Z-Selective Olefin Metathesis Reactions Promoted by Tungsten Oxo Alkylidene Complexes

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Z-Selective Olefin Metathesis Reactions Promoted by Tungsten Oxo Alkyldiene Complexes

Dmitry V. Peryshkov‡, Richard R. Schrock*,‡, Michael K. Takase‡, Peter Müller‡, and Amir H. Hoveyda†
‡Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
†Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467

Abstract

Addition of LiOHMT (OHMT = O-2,6-dimesitylphenoxide) to W(O)(CH-t-Bu)(PMe₂Ph)₂Cl₂ led to WO(CH-t-Bu)Cl(OHMT)(PMe₂Ph) (4). Subsequent addition of Li(2,5-Me₂C₄H₂N) to 4 yielded yellow W(O)(CH-t-Bu)(OHMT)(Me₂Pyr)(PMe₂Ph) (5). Compound 5 is a highly effective catalyst for the Z-selective coupling of selected terminal olefins (at 0.2% loading) to give product in >75% yield with >99% Z configuration. Addition of two equivalents of B(C₆F₅)₃ to 5 led to catalyst activated at the oxo ligand by B(C₆F₅)₃. 5 B(C₆F₅)₃ is a highly active catalyst that produces thermodynamic products (~20% Z).

Early in the development of olefin metathesis catalysts that contain tungsten, it was shown that metathetically more active and reproducible systems were produced when tungsten oxo complexes were deliberately employed or were present as impurities in WCl₆.¹ The possibility that oxo alkyldene complexes, e.g., W(O)(CHR)X₂ (where X is a chloride, alkoxide, etc.), are the true catalysts in at least some of the “classical” olefin metathesis systems became more likely when 1 (L = PMe₃ and other phosphines) was prepared and isolated in good yield.² Compound 1 was the first high oxidation state tungsten alkyldiene complex that would both (i) metathesize terminal and internal olefins (in the presence of a trace of AlCl₃) and (ii) produce a new alkyldiene that could be observed as a consequence of olefin metathesis.

(1)

By the time 1 was discovered, tantalum alkyldiene complexes had been turned into functional olefin metathesis catalysts through use of alkoxides as ligands.³ Therefore, although some attempts were made to prepare a W(O)(CH-t-Bu)(OR)₂ species from 1, no

¹Corresponding Author: rrs@mit.edu

ASSOCIATED CONTENT

Supporting Information. Experimental details for all compounds, and crystal parameters, data acquisition parameters, and cif files for complexes 2, 3, 5, and 5 B(C₆F₅)₃. This material is available free of charge via the Internet at http://pubs.acs.org.
bisalkoxide species could be isolated. In view of the synthetic problems encountered upon attempted alkylation of oxo complexes, including removal of the oxo ligand entirely, and to protect alkylidenes against bimolecular decomposition, attention turned to the synthesis of imido alkylidene complexes of W and Mo, especially those containing a phenylimido ligand such as N(2,6-i-Pr$_2$C$_6$H$_3$)$_2$. Consequently, interest in oxo alkylidene complexes in the last 25 years has been sparse.

The most recent development in Mo and W imido alkylidene chemistry has been monoaryloxide monopyrrolide (MAP) complexes. One of the most interesting discoveries is the ability of some MAP catalysts to promote Z selective metathesis reactions as a consequence of the presence of a relatively “large” aryloxide and “small” imido group. The preferred metal for Z selective couplings of terminal olefins at this time appears to be tungsten and the most successful aryloxide ligand has been O-2,6-(2,4,6-triisopropylphenyl)$_2$C$_6$H$_3$ or OHIPT. (The more active molybdenum complexes appear to isomerize the Z product to E.) It has been proposed that the high steric demands of the OHIPT ligand force all metallacyclobutane substituents to one side of the metallacycle ring, and therefore allow only Z products to form. Since an oxo ligand is smaller than any NR ligand, the question arose as to whether MAP versions of tungsten oxo alkylidene complexes would be useful Z selective catalysts.

We chose to attempt to prepare W(O)(CH-t-Bu)(OHIPT)(Me$_2$Pyr) (where Me$_2$Pyr = 2,5-dimethylpyrrolide) from W(O)(CH-t-Bu)(PMe$_2$Ph)$_2$Cl$_2$ (1a), hoping that both PMe$_2$Ph ligands would dissociate from the metal in the crowded coordination sphere. The reaction between WO(CH-t-Bu)Cl$_2$(PMe$_2$Ph)$_2$ and LiOHIPT in benzene at 22 °C for 14h led to isolation of off-white WO(CH-t-Bu)Cl(OHIPT)(PMe$_2$Ph) (2) in 60% yield (equation 2).

\[
\begin{align*}
1a & \xrightarrow{\text{LiOHIPT}} \text{HIPTO} \xrightarrow{\text{Cl}} \text{W} \xrightarrow{\text{Me}_2\text{Pyr}} \xrightarrow{\text{LiCl} \cdot \text{L}} 2 \\
\text{LiMe}_2\text{Pyr} & \xrightarrow{\text{Cl}} \text{Me}_2\text{Pyr} \xrightarrow{\text{L}} \text{CI} \xrightarrow{\text{Me}_2\text{Pyr}} \text{OH} \xrightarrow{\text{O}} \text{W} \xrightarrow{\text{OH}} \text{HIPT} \xrightarrow{\text{Cl}} \text{OHIPT}
\end{align*}
\]

(2)

Two isomers of 2 are present in a 3:2 ratio according to 1H, 13C, and 31P NMR spectra. Both are syn alkylidenes on the basis of J_{CH} values for the alkylidene of 123 Hz (major isomer) and 117 Hz (minor isomer). The phosphine remains bound to tungsten on the NMR time scale ($J_{PW} = 420$ Hz and 379 Hz, respectively) at 22 °C. An X-ray crystal structure (see Supporting Information) revealed a distorted square-pyramidal geometry with the neopentylidene ligand in the apical position and the phosphine ligand trans to chloride. The alkylidene was found to be disordered over syn and anti orientations in a 91:9 ratio. The other isomer of 2 could be (for example) one in which the OHIPT and Cl ligands (eq 2) have switched positions.

Treatment of 2 with Li(Me$_2$Pyr) in benzene at 60 °C for 16h led to formation of yellow W(O)(CH-t-Bu)(OHIPT)(Me$_2$Pyr) (3) in 80% isolated yield. An X-ray structure of 3 showed it to have a pseudotetrahedral geometry, a syn alkylidene, and an η$_1$-Me$_2$Pyr ligand (Figure 1). We had considered the possibility that PMe$_2$Ph was lost from the coordination sphere because the pyrrolide ligand was bound in an η$_5$ fashion, thereby producing an 18 electron count at the metal. However, other steric factors alone appear to be sufficient to cause 14 electron 3 to be formed.
The analogous reaction between 1 and LiOHMT (OHMT = O-2,6-dimesitylphenoxide) in benzene at 22 °C for 3 h led to isolation of yellow WO(CH-t-Bu)Cl(OHMT)(PMe₂Ph) (4) in 70% yield (equation 3). As with 2, the ¹H NMR spectrum of the product contains two alkylidene doublet resonances that correspond to two isomers of 4 in a 87:13 ratio. The values of ¹JCH (122 and 116 Hz) suggest that both isomers are syn alkylidenes. Addition of Li(Me₂Pyr) to 4 in toluene at −30 °C followed by stirring the mixture at 22 °C for 10 h led to yellow W(O)(CH-t-Bu)(OHMT)(Me₂Pyr)(PMe₂Ph) (5) in 70% isolated yield. An X-ray structure of 5 (Figure 2) showed it to be a square pyramid with the syn neopentylidene in the apical position and the phosphine bound trans to the pyrrolide.

The PMe₂Ph ligand in 5 is partially dissociated at room temperature and rapidly exchanging on and off the metal. The alkylidene resonance is broad and its chemical shift is concentration dependent (8.57–9.14 ppm for 4 mM – 48 mM solutions in C₆D₆). Variable temperature ¹H and ³¹P NMR studies of a 20 mM solution of 5 in CDCl₂ showed that the phosphine is “bound” below −30 °C as indicated by a sharp ³¹P signal corresponding to the coordinated ligand (1.80 ppm, ¹JPW = 289 Hz). On the basis of the chemical shift for free and coordinated phosphine the value of the equilibrium constant for phosphine dissociation can be estimated as 0.015 M at room temperature. This value corresponds to 57% dissociation of phosphine in a 20 mM solution of 5 in C₆D₆.

Both 3 and 5 react with ethylene to give an unsubstituted metallacyclobutane complex (and t-butylethylene) that has a square pyramidal structure (presumably with the oxo ligand in the apical position) on the basis of chemical shifts of metallacycle protons in the range 0.7–4.5 ppm. The reaction of 3 with ethylene is relatively slow and what we propose is an intermediate square pyramidal β-t-butylmetallacyclobutane complex can be observed before free t-butylethylene is formed. In the case of compound 5, a methylidene complex is formed in addition to the unsubstituted square pyramidal metallacycle. In both systems the unsubstituted metallacycles slowly decompose over a period of 24 h to unidentified products. A square pyramidal metallacyclobutane made from imido alkylidenes has been proposed to be further from the transition state for olefin loss than is the alternative TBP metallacycle. Extensive calculations have been performed on several high oxidation state metathesis systems that include metallacyclobutane complexes.

Both 3 and 5 serve as initiators for the polymerization of 5,6-dicarbomethoxy norbornadiene (DCMNBD). The polymerization of 50 equiv of DCMNBD is relatively slow (hours) with 3 and propagation is faster than initiation. The resulting polymer is >99% cis, 90% syndiotactic. The polymerization of 50 equiv of DCMNBD with 5 is relatively fast (minutes) and all initiator is consumed. The resulting polymer is >99% cis, 98% syndiotactic. These results suggest that the steric crowding in 3 is significantly greater than in 5 after phosphine is lost, and is in fact too great to allow formation of highly regular cis,syndiotactic-polyDCMNBD from 3.

Homocoupling of neat terminal olefins with 3 takes place slowly (hours) at room temperature. In contrast, 5 was found to be highly active and highly Z-selective (Table 1). A catalyst loading as low as 0.2 mol% yielded up to 86% conversion in 6 h for several of the
six chosen substrates. No *trans* product could be observed in 1H NMR spectra of the *Z* products (see Supporting Information).

Only a small increase in conversion was found for >6 h reaction times, which suggests that the majority of the catalyst has decomposed at this stage. Decomposition of a catalyst prior to isomerization of the *Z* product to *E* can be a desirable feature of the coupling reaction. The reactions were run on a 200 mg scale in a closed vessel with a volume of ~20 mL. Homocoupling of 1-decene at 0.5 Torr did not show a significant increase in turnover compared to the reaction carried out under 1 atm of nitrogen. We ascribe the relatively low turnover in the case of allylTMS (S4) to steric issues, and in the case of methyl-10-undecenoate (S6, at 1% catalyst loading) to ester binding to W. These results should be compared with those obtained employing a W(N-3,5-Me$_2$C$_6$H$_3$) catalyst system.

A long-standing question in classical olefin metathesis catalyst systems based on tungsten has been the role of a Lewis acid. One might expect that a Lewis acid in 5 could bind to the oxo ligand and thereby create a more electrophilic metal center and more reactive catalysts. Indeed we find that addition of Lewis acids to 5 significantly speeds up metathesis reactions. For example, addition of two equivalents of B(C$_6$F$_5$)$_3$ to 5 resulted in a catalyst that converted 90% 1-octene to 7-tetradecene in one hour at 22 °C (0.2 mol% loading). However, the 7-tetradecene is only 20% *Z*. Since pure *Z*-7-tetradecene (in C$_6$D$_6$) is isomerized to a 78:22 mixture of *E* - and *Z*-tetradecene by 1 mol% 5 in the presence of 2 equiv of B(C$_6$F$_5$)$_3$ in 15 minutes, any *Z*-7-tetradecene that is formed initially in the homocoupling reaction should be isomerized rapidly to a 4:1 *E:*Z mixture.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We are grateful to the National Science Foundation (CHE-0841187 and CHE-1111133 to R.R.S.) and to the National Institutes of Health (Grant GM-59426 to R.R.S. and A.H.H.) for financial support. We thank the National Science Foundation for departmental X-ray diffraction instrumentation (CHE-0946721).
REFERENCES

Figure 1.
Thermal ellipsoid drawing (50% probability) of syn-W(O)(CH-t-Bu)(OHIPT)(Me₂Pyr) (3). Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (°): W1–C1 = 1.886(3), W1–O2 = 1.695(3), W1–O1= 1.868(2), W1–N1 = 2.001(2), W1–O1–C21 = 166.9(2), W1–C1–C2 = 136.7(3).
Figure 2.
Thermal ellipsoid drawing (50% probability) of syn-W(O)(CH-t-Bu)(OHMT)(Me$_2$Pyr) (PMe$_2$Ph) (5). Hydrogen atoms have been omitted for clarity. Solvent molecules are not shown. Selected bond distances (Å) and angles (°): W1–C1 = 1.900(3), W1–O2 = 1.717(2), W1–O1 = 1.964(2), W1–N1 = 2.074(2), W1–P1 = 2.580(1), W1–O1–C21 = 159.8(2), W1–C1–C2 = 141.0(2).
Figure 3.
Thermal ellipsoid drawing (50% probability) of W(O)(B(C₆F₅)₃)(CH-t-Bu)(OHMT) (Me₂Pyr) (5 B(C₆F₅)₃). Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (°): W1–C1 = 1.868(2), W1–O2 = 1.759(2), W1–O1 = 1.860(2), W1–N1 = 1.968(2), B1–O2 = 1.571(3), W1–O1–C21 = 150.9(1), W1–C1–C2 = 155.4(2).
Table 1

Conversions of Neat Terminal Olefins to Homocoupled >99% Z Metathesis Products Promoted by 5.a

<table>
<thead>
<tr>
<th>time</th>
<th>substrate/cat loading (mol%)</th>
<th>S1/ 0.2%</th>
<th>S2/ 0.2%</th>
<th>S3/ 0.2%</th>
<th>S4/ 0.2%</th>
<th>S5/ 0.2%</th>
<th>S6/ 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td></td>
<td>28%</td>
<td>44%</td>
<td>65%</td>
<td>-</td>
<td>28%</td>
<td>-</td>
</tr>
<tr>
<td>30 min</td>
<td></td>
<td>39%</td>
<td>67%</td>
<td>75%</td>
<td>-</td>
<td>39%</td>
<td>-</td>
</tr>
<tr>
<td>1 h</td>
<td></td>
<td>47%</td>
<td>79%</td>
<td>75%</td>
<td>2%</td>
<td>47%</td>
<td>10%</td>
</tr>
<tr>
<td>6 h</td>
<td></td>
<td>66%</td>
<td>86%</td>
<td>-</td>
<td>-</td>
<td>73%</td>
<td>-</td>
</tr>
<tr>
<td>24 h</td>
<td></td>
<td>72%</td>
<td>88%</td>
<td>-</td>
<td>11%</td>
<td>-</td>
<td>59%</td>
</tr>
</tbody>
</table>

a S1 = 1-octene, S2 = allylbenzene, S3 = allylboronic acid pinacolate ester, S4 = allylSiMe3, S5 = 1-decene, S6 = Methyl-10-undecenoate.

b The aliquot was taken after 7 h.