The Dimanganese(II) Site of Bacillus subtilis Class Ib Ribonucleotide Reductase

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1021/bi201925t</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society (ACS)</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Mar 09 15:47:44 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/82564</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
The dimanganese(II) site of *Bacillus subtilis* class Ib ribonucleotide reductase†,‡

Amie K. Boal§, Joseph A. Cotruvo Jr.|, JoAnne Stubbe||,⊥,* and Amy C. Rosenzweig§,*

§Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston IL 60208
||Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
⊥Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn\(\text{III}_2\)-Y•, in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn\(\text{II}_2\) form of NrdF is an important component in understanding O\(\text{2}^-\)-mediated formation of the active metallocofactor, a subject of much interest since a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of *Escherichia coli* Mn\(\text{II}_2\)-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of *Bacillus subtilis* Mn\(\text{II}_2\)-NrdF, representative of the enzymes from a second group, from *Bacillus* and *Staphylococcus* genera. The structures of the metal clusters in the β2 dimer are distinct from those observed in *E. coli* Mn\(\text{II}_2\)-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn\(\text{II}_2\) cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn\(\text{III}_2\)-Y• cofactor assembly in class Ib RNRs.

Ribonucleotide reductases (RNRs) catalyze the reduction of all four nucleotides to their corresponding deoxynucleotides, providing the precursors necessary for DNA synthesis and repair in all organisms (1). All class I RNRs initiate nucleotide reduction by the reversible oxidation of a cysteine residue to a thiyl radical in their α2 subunits by unique dinuclear metal cofactors that reside 35 Å away in their β2 subunits (2). Three subclasses of the class I enzymes are now recognized: Ia, Ib and Ic (3). In all three subclasses, the dinuclear clusters are ligated by two histidines and four carboxylate ligands within a four-helix bundle (4, 5). The class Ia RNRs are found in eukaryotes and a few prokaryotes, with the enzyme from *Escherichia coli* serving as a prototype. Their essential diferrous-tyrosyl radical (Fe\(\text{III}_2\)-Y•) cofactor is formed in vitro by self-assembly from a diferrous (Fe\(\text{II}_2\)) site in the β2 subunit (NrdB) upon reaction with O\(\text{2}^-\) and a reductant (6). The class Ic RNR has thus far only been

†This work was supported by NIH grants GM58518 (A. C. R.), GM81393 (J. S.), an NRSA fellowship to A.K.B., and a National Defense Science and Engineering Graduate fellowship to J.A.C.
‡The coordinates of *B. subtilis* Mn\(\text{II}_2\)-NrdF have been deposited in the Protein Data Bank with accession code 4DR0.
*Corresponding authors. A. C. R.: Tel: 847-467-5301, Fax: 847-467-6489, amyr@northwestern.edu. J. S.: Tel: 617-253-1814, Fax: 617-324-0505, stubbe@mit.edu.

SUPPORTING INFORMATION AVAILABLE

Additional figures of the Bs NrdF structure. This material is available free of charge via the Internet at http://pubs.acs.org.
characterized from the intracellular pathogen *Chlamydia trachomatis*. In vitro, its β2 subunit can be loaded with a MnIIIFeII cluster that reacts with O$_2$ (7) or H$_2$O$_2$ (8) to form an active MnIVFeIII cofactor.

The class Ib RNRs, found in many eubacteria, including a number of important human pathogens (9, 10), have the same ligand set as the class Ia enzymes, but are unique in that they can assemble both active FeIII$_2$-Y• and active dimanganese(III)-Y• (MnIII$_2$-Y•) cofactors in their β2 (NrdF) subunits. The FeIII$_2$-Y• cofactor can be self-assembled in vitro (11, 12), similar to the class Ia enzymes. The MnIII$_2$-Y• cofactor can be generated in vitro by oxidation of a dimanganese(II) site (MnII$_2$), using the flavodoxin-like protein NrdI (13) and O$_2$. The same manganese cofactor has recently been identified in vivo in *Corynebacterium ammoniagenes* (14, 15), *E. coli* (16, 17), and *Bacillus subtilis* (18). Our studies with the *E. coli* (Ec) and *B. subtilis* (Bs) NrdF proteins have shown that active cofactor can only be formed when MnII$_2$-NrdF is incubated with the reduced (hydroquinone, hq) form of NrdI (19, 20) and O$_2$; exogenous oxidants are non-functional (12, 13). Biochemical (13) and structural (21) studies have further suggested that O$_2$ is reduced to either HOO(H) or O$_2$•− by NrdI in complex with NrdF, and the oxidant is then channeled directly to Mn2 of the MnII$_2$-NrdF center (see Figure 1 for metal site designations).

How the class Ib RNRs can assemble active FeIII$_2$-Y• and MnIII$_2$-Y• cofactors from their reduced states using identical metal binding motifs and different oxidants is an important question raised by these observations. To understand the subtle differences that dictate specific metal loading and reactivity with different oxidants, high-resolution structures of protein in the reduced and oxidized forms are essential. A number of FeII$_2$-NrdF and NrdB structures have been obtained by soaking crystals of apo protein with FeII (21–24) (Figure 1A,F) or by chemical reduction or photoreduction of crystals containing the FeIII$_2$ cluster (25–27). Not all of these structures have fully occupied FeII$_2$ clusters, however. For instance, the Ec FeII$_2$-NrdF structure obtained by FeII soaking is only 50% occupied at each metal site (21) whereas the Ec FeII$_2$-NrdB structure obtained by the same method is fully occupied (23). At present, only the structure of Ec MnII$_2$-NrdF (21) has been obtained by cocrystallization with metal, revealing fully occupied MnII$_2$ sites. Each MnII ion is six-coordinate, including one solvent ligand (Figure 1B). Unusual features of this structure and its complex with oxidized NrdI (NrdI$_{ox}$) and NrdI$_{hq}$ are that Glu 158 (Ec numbering) bridges both metals in μ-1,3 fashion and that the water molecule associated with Mn2 occupies a unique terminal site. In all other ferritin superfamily proteins (28), the corresponding Glu coordinates to metal site 2 alone, occupying the site of the unique Mn2 water ligand in the Ec structure (Figure 1). Interestingly, the Mn2 water ligand is hydrogen bonded to other ordered waters in a hydrophilic channel proposed to facilitate oxidant delivery from NrdI, suggesting that dissociation of this water molecule, which may involve conformational change(s) in carboxylate ligands, must precede oxidant binding (21). The importance of carboxylate shifts (29) during cofactor assembly is underscored by comparison of the Ec structures with a high-resolution structure of the oxidized, MnIII$_2$ form of *C. ammoniagenes* (Ca) NrdF (Figure 1C), with the cofactor assembled in vivo (14). The NrdFs from *E. coli* and *C. ammoniagenes* are highly sequence identical (66%) with all residues within 7 Å of the metal site completely conserved. In the Ca MnIII$_2$-NrdF structure, three of the four carboxylate ligands adopt distinct conformations relative to their counterparts in Ec MnII$_2$-NrdF (Figure 1B,C).

As part of a comprehensive approach to understanding in molecular detail the mechanism of MnIII$_2$-Y• cofactor assembly, the crystal structure of the MnII$_2$ form of *Bs* NrdF has been determined to 1.9 Å resolution. *Bs* NrdF was chosen for study because it has the highest MnIII$_2$-Y• content (0.6 Y•/β2) generated to date (18) and belongs to the Bacillales group of class Ib enzymes, for which no structural data were available. The MnII$_2$ sites in each

Biochemistry. Author manuscript; available in PMC 2013 May 08.
monomer of the NrdF dimer display slightly different coordination environments from one
another (Figure 1D,E), each similar to but distinct from those in previously determined
structures of the Mn\(^{II}\) and Fe\(^{II}\) forms of Ec class Ia NrdB and class Ib NrdF (21, 23–26).
This structure of Bs Mn\(^{II}\)-NrdF highlights the important role of second coordination sphere
water molecules in controlling the conformation of carboxylate metal ligands. In addition, it
suggests how coordination chemistry differences between manganese and iron impact metal site
structure. Finally, viewed in the context of the differences in sequence and biochemistry
between the Ec and Bs groups of class Ib RNRs, the Bs NrdF structure and a model of the
putative Bs NrdI-NrdF complex provide insight into potential similarities and differences in
the nature of the NrdI interface and the mechanism of Mn\(^{II}\) cofactor activation among these
NrdFs.

MATERIALS AND METHODS

Purification of B. subtilis Apo NrdF

The NrdF construct (18) contains an N-terminal His\(_{6}\) tag and linker, MH\(_{6}\)SSGLVPRGSH,
preceding the N-terminal Met of the wild type protein. The tag was not removed prior to
crystallization. Apo NrdF was purified as described (18), but an additional anion exchange
column was necessary to obtain crystals. Apo NrdF (500 \(\mu\)L, 450 \(\mu\)M dimer) purified by Ni-
NTA column chromatography was loaded onto a Pharmacia Mono Q column (HR 16/10, 20
mL column volume, 1 mL/min flow rate) preequilibrated in 50 mM Tris, pH 7.6, 5%
glycerol, 200 mM NaCl. The column was washed with 15 mL of the same buffer at 1 mL/
min, and the protein was eluted with a 120 mL linear gradient from 200 to 800 mM NaCl in
the same buffer (1 mL/min), collecting 2 min fractions. The fractions containing the major
protein peak eluted at 350–400 mM NaCl and were pooled, concentrated, and exchanged
into 50 mM HEPES, pH 7.6, 5% glycerol, by repeated concentration and dilution using an
Amicon Ultra YM30 centrifugal concentrator.

B. subtilis Mn\(^{II}\)-NrdF Structure

Apo NrdF (36 mg/mL in 50 mM HEPES pH 7.6, 5% glycerol) was incubated with four
equivalents (equiv) of MnCl\(_{2}\) per β2 for 20 min on ice prior to crystal drop setup. Additional
data sets were collected on crystals grown with 15 equiv MnCl\(_{2}\). Single rectangular prism-
shaped crystals were obtained using the hanging drop vapor diffusion method at room
temperature with 25% PEG 4000 (w/v), 0.375 M lithium sulfate, 0.1 M HEPES, pH 6.5.
Crystals were briefly soaked in cryoprotectant solution (35% PEG 4000 (w/v), 0.1 M lithium
sulfate, 0.1 M HEPES, pH 6.5), mounted in rayon loops, and flash frozen in liquid nitrogen.

All crystallographic data sets were collected at the Life Sciences Collaborative Access Team
(LS-CAT) and the National Institute of General Medical Sciences and National Cancer
Institute Collaborative Access Team (GM/CA-CAT) beamlines at the Advanced Photon
Source. Data sets were processed using the HKL2000 package (30). The structure was
solved by molecular replacement using PHASER (31) with the coordinates of Ec Mn\(^{II}\)-
NrdF (PDB accession code 3N37) as the initial model. Model building and refinement were
performed with Coot (32) and Refmac5 (33), respectively. The data collection and
refinement statistics are shown in Table 1. The final model consists of residues 1–290 out of
329 in chain A (residues 4–9 are partially disordered), residues 3–293 in chain B, four Mn\(^{II}\)
ions, two sulfate molecules, and 294 water molecules. Electron density was not observed for
the N-terminal tag and linker or the final 33–36 residues at the C-terminus of the protein,
similar to all other β2 structures. Ramachandran plots calculated with PROCHECK (34) and
Molprobity (35) indicate that 99.9% of residues are in the allowed and additionally allowed
regions. All figures were prepared with PyMOL (36). Anomalous difference Fourier maps
calculated using data collected at the Mn absorption edge on a second crystal [Bs NrdF (Mn
ano), Table 1] reveal strong density at both NrdF active sites. Differences in Mn peak intensity are observed between the active sites in β2 such that the MnII sites in chain A are modeled at 85% occupancy and those associated with chain B are modeled at 100% occupancy. These values are consistent with the relative anomalous peak heights and individual occupancy refinement of the metal ions in PHENIX (37). Minimal difference density in the $F_o - F_c$ map is observed near the MnII sites modeled using these occupancy values. Incomplete metal occupancy in chain A persists in crystals grown at higher pH (pH 7.0) or soaked in 10 mM MnCl2 (Table S1). Only cocrystallization of the protein in the presence of excess MnCl2 (15 equiv) yielded full occupancy of all metal sites. Data collection statistics for the 15 equiv MnCl2 NrdF crystals are reported in Table 1 [15 equiv NrdF (Mn ano)]. The structure was solved by molecular replacement using the preliminary coordinates for Bs MnII2-NrdF as the search model. Partial refinement of the structure was carried out as described above to determine metal occupancy, ligand conformations, and the presence of ordered solvent near the metal sites in each monomer.

Modelling of the B. subtilis NrdI/NrdF Complex and Solvent Channel

Solvent-accessible channels and cavities in Bs NrdF were calculated with HOLLOW using a 1.4 Å probe radius. Bs NrdI/NrdF model complexes were generated with the secondary structure matching superposition function in Coot (32) with the Ec NrdIox/NrdF complex (PDB accession code 3N39) as the template and the X-ray structures of Bs NrdIox (PDB accession code 1RLJ) and Bs NrdF (this work) as query molecules. The Ec and Bs NrdF sequences are 44% identical and the corresponding NrdI sequences are 31% identical. The B. cereus NrdI/NrdF model was generated by the same method using a homology model of B. cereus NrdF (built using Bs NrdF, 60% identity, as the template) and the X-ray structure of the B. cereus semiquinone (sq) form of NrdI (NrdI sq) (PDB accession code 2X2P) as queries. The initial models yield few steric clashes at the interface. The TRIAD software package (Protabit, LLC) was used for the homology modeling and additional refinement of the complex models.

RESULTS

Overall Structure of B. subtilis MnII2-NrdF

The 1.9 Å-resolution X-ray structure of Bs MnII2-NrdF (Table 1) was obtained by co-crystallizing N-terminally His6-tagged apo NrdF (tag: MH6SSGLVPRGSH) with four molar equiv MnCl2 (per β2). This method of MnII loading has been used to generate MnII2-NrdF for in vitro cofactor activation studies in solution (13, 18) and to obtain the fully occupied structure of Ec MnII2-NrdF (21). The asymmetric unit for Bs MnII2-NrdF contains two NrdF monomers arranged as a dimer in which the overall fold and quaternary structure is very similar to other class Ib β2 proteins (Figure S1) (14, 21, 24–26). Secondary structure matching superposition (38) with Ec MnII2-NrdF, 44% identical in sequence, yields a root mean square deviation of 1.42 Å for 281 Ca atoms. Anomalous scattering data collected at the Mn absorption edge (6.65 keV, Table 1) reveal the presence of Mn in the Bs NrdF metal sites (Figure S2, Table S1).

Structures of the Metal Sites

The structures of the MnII2 clusters in chains A and B are shown in Figures 2A and B, respectively, and schematically in Figures 3A and B. Additionally, the electron density map for the MnII2 site in each chain is shown in Figures 2C and D. The Mn2 sites of the two chains are similar, but significant differences exist at Mn1. At the chain B metal site (Figures 2B, 3B), both Mn ions could be modeled at full occupancy with very little difference $F_o - F_c$ density near the first coordination sphere (Figures 2D and S3). The Mn ions are separated by 3.9 Å and bridged in a μ-1,3 fashion by residues Glu 97 and Glu 198. Mn2
is coordinatively saturated and additionally ligated by His 201 and Glu 164, the latter as a bidentate ligand. A weakly bound water molecule (Figures 2B, 3B) completes the first coordination sphere, in a similar position as the water in Ec MnII2-NrdB (39) (Figure 1G). Mn1 is five-coordinate, bound to His 101 and Asp 66 in bidentate mode (Figure 2B, 3B). An ordered solvent molecule is also present near Mn1, within hydrogen bonding distance of Tyr 105, the site of stable Y• formation in the active MnII2-Y• cofactor. This water molecule mediates the only hydrogen bonding interaction between Tyr 105 and the MnII2 active site, via Glu 198, bringing the tyrosine Oη atom within 5.7 Å of Mn1, similar to the corresponding distance in Ec MnII2-NrdF (5.8 Å) (21). However, in the Ec case, Glu 192 (equivalent to Bs NrdF Glu 198) coordinates in μ-η1, η2 fashion, creating space for the water molecule to be bound to Mn1, whereas this is sterically prohibited in Bs NrdF because of the μ-1,3 coordination of Glu 198.

The MnII2 cluster in chain A (Figures 2A, 3A) is best modeled with 85% Mn occupancy in both sites, consistent with lower peak heights observed in the anomalous difference map (Table S1, Figure S2). Full occupancy of chain A can be achieved by co-crystallization with excess MnII (15 molar equiv/β2) (Table S1, Figure S3C), but the coordination remains distinct from chain B. These observations are consistent with a lower MnII affinity and/or accessibility of the chain A metal site. Negative difference density near many of the ligands indicates some disorder in the first coordination sphere (Figures 2A, S3A), and the presence of difference density even when crystals were grown with excess MnII (Figure S3C) indicates that the disorder at the metal site is not a result of incomplete MnII occupancy. Similar disorder is not observed in the fully occupied Bs NrdF chain B (Figure S3B) and E. coli MnII2-NrdF (21) metal sites. As modeled, the ligand positions are similar to chain B. The exception is Asp 66, which in chain A adopts a monodentate coordination mode that allows it to interact directly with Tyr 105, as in Ec MnII2-NrdF (Figure 1B) and reduced class Ia β2 structures (23). Two areas of significant positive difference density (Figures 2C, S3A) suggest that waters may be present in positions similar to those in chain B (Figures 2B, S3B). These were not modeled due to the absence of clear 2Fo-Fc electron density. In the dataset obtained from Bs NrdF crystals grown with excess MnII, more 2Fo-Fc electron density is apparent, allowing a water molecule near Mn2 to be modeled (Figure S3C).

The overall structure of the metal site in chain A (and chain B, except for the ordered waters and the conformation of Asp 66) strongly resembles FeII2-NrdFs from E. coli (21) (Figure 1A), S. typhimurium (25), and M. tuberculosis (26). However, the distance between Tyr 105 Oη and Mn1 is 5.7 Å, ~1 Å shorter than in FeII2-NrdF structures. This difference appears to be associated with a slight shift towards bidentate coordination of Asp 66 in Bs chain A relative to Ec FeII2-NrdF (the unbound O6 is 3.1 Å from Mn1 as compared to 3.7 Å from Fe1 in Ec FeII2-NrdF), preventing a water molecule from occupying the position between the Asp and Tyr as in Ec FeII2-NrdF. A small difference in coordination of Bs NrdF Glu 97 (syn-syn) as compared to Ec FeII2-NrdF Glu 98 (syn-anti) is also observed, perhaps related to the electron density suggesting water weakly bound to Mn2 (Figures 2C, S3A, S3C) that is absent in Ec FeII2-NrdF (Figure 1A).

Solvent Access to the Metal Sites

All class Ib β2 structures exhibit a solvent-accessible channel near metal site 2 that opens at the surface of the protein (14, 21, 24–26) or, in the NrdF-NrdF complex, continues to the FMN cofactor of NrdF. This channel is proposed to be involved in oxidant access to the metal site. In Ec MnII2-NrdD (21), the μ-1,3 bridging mode of Glu 158 (Figure 1B, equivalent to Bs Glu 164) and coordination of a solvent molecule at Mn2 link site 2 directly to this channel (Figure 4A). Ala 75 and Ile 94 provide sufficient space for occupancy of the channel by waters in the crystal structure, forming a hydrogen bonded network of ordered solvent near Mn2 (w1-w5, Figure 4C). In Bs NrdF, Glu 164 is a bidentate ligand to Mn2,
and Ala 75 and Ile 94 are replaced by methionines (Met 74 and Met 93), conserved in the Bacillales subclass of class Ib RNRs (Figures 4B, S4). The increased hydrophobicity and steric bulk of Met 74 effectively precludes ordered solvation of the oxidant channel in the vicinity of Mn2; only w5, within hydrogen bonding distance of Ser 160, and the water trans to His 201 are observed (Figures 4B, 4D).

The Mn1 coordination environment in Bs NrdF is also influenced by solvent (or lack thereof), and the degree of Mn1 solvent accessibility differs between chains A and B (Figure 5). This is related to a distinctive feature of the Bs MnII2-NrdF structure involving the N-terminus of one \(\beta \) monomer in the asymmetric unit (Figure S1A). In all class Ia, Ib, and Ic \(\beta \)\(_2 \) structures to date, the N-terminal tail of each chain interacts with the other chain of the dimer near the metal site 1. In Bs NrdF chain B, residues 3–9 interact with chain A as in most other class I \(\beta \)\(_2 \) structures (Figure S1A, Figure S5A) and the density is continuous starting from Lys 3 (Figure S6A). This interaction is not observed for the Bs chain A N terminus. The first well ordered residue in chain A is Trp 10, and little electron density (<1.5\(\sigma \)) is visible for residues 4–9 (Figure S6B). Although these residues have been modeled, their position is tentative due to the poor electron density. Stronger electron density that can be modeled as residues 1–3 forms a lattice contact with a symmetry-related molecule (Figure S5B–D).

In the Bs NrdF chain A metal site, a network anchored by residues 4–10 of the N-terminus of the adjacent chain B reduces solvent accessibility near Mn1 (Figure 5A), as in the other class I \(\beta \)\(_2 \) structures (14, 21–26). In the chain B metal site, this network is disrupted by the disorder in the chain A N terminus (Figure 5B). Surprisingly, the disordered N-terminus in chain A correlates with higher metal occupancy and well-ordered electron density at the MnII2 site in chain B. Additionally, a new solvent route to Mn1 appears and two ordered water molecules are observed in a short channel linked to bulk solvent and terminating at one of the O\(\delta \) atoms of Asp 66 (Figure 5C). These waters may help enforce the observed bidentate coordination mode of Asp 66 (Figure 2B), allowing the second O\(\delta \) atom to move away from Tyr 105 and within hydrogen bonding distance of the solvent molecule associated with Mn2. Although the disorder in the chain A C-terminus may be due to the crystallization conditions, the differences in coordination environment at each MnII2 site illustrate how the individual positions of carboxylate and solvent ligands are tightly correlated in these types of active sites and further reveal that access to an extended solvent network can influence metal occupancy and the structure of the first coordination sphere.

The Interface with NrdI

It is important to understand not only the structure of the NrdF metal site but also the interaction of Bs NrdI with NrdF, given that NrdI is required for MnIII2-Y• cofactor assembly (13, 18). To gain insight into interaction surfaces of NrdI-NrdF pairs in general, 114 class Ib NrdF sequences were aligned and the extent of conservation was mapped onto the Bs NrdF structure (Figure 6A). These sequences represent three phylogenetically distinct groups (3, 40, 41): actinobacterial and proteobacterial NrdFs (represented by C. ammoniagenes and E. coli, respectively), Bacillales NrdFs, primarily of the Bacillus and Staphylococcus genera (e.g. B. subtilis), and Lactobacillales NrdFs (no well characterized examples to date). This analysis, shown in Figure 6A, reveals two clear regions of high conservation on the surface of NrdF. The first region (Figure 6A, top left) is where the \(\beta 2 \) subunit is presumed to interact with \(\alpha 2 \) (42, 43). The second is the putative NrdI interface (Figure 6A, bottom right). A model of Bs NrdI\textsubscript{ox} (PDB accession code 1RLJ) complexed with Bs MnII2-NrdF generated using the Ec NrdI\textsubscript{ox}/NrdF structure (21) (Figure 6B) as a template is shown in Figure 6C. This complex was refined to eliminate the few steric clashes present in the initial model. Figure 6A shows significant sequence conservation at the putative interface, consistent with NrdI binding in the same general location on all NrdFs. It
should be noted that analysis of available structures for NrdIs and NrdFs alone (14, 21, 24–26, 41, 44) and in complex (21) suggests that NrdI/NrdF assembles in a preformed manner with little alteration of the protein fold in either component apart from rearrangement of side chains and peripheral loops.

Despite the sequence conservation, a closer look at the modeled interface predicts several prominent differences in the regions of NrdI and NrdF proximal to the NrdI FMN cofactor (Figure 6B,C). In particular, the composition and length of the loop (“50s loop” in Ec NrdI, “40s loop” in Bs NrdI) in the vicinity of the reactive C4a position of the FMN cofactor in NrdI are dramatically different. In Bs NrdI, the loop is three residues long with the sequence NFG, which is mostly conserved as (N/G)FG within this group. In Ec NrdI, the loop is seven residues long with a stretch of four consecutive glycine residues, a feature also largely conserved in its group. This loop makes important contacts with surface residues in Ec NrdF, particularly with a motif composed of Arg 190, Asn 29, and Arg 25 (Figure 6B). The 50s loop and some of the NrdF residues exhibit conformational changes dependent upon the redox state of the FMN cofactor of NrdI (Figure S7A,C) (21, 41, 44). The analogous surface in Bs NrdF differs significantly, substituting glutamine residues (conserved in Bacillales) for Asn 29 and Arg 25 (conserved in the Ec group) (Figure 6C). The FMN environment provided by the NrdI/NrdF complex is critical for the proposed roles of NrdI in NrdF cofactor assembly, production of the HOO(H) or O$_2$•− oxidant by reaction of a reduced form of FMN with O$_2$ and channeling the oxidant through the NrdI/NrdF complex to the NrdF MnIIIII site (13, 21). The observed structural variations at the NrdI interface may therefore impact the cluster assembly mechanisms of the two class Ib RNR groups.

DISCUSSION

Comparison to Other Reduced Class I RNR Structures

The crystallographically characterized class I RNR β2 subunits substituted with Mn and Fe exhibit a diversity of dinuclear metal site configurations in their reduced forms (Figure 1). In the FeII-soaked structures of bacterial diferrous class Ib and Ia RNRs, the Fe1 and Fe2 sites are 4- and 5-coordinate, respectively, with no solvent ligands (Figures 1A,F) (21, 23, 24). This coordination environment is also observed in solution by circular dichroism (CD) and magnetic circular dichroism (MCD) studies of *E. coli* NrdB (45) and *B. cereus* NrdF (46, 47). The structure of *E. coli* MnIIII-NrdB, which cannot be activated in vitro or in vivo, (Figure 1G) largely resembles the diferrous active sites (21, 23, 24), but with a weakly bound water at Mn2 (2.4–2.5 Å Mn-O distance) trans to the His ligand. This latter structure is similar to the Bs MnIIII-NrdF structure presented here (Figure 1E, 2). Interestingly, in all of the available structures, MnII ions at both sites 1 and 2 support a higher coordination number than FeII. Only Ca MnIIII-NrdF (Figure 1C) (24) is an outlier, which may be the result of low metal occupancy and the presence of iron in the protein used for crystallization; for these reasons, this structure is not considered further. The coordination geometry observed in Ec MnIIII-NrdF (21) is quite distinct from these other structures (Figure 1B). Although Mn2 is hexacoordinate, the location of its coordinated solvent molecule is not trans to the His ligand but instead to the oxygen atom of Glu 192 that bridges Mn1 and Mn2, and Glu 158 bridges the metal ions in a μ-1,3 mode rather than coordinating Mn2 alone (Figure 1). Thus, the Bs and Ec MnIIII-NrdF structures indicate that distinct reduced active site geometries can be the starting point for metallocofactor activation.

Solvent Access to Mn2: Importance of the Secondary Coordination Sphere

Comparison of the Bs and Ec MnIIII-NrdF structures reveals that an important factor influencing the conformation of Glu164/Glu158 is the degree of solvent access to Mn2 (Figure 4). In Ec MnIIII-NrdF, the oxidant channel is filled with contiguous ordered water
molecules to Mn2, with two additional water molecules near Ala 75 and Ser 154 (21). The space for these solvent molecules past a constriction point in the channel at Ser 159 (Ser 165 in B. subtilis) is allowed by Ala 75 and Ile 94 and the μ-1,3 coordination of Glu 158. The Ala to Met substitution in Bs MnII2-NrdF obviates water occupancy at the position of w4, which may be sufficient to disfavor formation of the w1-w3 network, and Glu 164 occupies the channel instead to coordinate Mn2 in the usual bidentate mode. With only two structures of MnII2-NrdFs, it is difficult to assess which type of channel will be more common, although most non-Bacillales NrdF sequences have smaller residues (such as Ala 75 in Ec NrdF) at the position equivalent to Bs Met 74 (Figure S4). Like Bs NrdF, Ec FeII2-NrdF (despite the presence of Ala at position 75 instead of a Met) lacks ordered solvent between Ser 159 and metal site 2 and Glu 158 coordinates that site in bidentate fashion. However, in that case, the propensity of FeII for a lower coordination number than MnII in the class I RNR scaffold may be sufficient to exclude ordered water from the metal 2 site so that Glu 158 remains bidentate to Fe2 and the solvent channel cannot accommodate ordered water molecules below Ser 159. These observations highlight the interplay between protein side chains and solvent in the second coordination sphere in influencing the overall coordination geometry.

Implications for Oxidant Access to the Metal Site

As revealed by the crystal structure of the Ec NrdI/MnII2-NrdF complex (21), the proposed oxidant route in this class Ib system is traced by an extended network of water molecules that connects the flavin to Mn2 and it is lined with hydrophilic amino acid residues. The sequence conservation map (Figure 6A) and our model of Bs NrdI/NrdF (Figure 6C) indicate a high degree of sequence conservation of residues at the NrdI-NrdF interface, suggesting that Bs NrdI binds to Bs NrdF at a similar interface. Furthermore, nine of the ten amino acid residues lining the hydrophilic channel in the Ec NrdI/NrdF complex are completely conserved (the exception is the replacement of Ec NrdI Asn 85 with Bs NrdI Val 75). The hydrophilic environment of the channel is augmented by backbone carbonyls of various residues, such as the extruded carbonyl of Bs Glu 164 and Ec Glu 158 in the π-helical segment of helix αE (Figures S8A,B). In all class Ib β2s, this π-helical distortion is stabilized by hydrogen bonds between carbonyl oxygens and solvent molecules (Figures S8A,B). By contrast, in class Ia Ec NrdB, the distortion is stabilized by a mechanism that does not involve solvent, a cation-π interaction involving a tyrosine (Tyr 209) and a conserved arginine (Arg 315), and the carbonyl oxygen of the Glu 164 equivalent (Glu 204) is not involved in a hydrogen bond (Figure S8C). Furthermore, the presumed O2 access channel in class Ia RNRs is formed by mostly hydrophobic residues that are also conserved. Thus, as we have suggested previously (21), the degree of hydrophilicity of the respective putative oxidant channels in the class Ia and Ib RNRs appears to be well correlated with the nature of the oxidants: nonpolar and hydrophobic O2 for Ia versus hydrophilic O2•− or HOO(H) for Ib.

The Bs NrdF structure presented here and previous FeII2-NrdF and FeII2-NrdB structures suggest that the different oxidants used by class Ia and Ib RNRs to assemble their respective FeIII2-Y• and MnIII2-Y• cofactors may bind to metal site 2 in similar positions. For the initial step of assembly of FeIII2-Y• from FeII2-NrdB and O2, the only existing structural insight is the crystal structure of the Phe208Ala/Tyr122Phe mutant of Ec NrdB soaked with azide (48). The mutated residues are equivalent to Bs NrdF Phe 168, which forms a hydrophobic pocket directly over the metal site (Figure S8A), and Tyr 105. In this structure, the terminal nitrogen atom of the azide is 2.3 Å from Fe2, trans to the site 2 His ligand, at the identical position to the solvent molecule very weakly bound to Mn2 in the Ec MnII2-NrdB structure (Figure 1G). Andersson et al. proposed that the azide-bound structure may represent an analog to the structure of the diferrous site immediately upon O2 binding (49).
By analogy, in MnIII2-Y• assembly in \textit{Bs} NrdF, we propose that the oxidant initially binds at Mn2, \textit{trans} to His 201. Since all of the coordination positions on Mn2 are occupied, dissociation of the water molecule bound to Mn2 may gate access of the oxidant to the metal site.

The Interface with Nrdl

Biochemical and bioinformatics studies have also revealed significant differences between the \textit{Ec} and \textit{Bacillus} (\textit{B. anthracis}, \textit{B. cereus}, \textit{and Bs}) systems in the properties of Nrdl in relation to NrdF. These differences include the binding affinity of Nrdl for NrdF (13, 18, 50), the length of the 40s/50s loop in Nrdl (21, 41, 44), the electrostatic environment of the flavin in the Nrdl/NrdF complex (13, 21, 41), and the protonation state of the Nrdl sq form stabilized in the presence of NrdF (13). Based on these differences, some of the details of MnIII2-Y• cofactor assembly are expected to be distinct in each group. We have previously noted that Ec NrdF Arg 25, which is positioned only 5–6 Å from the flavin N5 position (Figure 6B), may be an important factor in \textit{Ec} Nrdl’s stabilization of the anionic form of its sq state in the presence of NrdF, whereas the flavin sq is neutral in the absence of NrdF (13). Similar experiments involving \textit{Bs} Nrdl and NrdF show no evidence for anionic sq formation (unpublished data). A lower theoretical pI for the closely related \textit{B. anthracis} and \textit{B. cereus} Nrdls compared to \textit{Ec} Nrdl has been proposed to account for these differences (41), but the protein surface closest to the FMN cofactor is similarly positive in all Nrdls. Additionally, the electrostatic environment of the Nrdl FMN cofactor could be significantly influenced by interaction with Nrdl. Comparison of the surface potentials for \textit{Ec} and \textit{Bs} NrdFs suggests that, while the surface of the protein where the flavin cofactor in Nrdl would interact is similarly positive in both proteins, the proximity of Arg 25 in \textit{Ec} NrdF may be specifically important in stabilizing the anionic sq in \textit{Ec} Nrdl/NrdF. The position of this residue may in turn be regulated by hydrogen bonding interactions with the mobile 50s loop, the conformation of which is dependent on the redox state of the flavin. The equivalent residue in \textit{Bs} NrdF, Gln 24, is situated in a position that should allow for hydrogen bonding interactions with the 40s loop of Nrdl as well as with the indole NH of Trp 76, which stacks above the flavin ring in NrdI (Figure 6C) and is conserved in the Bacillales group. Interestingly, the equivalent Trp residue adopts a different rotamer in the \textit{B. anthracis} and \textit{B. cereus} Nrdls (41, 44), which would preclude such an interaction. The position of the indole ring appears to correlate with the location of hydrophobic and polar residues in the vicinity of the flavin: in \textit{B. subtilis}, the pyrrole portion of the indole would be positioned near NrdF Gln 24 and Nrdl Asn 79, and the benzene portion near Nrdl Val 75; the corresponding residues in \textit{B. anthracis} and \textit{B. cereus} are NrdF Gln 20 and Nrdl Met 77, and Nrdl Asn 73 (Figure S7). These observations underscore the importance of structural characterization of Nrdl/NrdF complexes from several members of the Bacillus group.

Functional Significance of Metal Site Geometry in Class I RNRs

The differences in Glu 158/164 coordination, solvent occupation of the oxidant channel, and the influence of NrdF on the environment of the flavin in NrdI may indicate that \textit{Ec} and \textit{Bs} NrdF use different oxidant binding sites and possibly different oxidants. We previously proposed that the unique coordination geometry observed in the \textit{Ec} MnII2-NrdF structure reflects a distinct initial oxidant binding site for the class Ib NrdFs (21). If \textit{Ec} and \textit{Bs} NrdF use the same oxidant, the significant structural differences exhibited by the two systems might reflect a situation in which some details of the reaction of O\textsubscript{2} with the flavin and conformational dynamics required to transport the oxidant to the metal site are different, rather than an entirely different mechanism of metal cluster oxidation. For example, a substantial conformational change would be needed to convert the metal site configuration observed in the \textit{Ec} MnII2-NrdF crystal structure, in particular the conformation of Glu 158, into one more similar to the \textit{Bs} MnII2-NrdF and other class I RNR structures. This model
would suggest that the key distinction between the class Ia and Ib systems is not the structure of the metal site but rather the binding site for the specific accessory protein that provides an oxidant other than O$_2$ and the presence of a hydrophilic channel for that oxidant’s access to the metal site. Further biochemical, crystallographic, and computational analyses of both systems are underway to test these hypotheses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Use of the Advanced Photon Source, an Office of Science User Facility operated for the U. S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U. S. DOE under Contract No. DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817). GM/CA CAT has been funded in whole or in part with Federal funds from the National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Science (Y1-GM-1104). The authors thank Benjamin Allen for technical assistance with generation and refinement of the Bs and B. cereus theoretical NrdI/NrdF models.

Abbreviations

- β_2: ribonucleotide reductase small subunit containing the metallocofactor
- Bs: *Bacillus subtilis*
- Ca: *Corynebacterium ammoniagenes*
- CD: circular dichroism
- Ec: *Escherichia coli*
- equiv: equivalents
- hq: FMN hydroquinone form
- MCD: magnetic circular dichroism
- ox: FMN oxidized form
- sq: FMN semiquinone form
- RNR: ribonucleotide reductase
- Y^*: tyrosyl radical

References

47. Other diferrous structures exist that were generated by chemical or photochemical reduction of a crystallized oxidized state (25–27). These structures are not consistent with the CD and MCD data and the water molecules present at their metal sites are likely derived from the μ-oxo bridged diferric cluster.

49. Extrapolation of this structural information to O₂ binding is complicated by two factors. First, azide binding to the wt protein in the crystal was not observed; presumably the Phe 208 to Ala mutation was required to prevent the Phe from sterically interfering with binding of the larger N₃⁻ (vs. O₂) to the cluster. Second, the protein was crystallized in the FeIII₂ form of the cluster, chemically reduced in the crystal, and soaked with azide; as mentioned previously, the crystal structures of chemically or photoreduced FeIII₂-NrdB and FeIII₂-NrdF are different from those of apoprotein soaked with FeII.

Figure 1.
Stick representations of the active site in class Ib β2 structures for (A) Ec FeII2-NrdF (PDB accession code 3N38), (B) Ec MnII2-NrdF (PDB accession code 3N37), (C) Ca MnIII2-NrdF (PDB accession code 3MJO), (D) Bs MnII2-NrdF chain A, and (E) chain B. Class Ia structures for Ec FeII2-NrdB (F) (PDB accession code 1PIY) and MnII2-NrdB (G) (PDB accession code 1MRR) are shown in comparison.
Figure 2.
Stereoview of the metal sites (chain A (A) and chain B (B)) in \textit{Bs Mn}^{II}_{2}-NrdF. The Mn ions are shown as purple spheres and the coordinating amino acids and Tyr 105 (green) are represented in stick format and colored by atom type. Oxygen atoms associated with exogenous H_{2}O ligands are shown as red spheres. Mn-ligand bonds and hydrogen bonding interactions are shown as gray dashed lines. The active site electron density in \textit{Bs NrdF} chain A (C) and chain B (D) with a 2F_{o}-F_{c} electron density map shown as gray mesh (1.5\sigma) and a F_{o}-F_{c} map shown in green (3.0\sigma) and red mesh (−3.0\sigma).
Figure 3.
Schematic drawing of the active site configuration in chain A (A) and chain B (B) of Bs Mn$^{II}_2$-NrdF. Bond distances are expressed in Å and hydrogen bonding interactions are illustrated as gray dashed lines.
Figure 4.
The solvent channel to Mn2 in the Ec (A) and Bs (B) MnII-2-NrdF structures. Residues lining the channel and active site residues are shown as sticks and colored by atom type. The active site ligand Glu 164/158 is colored pink and the Mn ions are represented as purple spheres. A 2F₀−Fᶜ electron density map showing ordered waters in the channels is shown as cyan (A, 1.5σ) or red (B, 1.2σ) mesh. (C) and (D) show an enlarged view of the channel close to Mn2 in a slightly different orientation compared to (A) and (B).
Figure 5.
Bulk solvent access to Mn1 in *Bs Mn*II-NrdF and the role of the N-terminus in the dimer interface. Pockets and channels that could accommodate solvent near site 1 are shown in purple mesh for chain A (A) and chain B (B). The open channel near Mn1 in chain B is occupied by two water molecules in the crystal structure and a hydrogen bonding interaction between one of these waters and Asp 66 is possible (C). Residues involved in the channel are shown as sticks and colored by atom type and chain (chain A (white), chain B (blue)). Residue Tyr 105 is shown in green and ordered waters are represented as red spheres. The disordered region spanning residues 3–10 in chain A is marked with asterisks.
Figure 6.

(A) Map of global sequence conservation (114 NrdF and 113 NrdI sequences (51)) in a superposition model of the *Bs* NrdI (PDB accession code 1RLJ)/MnH$_2$-NrdF complex generated using *Ec* NrdI/MnH$_2$-NrdF as a template. The top left view shows a conserved surface proposed to be involved in interaction with the α2 subunit. Rotation of the NrdI structure only (bottom right) shows the sequence conservation at the modeled interface. A cartoon and stick representation comparing the NrdI (green)-NrdF (white) interface in the vicinity of the NrdI FMN cofactor in the *Ec* NrdI$_{ox}$/MnH$_2$-NrdF crystal structure (PDB accession code 3N39) (B) and the model of the *Bs* complex (C).
Table 1

Data collection and refinement statistics.

<table>
<thead>
<tr>
<th></th>
<th>Bs NrdF</th>
<th>Bs NrdF (Mn ano)</th>
<th>Bs NrdF 15 equiv (Mn ano)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength</td>
<td>1.078 Å</td>
<td>1.856 Å</td>
<td>1.856 Å</td>
</tr>
<tr>
<td>Space group</td>
<td>$P_{21}^2_1^2$</td>
<td>$P_{21}^2_1^2$</td>
<td>$P_{21}^2_1^2$</td>
</tr>
<tr>
<td>Cell dimensions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>110.525, 112.912, 51.286</td>
<td>111.246, 112.889, 52.810</td>
<td>110.528, 113.090, 51.362</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>50.00–1.90 (1.93–1.90)</td>
<td>50.00–2.42 (2.46–2.42)</td>
<td>50.00–2.13 (2.17–2.13)</td>
</tr>
<tr>
<td>R_{sym} or R_{merge}</td>
<td>0.100 (0.615)</td>
<td>0.155 (0.573)</td>
<td>0.130 (0.516)</td>
</tr>
<tr>
<td>I/σ_I</td>
<td>18.5 (2.5)</td>
<td>23.9 (4.6)</td>
<td>26.7 (2.2)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>96.5 (80.4)</td>
<td>100 (99.7)</td>
<td>98.0 (78.9)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>6.9 (5.6)</td>
<td>12.0 (7.3)</td>
<td>11.1 (3.0)</td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>50.00–1.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. reflections</td>
<td>46879</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{work}/R_{free}</td>
<td>0.1857/0.2240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. atoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>4786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnII</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other ion/ligand</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>26.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnII</td>
<td>24.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other ion/ligand</td>
<td>50.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>33.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.m.s. deviations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td>1.089</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biochemistry: Author manuscript; available in PMC 2013 May 08.