Measurement of neutral strange particle production in the underlying event in proton-proton collisions at $s = 7$TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Chatrchyan, S., V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, et al. “Measurement of neutral strange particle production in the underlying event in proton-proton collisions at $s = 7$TeV.” Physical Review D 88, no. 5 (September 2013). © 2013 CERN, for the CMS Collaboration
As Published	http://dx.doi.org/10.1103/PhysRevD.88.052001
Publisher	American Physical Society
Version	Final published version
Accessed	Thu Dec 06 17:53:59 EST 2018
Citable Link	http://hdl.handle.net/1721.1/84706
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.

Detailed Terms
I. INTRODUCTION

This paper describes a measurement of the production of primary K_S^0 mesons, and Λ and $\bar{\Lambda}$ baryons in the underlying event in proton-proton (pp) collisions at a center-of-mass energy of 7 TeV with the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC).

In the presence of a hard process, characterized by particles or clusters of particles with large transverse momentum p_T with respect to the beam direction, the final state of hadron-hadron interactions can be described as the superposition of several contributions: the partonic hard scattering, initial- and final-state radiation, additional “multiple partonic interactions” (MPI), and “beam-beam remnants” (BBR) interactions. The products of initial- and final-state radiation, MPI and BBR, form the “underlying event” (UE).

In this paper, the UE properties are analyzed with reference to the direction of the highest-p_T jet reconstructed from charged primary particles (leading charged-particle jet). This leading jet is expected to reflect the direction of the parton produced with the highest transverse momentum in the hard interaction. Three distinct topological regions in the hadronic final state are defined in terms of the azimuthal angle $\Delta \phi$ between the directions of the leading jet and that of any particle in the event. Particle production in the “toward” region, $|\Delta \phi| < 60^\circ$, and in the “away” region, $|\Delta \phi| > 120^\circ$, is expected to be dominated by the hard parton-parton scattering. The UE structure can be best studied in the “transverse” region, $60^\circ < |\Delta \phi| < 120^\circ$ [1,2].

Studies of the UE activity in charged primary particles in proton-proton collisions at different center-of-mass energies have been published by the ATLAS [3] and CMS [1,4,5] collaborations. Observables such as the average multiplicity of charged primary particles per event, hereafter referred to as “average rate,” and the average scalar sum of primary particle p_T per event, hereafter referred to as “average p_T sum,” have been measured in the transverse region. These quantities exhibit a steep rise with increasing charged-particle jet p_T up to a value that depends on the proton-proton center-of-mass energy (around 10 GeV/c for pp collisions at 7 TeV), followed by a slow rise. Within the MPI framework, a hard jet is likely to be produced in collisions with a small impact parameter between the colliding protons, consequently resulting in large MPI activity [6,7]. The MPI activity saturates at values of the hard scale typical of central collisions.

The present analysis considers identified neutral strange particles (K_S^0, Λ, and $\bar{\Lambda}$) as additional probes to study the underlying event. Unless stated otherwise, Λ and $\bar{\Lambda}$ baryon data are merged and referred to as Λ baryon data. The production of primary K_S^0 and Λ particles in the transverse region at $\sqrt{s} = 7$ TeV is studied as a function of the scale of the hard process. Fully corrected average rates and p_T sums of primary K_S^0 mesons and Λ baryons, as well as ratios to the charged primary-particle rates and p_T sums, are compared to simulations. This analysis complements the studies of strangeness production in minimum-bias events at $\sqrt{s} = 7$ TeV published by the ALICE [8,9].

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
ATLAS [10], and CMS [11] collaborations. Comparisons of non-single diffractive data [11] with predictions made with the PYTHIA 6 [12] and PYTHIA 8 [13] Monte Carlo event generators have shown that the latter largely underestimate the data, e.g., by 30% for K^0_S production and 50% for Λ production at $\sqrt{s} = 7$ TeV for PYTHIA 6 tune D6T [2,14], with little improvement for more recent tunes.

The simulations are performed with versions of PYTHIA that include MPI. The most recent versions have been tuned to reproduce the UE activity observed with primary charged particles at the LHC at 0.9 TeV and 7 TeV center-of-mass energies. The parameters describing strangeness production, however, have not been tuned to LHC data yet. All Monte Carlo samples used in this paper have been generated with the default values of these parameters.

Recent literature [15–17] discussing the tuning of the strangeness suppression parameters in commonly available generators is limited. A tuning of the PYTHIA 6 parameters to LEP, SLAC Linear Collider, and Tevatron data performed with the PROFESSOR program [15] produced best-fit parameters in disagreement with the current PYTHIA default parameters. The resulting predicted strange meson and baryon production rates given in the Appendix of Ref. [15], however, do not agree well with the data used for the tuning. Other attempts to describe strange-particle production in pp collisions are discussed in Refs. [16,17]. The present paper focuses on the comparison with PYTHIA.

The outline of this paper is the following. In Sec. II, the experimental conditions are described, along with the data sets, the simulation, and the analysis technique. In Sec. III, the systematic uncertainties are summarized. The results are discussed in Sec. IV, and conclusions are drawn in Sec. V.

II. EXPERIMENTAL SETUP, DATA SETS, AND DATA ANALYSIS

The central feature of CMS is a superconducting solenoid of 6 m internal diameter. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the flux-return yoke. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. CMS uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the center of the LHC, the y axis pointing up (perpendicular to the LHC plane), and the z axis along the antilockwise-beam direction. The polar angle θ is measured from the positive z axis, and the azimuthal angle ϕ is measured in the $x-y$ plane. The tracker measures charged particles within the pseudorapidity range $|\eta| < 2.5$, where $\eta = -\ln(\tan(\theta/2))$. It consists of 1440 silicon pixel and 15 148 silicon strip detector modules and is located in the 3.8 T field of the superconducting solenoid. For the charged particles of interest in this analysis, the transverse momentum resolution is relatively constant with p_T, varying from 0.7% at $\eta = 0$ to 2% at $|\eta| = 2$. The transverse and longitudinal impact-parameter resolutions, $\sigma_{d_{T}}$ and $\sigma_{d_{L}}$, respectively, depend on p_T and on η, ranging from $\sigma_{d_{T}} = 400 \mu m$ and $\sigma_{d_{L}} = 1000 \mu m$ at $p_T = 0.3$ GeV/c and $|\eta| > 1.4$ to $\sigma_{d_{T}} = 10 \mu m$ and $\sigma_{d_{L}} = 30 \mu m$ at $p_T = 100$ GeV/c and $|\eta| < 0.9$. A more detailed description of the CMS detector can be found in Ref. [18].

A. Event selection, data sets, and Monte Carlo simulation

The event selection is identical to the one described in [1], unless explicitly stated otherwise. Minimum-bias events were triggered by requiring coincident signals in beam scintillator counters located on both sides of the experiment and covering the pseudorapidity range $3.23 < |\eta| < 4.65$, and in the beam pickup devices [18]. Events were then recorded with a prescaled trigger requiring the presence of at least one track segment in the pixel detector with $p_T > 200$ MeV/c. The trigger conditions are applied to both data and simulated samples. The trigger efficiency for the events selected in the analysis is close to 100%, and no bias from the trigger selection is found.

The data used in this analysis were collected in early 2010 when pileup (multiple pp collisions per proton bunch crossing) was very low. Selected events are required to contain a single reconstructed primary vertex, a condition that rejects about 1% of the events satisfying all the other selection criteria. The primary vertex is fit with an adaptive algorithm [19] and must have at least four tracks, a transverse distance to the beam line smaller than 2 cm, and a z coordinate within 10 cm of the nominal interaction point. Events are required to contain a track jet with reconstructed $p_T > 1$ GeV/c and $|\eta| < 2$. Track jets are reconstructed from the tracks of charged particles, with the anti-k_T algorithm [20,21] and a clustering radius $D_R = 0.5$, where $D_R = \sqrt{\Delta \eta^2 + (\Delta \phi)^2}$. The tracks are required to be well reconstructed, to have $p_T > 500$ MeV/c, $|\eta| < 2.5$, and to be consistent with originating from the primary vertex. More details on the track selection can be found in [1]. The reconstructed track jet p_T is the magnitude of the vector sum of the transverse momenta of the tracks in the jet. The leading track jet p_T is corrected for detector response (track finding efficiency and p_T measurement) with detailed simulations based on GEANT4 [22], which have been extensively validated with data [23–25]. This correction is approximately independent of the track jet p_T and η, and its average value is 1.01. The leading corrected track jet is referred to as the leading charged-particle jet. The PYTHIA versions we consider all include MPI. The tunes used are the PYTHIA 6 D6T tune [2,14] and the PYTHIA 8 tune 1 [13], which have not been tuned to the LHC data, and the PYTHIA 6 Z1 [26] and Z2* tunes. The two latter
PYTHIA 6 tunes, as well as PYTHIA 8, include p_T ordering of the parton showers, and a new model [27] where MPI are interleaved with parton showering. PYTHIA 8 includes hard diffraction in addition to the new MPI model. The parton distribution functions used for PYTHIA 6 D6T and PYTHIA 8 tune 1 are the CTEQ6L1 and CTEQ5L sets, respectively. The Z1 tune uses the CTEQ5L parton distribution set, whereas Z2* is updated to CTEQ6L1 [28] and returned to the underlying event activity at 7 TeV from Ref. [1] with the PROFESSOR tool [15]. The simulated data are generated with PYTHIA 6 version 6.422 for tunes D6T and Z1, version 6.424 for tune Z2*, and version 8.135 for PYTHIA 8 tune 1.

Simulated primary stable charged particles with a proper lifetime $c\tau > 1$ cm are clustered into jets with the anti-k_T algorithm ($\Delta R = 0.5$). The average rates and scalar p_T sums of simulated primary K_S^0 and Λ particles are computed within the transverse region of the leading simulated charged-particle jet.

A data sample of 11×10^6 events with at least one charged-particle jet with $p_T > 1$ GeV/c and $|\eta| < 2$ is analyzed. The corresponding numbers of simulated events are 22×10^6 for PYTHIA 6 D6T and 5×10^6 for PYTHIA 6 Z1, Z2* and PYTHIA 8 tune 1. Corrections for detector effects and background are estimated with the PYTHIA 6 D6T sample, while the modeling of the underlying event is studied with all the tunes mentioned.

The reconstruction of the leading charged-particle jet results in a bias in the measured average rates and p_T sums in the transverse region. The value of this bias ranges from $+5\%$ to $+10\%$ for charged-particle jet p_T below 10 GeV/c, and is consistent with zero for larger p_T values. It is caused by events in which the leading jet formed by primary charged particles is not reconstructed as the leading charged-particle jet because of tracking inefficiencies, and a subleading jet is thus reconstructed as the leading jet. This results in a reconstructed transverse region shifted in ϕ. The correction for this bias is obtained from the detailed Monte Carlo simulations of the detector response described above.

The primary vertex selection causes a small overestimate of the UE strangeness activity at low charged-particle jet p_T, at most 5% for charged-particle jet $p_T = 1$ GeV/c. This is because the requirement that at least four tracks be associated to the primary vertex enriches the sample in events with higher UE activity when the charged-particle jets have very low multiplicity. This bias is corrected by means of detailed simulations as described in Sec. III.

B. Selection of primary V^0 candidates and analysis strategy

The neutral strange particles K_S^0, Λ, and $\bar{\Lambda}$, hereafter generically called V^0s, are identified by means of their characteristic decay topology: a flight distance of several centimeters before decay, two tracks of opposite charge emerging from a secondary vertex, and an invariant mass consistent with that of a K_S^0 meson or a Λ baryon. The V^0 momentum vector is further required to be collinear with the vector joining the primary and secondary vertices, in order to select primary particles.

The V^0 candidates are reconstructed by the standard CMS offline event reconstruction program [25]. Pairs of oppositely charged tracks with at least 3 hits in the CMS tracker and with a nonzero transverse impact parameter with respect to the beam line are selected (the transverse impact parameter divided by its uncertainty is required to be larger than 1.5). Pairs of tracks with a distance of closest approach to each other smaller than 1 cm are fit to a common secondary vertex, and those with a vertex fit χ^2 smaller than 7 and a significant distance between the beam line and the secondary vertex (transverse flight distance divided by its uncertainty larger than 8) are retained.

Well-reconstructed V^0 candidates are selected by applying cuts on the pseudorapidity and transverse momentum of the decay tracks ($|\eta| < 2.5$, $p_T > 300$ MeV/c), of the V^0 candidate ($|\eta| < 2$, $p_T > 600$ MeV/c for K_S^0 mesons, $p_T > 1.5$ GeV/c for Λ baryons), and on the V^0 transverse flight distance (>1 cm from the beam line). A kinematic fit is then performed on the candidates to further purify the sample of primary strange particles. The fit includes a secondary vertex constraint, a mass constraint, as well as the constraint that the V^0 momentum points away from the primary vertex. All three hypotheses ($K_S^0 \rightarrow \pi^+ \pi^-$, $\Lambda \rightarrow p \pi^-$, and $\bar{\Lambda} \rightarrow \bar{p} \pi^+$) are tested for each candidate and the most probable hypothesis is considered. Candidates with a kinematic-fit probability larger than 5% are retained.

Since simulations enter in the determination of the V^0 selection efficiency and purity, a good description of the distributions of the kinematic-fit input variables is important. The distributions of the invariant mass of the V^0 candidates for the most probable particle-type hypothesis are shown in Fig. 1, together with the distributions of the invariant-mass pull. The invariant-mass pull is the difference between the reconstructed mass and the accepted V^0 mass value [29], divided by the uncertainty on the reconstructed mass calculated from the decay track parameter uncertainties. The signal and background fractions are shown as predicted by PYTHIA 6 D6T. The backgrounds in the K_S^0 sample are mostly misidentified Λ baryons. Backgrounds in the Λ sample are mostly nonprimary Λ baryons from cascade decays of Ξ and Ω baryons, plus contributions from misidentified K_S^0 mesons and converted photons. In general, the simulation agrees with the data. As an example, the average mass values for K_S^0 mesons (Λ baryons) are 0.4981 GeV/c^2 (1.116 GeV/c^2) in the simulation and 0.4977 GeV/c^2 (1.116 GeV/c^2) in the data; the corresponding rms values for the mass pull distributions are 1.17 (0.512) in the simulation and 1.23 (0.531) in the data. For K_S^0 candidates, the data show larger tails than the simulation at mass pull values below (−2). The presence of a
similar tail in the component shown as the hatched histogram of the simulated distribution indicates that this excess is due to a larger contribution from misidentified baryons in the data compared to the simulation. This is accounted for in the background estimation as described below.

The pointing requirement constrains the signed impact parameter \(d_{ip} \) of the \(V^0 \) with respect to the primary vertex. This variable is defined as the distance of closest approach of the \(V^0 \) trajectory to the primary vertex, and its sign is that of the scalar product of the \(V^0 \) momentum and the vector pointing from the primary vertex to the point of closest approach. The distributions of the signed impact parameter are shown in Fig. 2 together with the distributions of the corresponding pull, defined as \(d_{ip} / \sigma_{d_{ip}} \) calculated from the decay track parameter uncertainties. The quality of the description of the data by the simulation is good, including the tails at positive impact-parameter values. The large pulls for secondary \(\Lambda \) baryons from cascade decays allow the suppression of this background by means of the kinematic fit.

The uncorrected average rates of reconstructed \(V^0 \) candidates passing the selection cuts per unit pseudorapidity are shown in Fig. 3 as a function of the difference in azimuthal angle \(|\Delta \phi| \) between the \(V^0 \) candidate and the leading charged-particle jet. Uncorrected data are compared to PYTHIA events passed through the detailed detector simulation. The dependence of the rates on \(|\Delta \phi| \) is qualitatively described by the PYTHIA tunes considered. The simulation underestimates significantly the \(V^0 \) rates in the transverse region. The peak at \(|\Delta \phi| = 0^\circ \) is more pronounced for baryons than for \(K^0_S \) mesons. The simulation indicates that the harder \(p_T \) cut applied to the baryon candidates is responsible for this feature; the distributions are similar when the same \(p_T \) cut is applied to both \(V^0 \) types.

The backgrounds to the \(K^0_S \) and \(\Lambda \) samples are estimated with two methods. The first is based on simulation. Candidates not matched to a generated primary \(V^0 \) of the corresponding type are counted as background. The PYTHIA 6 D6T sample is used. To account for the known deficit of strange particles in the simulation (see Sec. I), the contribution from \(K^0_S \) mesons misidentified as \(\Lambda \) baryons is weighted by the ratio of \(K^0_S \) rates measured in non-single diffractive events to those in PYTHIA 6 D6T, 1.39 [11]. Similarly, the contribution from misidentified \(\Lambda \) baryons
and the signal (yellow) as predicted by PYTHIA 6 D6T. The PYTHIA prediction is normalized to the data.

The second method is based on data. The signal and background contributions are extracted from a fit to the production rates, 2.67 [11].

The background fraction for \(K^0_S \) increases from (1.5 ± 1.1)% at charged-particle jet \(p_T = 1 \) GeV/c to (3.3 ± 1.7)% at charged-particle jet \(p_T = 10 \) GeV/c and remains constant at higher charged-particle jet \(p_T \). The background is (8 ± 2)% for baryons, independent of the charged-particle jet \(p_T \).

The \(K^0_S \) and \(\Lambda \) raw yields are corrected for purity (defined as 1—background fraction) as well as for acceptance and reconstruction efficiency. Each \(V^0 \) candidate is weighted by the product of the purity times \(\frac{1}{\Delta \chi^2} \), where \(\Delta \chi^2 \) denotes the acceptance of the cuts on the \(V^0 \) transverse flight distance and on the \(p_T \), \(\eta \) of the decay particles, and \(\epsilon \) denotes the reconstruction and selection efficiency for accepted \(V^0 \) candidates. The product of acceptance times efficiency is computed in \(V^0 \) \((p_T, \eta) \) bins from a sample of \(50 \times 10^6 \) PYTHIA 6 D6T minimum-bias events passed through the detailed detector simulation. The average values of the product of acceptance and efficiency in this sample for \(K^0_S \) mesons, and \(\Lambda \) and \(\bar{\Lambda} \) baryons within the kinematic cuts \(|\eta| < 2; p_T > 600 \) MeV/c for \(K^0_S \), \(p_T > 1.5 \) GeV/c for \(\Lambda \) and \(\bar{\Lambda} \) are 11.3%, 8.4%, and 6.6%, respectively, including the branching fractions \(B(K^0_S \rightarrow \pi^+ \pi^-) = 69.2\% \) and \(B(\Lambda \rightarrow p \pi^+) = B(\bar{\Lambda} \rightarrow \bar{p} \pi^+) = 63.9\% \) [29]. The acceptance depends strongly on the \(V^0 \)
The consistency of the correction method was checked by applying it to all other Monte Carlo samples and comparing the results to the known generated values. Further support to the correction procedure is provided by the fact that the simulation reproduces well several key aspects of the data, most notably the reconstruction efficiency [23,24] and the angular distributions of the V^0 decay tracks as a function of the $V^0 p_T$. The reliability of the simulation for K_S^0 and Λ reconstruction was checked by comparing the lifetimes obtained from fits to the corrected proper time distributions with the world averages [11]. The stability of the results when varying the V^0 selection cuts was also checked. The resulting overall contribution of the V^0 reconstruction to the systematic uncertainty is given in Sec. III.

The main sources of systematic uncertainties are described below, with numerical values summarized in Table I.

Leading charged-particle jet selection: The bias in rates and p_T sums due to mismatches between the reconstructed and the simulated leading charged-particle jets is corrected by means of detailed simulations. The systematic uncertainty is estimated from the residual difference in rates and p_T sums when the reconstructed and the simulated leading charged-particle jets are matched within $\Delta R = 0.3$.

Primary vertex selection: The bias caused by the requirement of a minimum track multiplicity at the primary vertex is corrected by means of detailed simulations of minimum-bias events with the PYTHIA 6 Z1 tune. The primary charged-particle multiplicity in 7 TeV pp collisions is well described by this tune [1]. The corresponding uncertainty is estimated from the spread of the corrections computed with PYTHIA 6 tunes D6T, Z1 and PYTHIA 8 tune 1.

Modeling of V^0 reconstruction efficiency: The systematic uncertainty on the V^0 reconstruction efficiency is estimated from closure tests and from the stability of the results with respect to the V^0 selection cuts, as described in Sec. II B.

TABLE I. Systematic uncertainties on the measured average V^0 rates and p_T sums.

<table>
<thead>
<tr>
<th>Source</th>
<th>K_S^0 (%)</th>
<th>Λ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading charged-particle jet selection</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Primary vertex selection</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Modeling of V^0 efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charged-particle jet $p_T \leq 2.5$ GeV/c</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Charged-particle jet $p_T > 2.5$ GeV/c</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Detector material</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>GEANT4 cross sections</td>
<td>...</td>
<td>5</td>
</tr>
<tr>
<td>Statistical uncertainty on V^0 weights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 MeV/$c < p_T^{V^0} < 700$ MeV/c</td>
<td>0.1</td>
<td>...</td>
</tr>
<tr>
<td>1.5 GeV/$c < p_T^{V^0} < 1.6$ GeV/c</td>
<td>0.03</td>
<td>0.33</td>
</tr>
<tr>
<td>6 GeV/$c < p_T^{V^0} < 8$ GeV/c</td>
<td>1.4</td>
<td>8.3</td>
</tr>
<tr>
<td>Background estimation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charged-particle jet $p_T = 1$ GeV/c</td>
<td>1.1</td>
<td>2</td>
</tr>
<tr>
<td>Charged-particle jet $p_T = 10$ GeV/c</td>
<td>1.7</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charged-particle jet $p_T = 1$ GeV/c</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Charged-particle jet $p_T = 10$ GeV/c</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

Average p_T sums

<table>
<thead>
<tr>
<th>Source</th>
<th>K_S^0 (%)</th>
<th>Λ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background estimation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T^{V^0} = 600$ MeV/c</td>
<td>0.1</td>
<td>...</td>
</tr>
<tr>
<td>$p_T^{V^0} = 1.5$ GeV/c</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>$p_T^{V^0} = 8$ GeV/c</td>
<td>3.6</td>
<td>4.0</td>
</tr>
<tr>
<td>Other sources</td>
<td>as rates</td>
<td>as rates</td>
</tr>
</tbody>
</table>
Detector material: The overall mass of the tracker and the relative fractions of the different tracker materials are varied in the simulations, with the requirement that the resulting predicted tracker weight be consistent with the measured weight [31]. The difference between the results thus obtained and the nominal results is taken as a contribution to the systematic uncertainty.

GEANT4 cross sections: A 5% systematic uncertainty is assigned to the baryon yields, as a result of the known imperfect modeling of the low-energy antiproton interaction cross section in the GEANT4 version used [30].

Statistical uncertainty on the V^0 yield correction: A small contribution to the total uncertainty stems from the finite size of the sample of minimum-bias events passed through the full detector simulation (50×10^6 events), from which the correction is computed.

Estimation of V^0 background: The uncertainty on the background remaining after V^0 identification by means of the kinematic fit is taken as half the difference between the results of the two background estimation methods used.

The uncertainty on the beam spot position and size gives a negligible contribution to the total uncertainty.

IV. RESULTS

The V^0 production rates in the transverse region are shown in Fig. 4 as a function of the leading charged-particle jet p_T, and the V^0 scalar p_T sums in the transverse region are shown in Fig. 5.

The rates and p_T sums exhibit a rise with increasing hard scale, followed by a plateau. The turn-on of the plateau is located at charged-particle jet $p_T \approx 10$ GeV/c for both primary mesons and baryons. Above the turn-on, the rates and p_T sums are essentially constant, implying also a constant strange-particle average p_T above the turn-on.

A comparison can be made with the trends observed for charged primary particles [1] in spite of the different jet reconstruction algorithm used in Ref. [1] (SISCone). The dependence of the UE activity on the charged-particle jet p_T is very similar to that observed for charged primary particles [1,3,4]. The most striking feature is that the p_T scale at which the plateau starts, around 10 GeV/c in pp collisions at $\sqrt{s} = 7$ TeV, is independent of the type of primary particle used to probe the UE activity. These observations are consistent with the impact-parameter picture of particle production in hadron collisions [6,7], in which the MPI contribution saturates at scales typical of central collisions.

The PYTHIA 6 Z1 and Z2* tunes qualitatively reproduce the dependence of the K_S^0 rate and p_T sum on the charged-particle jet p_T, but exhibit a 10%–15% deficit in the yield, independent of the charged-particle jet p_T. PYTHIA 8 tune 1 underestimates the activity by about 30%. For the Λ baryons, PYTHIA 6 tunes Z1, Z2* and PYTHIA 8 tune 1 underestimate the rates by about 50%. After being tuned to the charged-particle data, PYTHIA 6 Z2* models strangeness

FIG. 4 (color online). Average multiplicity per unit of pseudorapidity and per radian in the transverse region ($|\eta| < 2$, $60^{\circ} < |\Delta \phi| < 120^{\circ}$), as a function of the p_T of the leading charged-particle jet: (top) K_S^0 with $p_T > 0.6$ GeV/c; (bottom) Λ with $p_T > 1.5$ GeV/c. Predictions of PYTHIA tunes are compared to the data, and the ratios of simulations to data are shown in the bottom panels. For the data, the statistical uncertainties (error bars) and the quadratic sum of statistical and systematic uncertainties (error band) are shown, while for simulations the uncertainty is only shown for PYTHIA 6 tune Z2*, for clarity.
production in the UE in a very similar way as Z1, in spite of the different parton distribution set used.

PYTHIA 6 D6T shows a dependence of the activity on the charged-particle jet p_T that differs from that of the data and of the other tunes. In addition, the V_0^π p_T distributions predicted by PYTHIA 6 D6T in the transverse region are in strong disagreement with the data. As an illustration, the p_T spectra are shown in Fig. 6 for events with a

FIG. 5 (color online). Average scalar p_T sum per unit of pseudorapidity and per radian in the transverse region ($|\eta|<2$, $60^\circ<|\phi|<120^\circ$), as a function of the p_T of the leading charged-particle jet: (top) K_0^+ with $p_T>0.6$ GeV/c; (bottom) Λ with $p_T>1.5$ GeV/c. Predictions of PYTHIA tunes are compared to the data, and the ratios of simulations to data are shown in the bottom panels. For the data, the statistical uncertainties (error bars) and the quadratic sum of statistical and systematic uncertainties (error band) are shown, while for simulations the uncertainty is only shown for PYTHIA 6 tune Z2*, for clarity.

FIG. 6 (color online). V_0^π p_T distributions corrected for selection efficiency and background without a correction to the leading charged-particle jet, in the region transverse to a leading reconstructed charged-particle jet with $p_T>3$ GeV/c, compared to predictions from different PYTHIA tunes (top: K_0^+; bottom: Λ). Error bars indicate the quadratic sum of the statistical and systematic uncertainties. Simulations are normalized to the first p_T bin in the data, with normalization factors given in parentheses.
measured for K^0_S mesons for charged-particle jet $p_T > 3\text{ GeV}/c$ and for Λ baryons for charged-particle jet $p_T > 10\text{ GeV}/c$. In addition, as just discussed, when accounting for the acceptance of the baryon p_T cut, a
constant ratio is also predicted for \(\Lambda \) baryons at charged-particle jet \(p_\tau < 10 \text{ GeV}/c \). Since the trends observed are very similar for charged and strange particles, as well as for mesons and baryons, the present measurements suggest that hadronization and MPI are decoupled.

V. CONCLUSIONS

This paper describes measurements of the underlying event activity in \(pp \) collisions at \(\sqrt{s} = 7 \text{ TeV} \), probed through the production of primary \(K^0_S \) mesons and \(\Lambda \) baryons. The production of \(K^0_S \) mesons and \(\Lambda \) baryons in the kinematic range \(p_T^{K^0_S} > 0.6 \text{ GeV}/c \), \(p_T^{\Lambda} > 1.5 \text{ GeV}/c \) and \(|\eta| < 2 \) is analyzed in the transverse region, defined as \(60^\circ < |\Delta \phi| < 120^\circ \), with \(\Delta \phi \) the difference in azimuthal angle between the leading charged-particle jet and the strange-particle directions. The average multiplicity and the average scalar \(p_T \) sum of primary particles per event are studied as a function of the leading charged-particle jet \(p_T \).

A steep rise of the underlying event activity is seen with increasing leading jet \(p_T \), followed by a “saturation” region for jet \(p_T > 10 \text{ GeV}/c \). This trend and the \(p_T \) scale above which saturation occurs are very similar to those observed with charged primary particles. The similarity of the behavior for strange and charged particles is consistent with the impact-parameter picture of multiple parton interactions in \(pp \) collisions, in which the centrality of the \(pp \) collision and the MPI activity are correlated.

The results are compared to recent tunes of the PYTHIA Monte Carlo event generator. The PYTHIA simulations underestimate the data by 15%–30% for \(K^0_S \) mesons and by about 50% for \(\Lambda \) baryons, a MC deficit similar to that observed for the inclusive strange-particle production in \(pp \) collisions.

The constant strange- to charged-particle activity ratios and the similar trends for mesons and baryons indicate that the MPI dynamics is decoupled from parton hadronization, with the latter occurring at a later stage.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science and Research and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education, Youth and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent financing Contract No. SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UnizH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; and the US Department of Energy and National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation;
the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF.

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Universidad de Los Andes, Bogota, Colombia
Technical University of Split, Split, Croatia
University of Split, Split, Croatia
Institute Rudjer Boskovic, Zagreb, Croatia
University of Cyprus, Nicosia, Cyprus
Charles University, Prague, Czech Republic
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
Department of Physics, University of Helsinki, Helsinki, Finland
Helsinki Institute of Physics, Helsinki, Finland
Lappeenranta University of Technology, Lappeenranta, Finland
DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
Deutsches Elektronen-Synchrotron, Hamburg, Germany
University of Hamburg, Hamburg, Germany
Institut für Experimentelle Kernphysik, Karlsruhe, Germany
Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
University of Athens, Athens, Greece
University of Ioannina, Ioannina, Greece
KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
University of Debrecen, Debrecen, Hungary
Panjab University, Chandigarh, India
University of Delhi, Delhi, India
Saha Institute of Nuclear Physics, Kolkata, India
Bhabha Atomic Research Centre, Mumbai, India
Tata Institute of Fundamental Research-EHEP, Mumbai, India
Tata Institute of Fundamental Research-HECR, Mumbai, India
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
University College Dublin, Dublin, Ireland
INFN Sezione di Bari, Bari, Italy
Università di Bari, Bari, Italy
Politecnico di Bari, Bari, Italy
INFN Sezione di Bologna, Bologna, Italy
Università di Bologna, Bologna, Italy
INFN Sezione di Catania, Catania, Italy
Università di Catania, Catania, Italy
INFN Sezione di Firenze, Firenze, Italy
Università di Firenze, Firenze, Italy
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Genova, Italy
Università di Genova, Genova, Italy
INFN Sezione di Milano-Bicocca, Milano, Italy
Università di Milano-Bicocca, Milano, Italy
INFN Sezione di Napoli, Napoli, Italy
Università di Napoli ‘Federico II’, Napoli, Italy
Università della Basilicata (Potenza), Napoli, Italy
Università G. Marconi (Roma), Napoli, Italy
INFN Sezione di Padova, Padova, Italy
Università di Padova, Padova, Italy
Università di Trento (Trento), Padova, Italy
MEASUREMENT OF NEUTRAL STRANGE PARTICLE...

PHYSICAL REVIEW D 88, 052001 (2013)

63a INFN Sezione di Pavia, Pavia, Italy
63b Università di Pavia, Pavia, Italy
64a INFN Sezione di Perugia, Perugia, Italy
64b Università di Perugia, Perugia, Italy
65a INFN Sezione di Pisa, Pisa, Italy
65b Università di Pisa, Pisa, Italy
65c Scuola Normale Superiore di Pisa, Pisa, Italy
66a INFN Sezione di Roma, Roma, Italy
66b Università di Roma, Roma, Italy
66c INFN Sezione di Torino, Torino, Italy
67a Università di Torino, Torino, Italy
67b Università del Piemonte Orientale (Novara), Torino, Italy
68a INFN Sezione di Trieste, Trieste, Italy
68b Università di Trieste, Trieste, Italy
69 Kangwon National University, Chunchon, Korea
70 Kyungpook National University, Daegu, Korea
71 Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
72 Korea University, Seoul, Korea
74 Sungkyunkwan University, Suwon, Korea
75 Vilnius University, Vilnius, Lithuania
76 Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
77 Universidad Iberoamericana, Mexico City, Mexico
79 Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
79 Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
80 University of Auckland, Auckland, New Zealand
81 University of Canterbury, Christchurch, New Zealand
82 National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
83 National Centre for Nuclear Research, Swierk, Poland
84 Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
85 Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
86 Joint Institute for Nuclear Research, Dubna, Russia
87 Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
88 Institute for Nuclear Research, Moscow, Russia
89 Institute for Theoretical and Experimental Physics, Moscow, Russia
90 P.N. Lebedev Physical Institute, Moscow, Russia
91 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
92 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
93 University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
94 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
95 Universidad Autonoma de Madrid, Madrid, Spain
96 Universidad de Oviedo, Oviedo, Spain
97 Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
98 CERN, European Organization for Nuclear Research, Geneva, Switzerland
99 Paul Scherrer Institut, Villigen, Switzerland
100 Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
101 Universität Zürich, Zurich, Switzerland
102 National Central University, Chung-Li, Taiwan
103 National Taiwan University (NTU), Taipei, Taiwan
104 Chulalongkorn University, Bangkok, Thailand
105 Cukurova University, Adana, Turkey
106 Middle East Technical University, Physics Department, Ankara, Turkey
107 Bogazici University, Istanbul, Turkey
108 Istanbul Technical University, Istanbul, Turkey
109 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
110 University of Bristol, Bristol, United Kingdom
111 Rutherford Appleton Laboratory, Didcot, United Kingdom
112 Imperial College, London, United Kingdom
113 Brunel University, Uxbridge, United Kingdom
114 Baylor University, Waco, Texas, USA
115 The University of Alabama, Tuscaloosa, Alabama, USA

052001-19
Boston University, Boston, Massachusetts, USA
Brown University, Providence, Rhode Island, USA
University of California, Davis, Davis, California, USA
University of California, Los Angeles, California, USA
University of California, Riverside, Riverside, California, USA
University of California, San Diego, La Jolla, California, USA
University of California, Santa Barbara, Santa Barbara, California, USA
California Institute of Technology, Pasadena, California, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
University of Colorado at Boulder, Boulder, Colorado, USA
Cornell University, Ithaca, New York, USA
Fairfield University, Fairfield, Connecticut, USA
Fermi National Accelerator Laboratory, Batavia, Illinois, USA
University of Florida, Gainesville, Florida, USA
Florida International University, Miami, Florida, USA
Florida State University, Tallahassee, Florida, USA
Florida Institute of Technology, Melbourne, Florida, USA
University of Illinois at Chicago (UIC), Chicago, Illinois, USA
The University of Iowa, Iowa City, Iowa, USA
Johns Hopkins University, Baltimore, Maryland, USA
The University of Kansas, Lawrence, Kansas, USA
Kansas State University, Manhattan, Kansas, USA
Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Mississippi, Oxford, Mississippi, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
State University of New York at Buffalo, Buffalo, New York, USA
Northeastern University, Boston, Massachusetts, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayaguez, Puerto Rico, USA
Purdue University, West Lafayette, Indiana, USA
Purdue University Calumet, Hammond, Indiana, USA
Indiana University, Bloomington, Indiana, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
The Rockefeller University, New York, New York, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
University of Tennessee, Knoxville, Tennessee, USA
Texas A&M University, College Station, Texas, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin, Madison, Wisconsin, USA

aDeceased.
bAlso at Vienna University of Technology, Vienna, Austria.
cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
dAlso at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
eAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
gAlso at Universidade Estadual de Campinas, Campinas, Brazil.
hAlso at California Institute of Technology, Pasadena, CA, USA.
iAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
jAlso at Suez Canal University, Suez, Egypt.