,4$''$-TerH), 8.21 (s, 6H, 2,6,2$'$,6$''$,6$'''$-TerH). Anal. Calcd (%) for C$_8$H$_{10}$MoN$_5$ (1274.66): C, 79.15; H, 7.83; N, 5.49. Found: C, 78.94; H, 7.82; N, 5.67.

$[[\text{DTBTN}_3\text{N}]\text{Mo=NEt}]\text{[BAr}_4^+]-$A benzene solution (5 mL) of (DTBTN$_3$N)Mo≡N (0.15 g, 0.11 mmol) was treated with solid [Et$_2$O][BAr$_4^+$] (11.1 mg, 0.11 mmol, 1 equiv) and the mixture was stirred at RT for 1 h to give a dark red solution. Volatiles were removed in vacuo, and the solid residue was extracted into pentane. The extracts were filtered through Celite, and the filtrate was brought to dryness in vacuo. The remaining material was dried at 60 °C under high vacuum to yield $[[\text{DTBTN}_3\text{N}]\text{Mo=NEt}]\text{[BAr}_4^+]$ (0.21 g, 97.36 µmol, 85%) as a red, amorphous solid. Analytically pure material was obtained by recrystallization from diluted heptane solutions to yield 63.4 mg (29.26 µmol, 26%) of product: 1H NMR (400 MHz, C$_6$D$_6$, 297 K) δ -0.24 (t, 3H, $-\text{NCH}_2\text{CH}_2\text{N}^-$), 1.25 (s, 54H, $-\text{C}(\text{CH}_3)_3$), 2.43 (br t, 6H, $-\text{NCH}_2\text{CH}_2\text{N}^-$), 2.78 (q, 2H, $-\text{NCH}_2\text{CH}_2\text{N}^-$), 3.60 (br t, 6H, $-\text{NCH}_2\text{CH}_2\text{N}^-$), 7.29 (s, 6H, 2,6,2$'$,6$''$,6$'''$-TerH), 7.40 (d, 12H, 3,5,3$'$,5$''$,3$'''$-Bu-C$_6$H$_4$), 7.55 (d, 12H, 2,6,2$'$,6$''$,6$'''$-Bu-C$_6$H$_4$). 7.66 (s, 4H, BAr$_4^+$), 7.81 (s, 3H, 4,4$'$,4$''$-TerH), 8.40 (s, 8H, BAr$_4^+$). Anal. Calcd (%) for C$_{118}$H$_{110}$BF$_{24}$MoN$_5$ (2166.93): C, 65.40; H, 5.40; N, 3.23. Found: C, 65.29; H, 5.42; N, 3.33.

Acknowledgments

R.R.S. is grateful to the National Institutes of Health (GM 31978) for research support. T.K. is grateful to the German Academic Exchange Service (DAAD) for a fellowship within the Postdoc-Programme, to Dr. Michael Reithofer for helpful discussions, and to Keith M. Wampler for advice on practical aspects of electrochemistry.

References

J Am Chem Soc. Author manuscript; available in PMC 2010 September 9.
Figure 1.
Drawing of MoN₂.
Figure 2.
Possible intermediates in the reduction of dinitrogen to ammonia or a trialkylamine at a Mo center through the stepwise addition of R^+ (R = H or alkyl, respectively) and electrons.
Figure 3.
Cyclic voltammograms of MoN=NEt in PhF (0.1 M [Bu₄N][BARF₄] vs. FeCp₂/[FeCp₂]⁺).
Figure 4.
Plot of the chemical shift of selected resonances in MoNEt₂ vs. 1/T.
Figure 5.
Part of the temperature-dependent 1H NMR spectrum of MoNEt$_2$.
Figure 6.
Part of the temperature-dependent 1H NMR spectrum of MoNMe$_2$.
Table 1
Electrochemical properties of selected protonated and alkylated Mo species.a

<table>
<thead>
<tr>
<th>couple</th>
<th>$E_{1/2}$ [V]</th>
<th>couple</th>
<th>$E_{1/2}$ [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mo=NEt_2]$^{+}/0$</td>
<td>-0.18</td>
<td>[Mo=NH]$^{+}/0$</td>
<td>-0.18</td>
</tr>
<tr>
<td>[Mo=NNB_{3}]$^{+}/0$</td>
<td>-1.76</td>
<td>[Mo=NNH_3]$^{+}/0$</td>
<td>-1.56</td>
</tr>
<tr>
<td>[Mo=NEt_2]$^{+}/0$</td>
<td>-1.64</td>
<td>[Mo=NH]$^{+}/0$</td>
<td>-1.38</td>
</tr>
<tr>
<td>[Mo=NNH_3]$^{+}/0$</td>
<td>-0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Mo(EtNH_2)]$^{+}/0$</td>
<td>-1.83</td>
<td>[Mo(NH_3)]$^{+}/0$</td>
<td>-1.63</td>
</tr>
<tr>
<td>CrCp*2</td>
<td>-1.63</td>
<td>CoCp*2</td>
<td>-2.01</td>
</tr>
</tbody>
</table>

aPotentials measured by cyclic voltammetry in 0.1 M [Bu$_4$N][BAr$_4$F$_4$] in PhF at 3.0 mm glassy carbon disk under Ar, and referenced to Fc/Fc$^+$;

bIrreversible process ($i_{pc} = -1.87$ V);

cIrreversible process for [Mo=NEt_2][BAr$_4$F$_4$] ($i_{pc} = -1.82$ V); reversible process for Mo=NEt;

dOnset of multiple irreversible oxidation waves;

eQuasi-reversible process.