Search for Top Squarks in R-Parity-Violating Supersymmetry Using Three or More Leptons and b-Tagged Jets

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Search for Top Squarks in R-Parity-Violating Supersymmetry Using Three or More Leptons and b-Tagged Jets

S. Chatrchyan et al. (CMS Collaboration)

(Received 27 June 2013; published 25 November 2013)

A search for anomalous production of events with three or more isolated leptons and bottom-quark jets produced in pp collisions at √s = 8 TeV is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 19.5 fb⁻¹ collected by the CMS experiment at the LHC in 2012. No excess above the standard model expectations is observed. The results are interpreted in the context of supersymmetric models with signatures that have low missing transverse energy arising from light top-squark pair production with R-parity-violating decays of the lightest supersymmetric particle. In two models with different R-parity-violating couplings, top squarks are excluded below masses of 1020 GeV and 820 GeV when the lightest supersymmetric particle has a mass of 200 GeV.

DOI: 10.1103/PhysRevLett.111.221801

PACS numbers: 13.85.Rm, 12.60.Jv, 13.85.Qk, 14.80.Ly

Supersymmetric (SUSY) extensions of the standard model (SM) solve the hierarchy problem while unifying particle interactions [1,2]. Among SUSY models, “natural” supersymmetry refers to those characterized by small fine-tuning needed to describe particle spectra. It requires top squarks (stops), the top-quark superpartners, to be lighter than about 1 TeV. These models have received substantial interest in light of the discovery of a Higgs boson with mass near 125 GeV [3,4] because the stop should be the superpartner most strongly coupled to the Higgs boson.

Natural models feature pair production of stops that decay to a number of final states. To fully test supersymmetric naturalness, searches for all possible decay chains should be carried out. These can be broadly categorized as R-parity conserving (RPC) or violating (RPV) [5], where R-parity is defined by R = (−1)3B+L±2s, with B and L the baryon and lepton numbers, and s the particle spin. All SM particle fields have R = ±1 while all superpartner fields have R = −1. When R-parity is conserved, superpartners are produced in pairs, the lightest superpartner (LSP) is stable and a dark-matter candidate, and proton stability is ensured. Most recent searches for naturalness have focused on RPC models [6–8].

Supersymmetric models with RPV interactions violate either B or L but can avoid proton decay limits [9,10]. The superpotential W_RPV includes three trilinear terms parametrized by the Yukawa couplings λ_ijk, λ_i'jk, and λ''_ijk:

W_{RPV} = \frac{1}{2} λ_{ijk} L_i L_j \tilde{E}_k + \frac{1}{2} λ'_{ijk} L_i Q_j \tilde{D}_k + \frac{1}{2} λ''_{ijk} \tilde{U}_i \tilde{D}_j \tilde{D}_k, \ (1)

where i, j, and k are generation indices; L and Q are the SU(2)_L doublet superfields of the lepton and quark; and the \tilde{E}, \tilde{D}, and \tilde{U} are the SU(2)_L singlet superfields of the charged lepton, downlike quark, and uplike quark. The third term violates baryon number conservation, while the first two terms violate lepton number conservation. These terms do not preclude a natural hierarchy [11].

The RPV interactions allow for single production of SUSY particles (sparticles) and for sparticle decay into SM only particles. The latter is explored in this Letter. Prior searches for RPV interactions in multilepton final states include those at LEP [12–14], the Tevatron [15,16], at HERA [17,18], and at the Large Hadron Collider (LHC) [19–21].

Because the LSP is unstable in RPV models, a common experimental strategy of SUSY searches—selecting events with large missing transverse energy (E_T^{miss})—is not effective [9]. Instead, we use S_T, the scalar sum of E_T^{miss} and the transverse energy of jets and charged leptons, to differentiate between signal and standard model backgrounds.

In this Letter we present the result of a search for pair production of top squarks with RPV decays of the lightest sparticle, using multilepton events and bottom-tagged (b-tagged) jets. The data set used here corresponds to an integrated luminosity of 19.5 fb⁻¹, recorded in 2012 with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 8 TeV.

The coordinate system in CMS is right handed, with the origin at the nominal interaction point. Pseudorapidity is given by η = −ln[tan(θ/2)], where the polar angle θ is defined with respect to the counterclockwise beam direction. The azimuthal angle φ is measured relative to the direction to the center of the LHC ring.

The CMS detector [22] has cylindrical symmetry around the pp beam axis with tracking and muon detectors covering the pseudorapidity range |η| < 2.4. The tracking system measures the trajectory and momentum of charged particles.
Monte Carlo (MC) simulations are used to estimate some of the SM backgrounds and to understand the efficiency and acceptance of the signal models. The SM background samples are generated using MADGRAPH [31] with parton showering and fragmentation modeled using PYTHIA (version 6.420) [32] and passed through a GEANT4-based [33] representation of the CMS detector. Signal samples [11] are generated with MADGRAPH and PYTHIA and passed through the CMS fast-simulation package [34]. Next-to-leading and next-to-leading-log cross sections and their uncertainties for the SUSY signal processes are from the LHC SUSY cross sections working group [35–39].

Multilepton signals have two main sources of backgrounds, the first arising from processes that produce genuine multilepton events. The most significant examples are WZ and ZZ production, but rare processes such as $t\bar{t}W^\pm$ and $t\bar{t}Z$ also contribute. We assess the contribution from these processes using samples simulated by MADGRAPH. Samples simulating WZ and ZZ have been validated in control regions in data. For the rarer background processes, we rely solely on simulation.

The second source originates from objects that are misclassified as prompt, isolated leptons, but are actually hadrons, leptons from a hadron decay, etc. Misidentified leptons are classified in three categories: misidentified light leptons (electrons and muons), misidentified τ_h leptons, and light leptons originating from asymmetric internal conversions. The methods used in this paper are described in more detail in Ref. [20].

We estimate the contribution of misidentified light leptons by measuring the number of isolated tracks and applying a scale factor between isolated leptons and isolated tracks. These scale factors are measured in control regions that contain leptonically decaying Z-bosons and a third, isolated track, as well as in control regions with opposite-sign, opposite-flavor leptons, which are $t\bar{t}$ dominated. The scale factor is then the probability for the third track to pass the lepton identification criteria. We find the scale factors to be $(0.9 \pm 0.2)\%$ for electrons and $(0.7 \pm 0.2)\%$ for muons. The scale factors are applied to the sideband region with two light leptons and an isolated track. The scale factors depend on the heavy-flavor content in the different signal regions. We parametrize this dependence as a function of the impact parameter distribution of nonisolated tracks. The $t\bar{t}$ contribution is taken from simulation.

The τ_h misidentification rate is measured in jet-dominated data by comparing the number of τ_h candidates in the signal region defined by $E_{\text{cone}} < 2 \text{ GeV}$ to the number of nonisolated τ_h candidates, which have $6 < E_{\text{cone}} < 15 \text{ GeV}$. We measure the average misidentification rate as 15% with a systematic uncertainty of 30% based on the variation in different control samples. We apply this scale factor to the sideband region with two light leptons and one nonisolated τ_h candidate.
Another source of background leptons is internal conversions, where a virtual photon decays to a dilepton pair. These conversions produce muons almost as often as electrons, and have been discussed in detail elsewhere [20]. We measure the conversion factors of photons to light leptons in a control region (low E_T^{miss} and low hadronic activity). The ratio of the number of $\ell^+\ell^-$ candidates to the number of $\ell^+\ell^-\gamma$ candidates in the Z boson decays defines the conversion factor, which is 2.1% ± 1.0% (0.5% ± 0.3%) for electrons (muons).

A systematic uncertainty of 4.4% in the normalization of the simulated samples accounts for imperfect knowledge of the integrated luminosity of the data sample [40]. Signal cross sections have uncertainties from 15% to 51% in stop masses between 250 GeV and 1.5 TeV, which come from the parton distribution function uncertainties and the renormalization and factorization scale uncertainties [41]. We scale the WZ and ZZ simulation samples to match data in control regions. The overall systematic uncertainty on WZ and ZZ contributions to the signal regions varies between 15% and 30% depending on the kinematics, and is the combination of the normalization uncertainties with resolution uncertainties. Muon identification efficiency uncertainty is 11% at muon p_T of 10 GeV and 0.2% at 100 GeV. For electrons the uncertainties are 14% at 10 GeV and 0.6% at 100 GeV. The uncertainty on the efficiency of the bottom-quark tagger is 6%. The uncertainty on the E_T^{miss} resolution contributes a 4% uncertainty and the jet energy scale uncertainty contributes 0.5% [42]. An uncertainty of 50% for the $t\bar{t}$ background contribution is due to the low event counts in the isolation distributions in high-S_T bins, which are used to validate the misidentification rate. We apply a 50% uncertainty to the normalization of all rare processes.

We define eight mutually exclusive signal regions (SRs) depending on the total number of leptons and the number of $t\bar{t}$ candidates in the event, which are defined in Table I. Since our signal does not contain any Z bosons and does contain two to four bottom quarks, in SR1–SR4, we veto events in which any opposite-sign, same-flavor dilepton pairs have an invariant mass consistent with that of the Z boson (75–105 GeV) and require at least one b-tagged jet. Each of these eight SRs is divided into five bins in S_T: [0–300], [300–600], [600–1000], [1000–1500], and [>1500] GeV. We gain additional sensitivity in regions with S_T > 600 GeV by removing the b-tag and Z-veto requirements for events, so the SR5–SR8 contain the events that fail one or both of these requirements.

The observed and expected yields for SR1–SR8 are shown in Table I. We also show the S_T distribution for SR1 in Fig. 1 with the background expectations from different sources shown separately. Data are in good agreement with the SM predictions everywhere. See the Supplemental Material [43] for additional S_T distributions.

We demonstrate natural SUSY with RPV couplings in a stop RPV model where the light stop decays to a top quark and intermediate on- or off-shell bino, $\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 t$. The bino decays to two leptons and a neutrino through the leptonic RPV interactions, $\tilde{\chi}_1^0 \rightarrow \ell_i + \nu_j + \ell_k$ and $\nu_i + \ell_j + \ell_k$, or through the semileptonic RPV interactions.

![FIG. 1 (color online). The S_T distributions for SR1 including observed yields and background contributions.](image-url)
$\tilde{\chi}_1^0 \rightarrow \ell_i + q_j + q_k$ and $\nu_i + q_j + q_k$, where the indices i, j, k refer to those appearing in Eq. (1). The stop is assumed to be right handed and RPV couplings are large enough that all decays are prompt.

We generate samples to evaluate models with simplified mass spectra and leptonic RPV couplings λ_{122} or λ_{233}. The stop masses in these samples range from 700–1250 GeV in 50 GeV steps, and bino masses range from 100–1300 GeV in 100 GeV steps. In a model with only the semileptonic RPV coupling λ_{233}, we use stop masses 300–1000 GeV and bino masses 200–850 GeV, both in 50 GeV steps. In both cases, slepton and sneutrino masses are 200 GeV above the bino mass. Other particles are irrelevant in these models. Efficiency times acceptance figures for these models can be found in the Supplemental Material [43].

To determine which regions of phase space are excluded, we divide the channels shown in Table I by lepton flavor and perform a counting experiment using the observed event yields, the background expectations, and the signal expectations as inputs to an LHC-type CL$_S$ limit calculation [44–46]. A table with the finer binning is available in the Supplemental Material [46].

In the models with leptonic couplings, the limits are mostly independent of the bino mass, and, using the conservative minus-one standard deviation of the theoretical cross section with the observed result where the bino mass is 200 GeV, we exclude models with the stop mass below 1020 GeV when λ_{122} is nonzero, and below 820 GeV when λ_{233} is nonzero. These limits are shown in Fig. 2. There is a change in kinematics at the line $m_{\tilde{\chi}_1^0} = m_{\tilde{t}_1} - m_t$, below which the stop decay is two body, while above it is a four-body decay. Near this line, the $\tilde{\chi}_1^0$ and top are produced almost at rest, which results in soft leptons, reducing our acceptance. This loss of acceptance is more pronounced in the $\lambda_{233} \neq 0$ case and causes the loss of sensitivity near the line at $m_{\tilde{\chi}_1^0} = 800$ GeV. This feature is enhanced in the observed limit because the observed data have a larger statistical uncertainty in the relevant signal regions than the simulated signal samples.

In the semileptonic RPV model with λ_{233}, there are several different kinematic regions, which are described in Table II. The most significant effect is when the decay $\tilde{\chi}_1^0 \rightarrow \mu + t + b$ is disfavored, reducing the number of leptons. The different regions where this effect is pronounced drive the shape of the exclusion for λ_{233}. The area inside the curve is excluded. The observed limit is stronger than the expected one, which allows the observed exclusion region to reach into the regime where the bino decouples.

We have performed a search for RPV supersymmetry in models with top-squark pair production using a variety of

![Fig. 2 (color online). The 95% confidence level limits in the stop and bino mass plane for models with RPV couplings λ_{122}, λ_{233}, and λ_{233}'. For the couplings λ_{122} and λ_{233}, the region to the left of the curve is excluded. For λ_{233}', the region inside the curve is excluded. The different kinematic regions, A, B, C, D, and E, for the λ_{233} exclusion are explained in Table II.](image-url)

<table>
<thead>
<tr>
<th>Label</th>
<th>Kinematic region</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$m_t < m_{\tilde{t}1} < 2m_t$, $m{\tilde{t}_1}$</td>
<td>$\tilde{t}_1 \rightarrow t\mu b$ or tvb</td>
</tr>
<tr>
<td>B</td>
<td>$2m_t < m_{\tilde{t}1} < m{\tilde{B}_1}$</td>
<td>$\tilde{t}_1 \rightarrow t\mu b$ or tvb</td>
</tr>
<tr>
<td>C</td>
<td>$m_{\tilde{t}1} < m{\tilde{t}1} < m{\tilde{B}_1}$</td>
<td>$\tilde{t}_1 \rightarrow \ell\mu \tilde{b}$ or $j\ell b\tilde{\chi}_1^0$</td>
</tr>
<tr>
<td>D</td>
<td>$m_{\tilde{t}1} + m{\tilde{B}1} < m{\tilde{t}1} + m{\tilde{B}_1}$</td>
<td>$\tilde{t}_1 \rightarrow bW^+\tilde{\chi}_1^0$</td>
</tr>
<tr>
<td>E</td>
<td>$m_t + m_{\tilde{B}1} < m{\tilde{t}_1}$</td>
<td>$\tilde{t}_1 \rightarrow t\chi_1^0$</td>
</tr>
</tbody>
</table>

TABLE II. Kinematically allowed stop decay modes with RPV coupling λ_{233}'. The allowed neutralino decay modes for $m_t < m_{\tilde{t}_1} < m_{t}$ are $\tilde{\chi}_1^0 \rightarrow \mu b$ and νb. |
multilepton final states. Good agreement between observations and SM expectations allows us to set stringent limits on the top-squark mass in models with leptonic RPV couplings λ_{122} and λ_{333}. For a bino mass of 200 GeV, these limits are 1020 GeV and 820 GeV, respectively. We also set limits in a model with the semileptonic RPV coupling λ'_{231}.

We thank Jared Evans and Yevgeny Kats for providing guidance on the signal models examined in this Letter. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cypers); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

National Centre for Nuclear Research, Swierk, Poland
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
Joint Institute for Nuclear Research, Dubna, Russia
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Institute for Nuclear Research, Moscow, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
P. N. Lebedev Physical Institute, Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
Universidad Autónoma de Madrid, Madrid, Spain
Universidad de Oviedo, Oviedo, Spain
Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
CERN, European Organization for Nuclear Research, Geneva, Switzerland
Paul Scherrer Institut, Villigen, Switzerland
Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
Universität Zürich, Zurich, Switzerland
National Central University, Chung-Li, Taiwan
National Taiwan University (NTU), Taipei, Taiwan
Chulalongkorn University, Bangkok, Thailand
Cukurova University, Adana, Turkey
Middle East Technical University, Physics Department, Ankara, Turkey
Bogazici University, Istanbul, Turkey
Istanbul Technical University, Istanbul, Turkey
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom
Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
Baylor University, Waco, Texas, USA
The University of Alabama, Tuscaloosa, Alabama, USA
Boston University, Boston, Massachusetts, USA
Brown University, Providence, Rhode Island, USA
University of California, Davis, Davis, California, USA
University of California, Los Angeles, Los Angeles, California, USA
University of California, Riverside, Riverside, California, USA
University of California, San Diego, La Jolla, California, USA
University of California, Santa Barbara, Santa Barbara, California, USA
California Institute of Technology, Pasadena, California, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
University of Colorado at Boulder, Boulder, Colorado, USA
Cornell University, Ithaca, New York, USA
Fairfield University, Fairfield, Connecticut, USA
Fermi National Accelerator Laboratory, Batavia, Illinois, USA
University of Florida, Gainesville, Florida, USA
Florida International University, Miami, Florida, USA
Florida State University, Tallahassee, Florida, USA
Florida Institute of Technology, Melbourne, Florida, USA
University of Illinois at Chicago (UIC), Chicago, Illinois, USA
The University of Iowa, Iowa City, Iowa, USA
Johns Hopkins University, Baltimore, Maryland, USA
The University of Kansas, Lawrence, Kansas, USA
Kansas State University, Manhattan, Kansas, USA
Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Mississippi, Oxford, Mississippi, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
aDeceased.
bAlso at Vienna University of Technology, Vienna, Austria.
cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
dAlso at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
eAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
gAlso at Universidade Estadual de Campinas, Campinas, Brazil.
hAlso at California Institute of Technology, Pasadena, CA, USA.
iAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
jAlso at Zewail City of Science and Technology, Zewail, Egypt.
kAlso at Suez Canal University, Suez, Egypt.
lAlso at Cairo University, Cairo, Egypt.
mAlso at Fayoum University, El-Fayoum, Egypt.
nAlso at British University in Egypt, Cairo, Egypt.
oNow at Ain Shams University, Cairo, Egypt.	pAlso at Université de Haute Alsace, Mulhouse, France.
qAlso at Joint Institute for Nuclear Research, Dubna, Russia.
rAlso at Brandenburg University of Technology, Cottbus, Germany.
sAlso at The University of Kansas, Lawrence, Kansas, USA.
tAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
uAlso at Eötvös Loránd University, Budapest, Hungary.
wAlso at Tata Institute of Fundamental Research - EHEP, Mumbai, India.
xAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India.
yNow at King Abdulaziz University, Jeddah, Saudi Arabia.
zAlso at University of Visva-Bharati, Santiniketan, India.
aaAlso at University of Ruhuna, Matara, Sri Lanka.
bbAlso at Isfahan University of Technology, Isfahan, Iran.
ccAlso at Sharif University of Technology, Tehran, Iran.
ddAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
eAlso at Università degli Studi di Siena, Siena, Italy.
ffeAlso at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.
ffAlso at Facoltà Ingegneria, Università di Roma, Roma, Italy.
iiAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
Also at INFN Sezione di Roma, Roma, Italy.
k Also at University of Athens, Athens, Greece.
l Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
m m Also at Paul Scherrer Institut, Villigen, Switzerland.
n n Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
o o Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
p p Also at Gaziosmanpasa University, Tokat, Turkey.
q q Also at Adiyaman University, Adiyaman, Turkey.
r r Also at Cag University, Mersin, Turkey.
s s Also at Mersin University, Mersin, Turkey.
t t Also at Izmir Institute of Technology, Izmir, Turkey.
u u Also at Ozyegin University, Istanbul, Turkey.
v v Also at Kafkas University, Kars, Turkey.
w w Also at Suleyman Demirel University, Isparta, Turkey.
x x Also at Ege University, Izmir, Turkey.
y y Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
z z Also at Kahramanmaras Sütçü İmam University, Kahramanmaras, Turkey.
bbb Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
ccc Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.
ddd Also at Utah Valley University, Orem, UT, USA.
eee Also at Institute for Nuclear Research, Moscow, Russia.
fff Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
igg Also at Argonne National Laboratory, Argonne, IL, USA.
hhh Also at Erzincan University, Erzincan, Turkey.
iii Also at Yildiz Technical University, Istanbul, Turkey.
jjj Also at Texas A&M University at Qatar, Doha, Qatar.
kkk Also at Kyungpook National University, Daegu, Korea.