Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO$_2$ and the implications to the early earth’s atmosphere

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1073/pnas.1306979110

Publisher
National Academy of Sciences (U.S.)

Version
Final published version

Accessed
Thu Dec 06 18:59:21 EST 2018

Citable Link
http://hdl.handle.net/1721.1/85909

Terms of Use
Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO₂ and the implications to the early earth’s atmosphere

Andrew R. Whitehill, Changjian Xie, Xixi Hu, Daiqian Xie, Hua Guo, and Shuhei Ono

*Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; †Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; and ²Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131

Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved June 14, 2013 (received for review April 12, 2013)

Signatures of mass-independent isotope fractionation (MIF) are found in the oxygen (\(^{16}O\), \(^{17}O\), \(^{18}O\)) and sulfur (\(^{32}S\), \(^{33}S\), \(^{34}S\), \(^{36}S\)) isotope systems and serve as important tracers of past and present atmospheric processes. These unique isotope signatures signify a breakdown of the traditional theory of isotope fractionation, but the physical chemistry of these isotope effects remains poorly understood. We report the production of large sulfur isotope MIF, with \(\Delta^{33}S\) up to 76‰ and \(\Delta^{34}S\) up to 110‰, from the broadband excitation of SO\(_2\) in the 250–350-nm absorption region. Acetylene is used to selectively trap the triplet-state SO\(_2\) (\(^{1}B_2\)), which results from intersystem crossing from the excited singlet (\(^{1}A_2\)\(^{1}B_2\)) states. The observed MIF signature differs considerably from that predicted by isotopologue-specific absorption cross-sections of SO\(_2\) and is insensitive to the wavelength region of excitation (above or below 300 nm), suggesting that the MIF originates not from the initial excitation of SO\(_2\) to the singlet states but from an isotope selective spin–orbit interaction between the singlet (\(^{1}A_2\)\(^{1}B_2\)) and triplet (\(^{3}B_2\)) manifolds. Calculations based on high-level potential energy surfaces of the multiple excited states show a considerable lifetime anomaly for \(^{33}S\)O and \(^{36}S\)O for the low vibrational levels of the \(^{1}A_2\) state. These results demonstrate that the isotope selectivity of accidental near-resonance interactions between states is of critical importance in understanding the origin of MIF in photochemical systems.

photochemistry | sulfur dioxide | excited electronic states | absorption spectrum

Stable isotope fractionation theory predicts that the magnitude of stable isotope fractionation scales with the differences in isotopic mass (1, 2). Almost all physical, chemical, and biological processes in nature follow this mass-dependent scaling law, resulting in nearly all terrestrial materials with oxygen having \(\delta^{17}O = 0.52 \times \delta^{18}O\), whereas those with sulfur have \(\delta^{32}S = 0.515 \times \delta^{34}S\) and \(\delta^{34}S = 1.90 \times \delta^{32}S\). Significant deviations from these mass-dependent scaling laws are referred to as mass-independent fractionation (MIF), and serve as important tracers in the earth and planetary sciences (see refs. 3–5).

Early studies suggested that MIF could result only from nucleosynthetic processes (6), and the earliest measurements of oxygen MIF in calcium–aluminum inclusions of meteorites originally were interpreted to be nucleosynthetic in origin (7). It eventually was suggested (8) that chemical processes, such as tunneling or processes associated with predissociation, also might produce MIF. The first experimental evidence for a chemical origin of MIF came from ozone generated by an electric discharge or UV radiation (9, 10). The discovery of oxygen MIF in stratospheric ozone (11) soon triggered intense research into the physiochemical origin of MIF in the ozone system (see refs. 12–14). The possible chemical origins of MIF signatures still are poorly understood.

For the sulfur isotope system (\(^{32}S\), \(^{33}S\), \(^{34}S\), and \(^{36}S\)), Farquhar et al. (15) made the remarkable discovery that mass-independent sulfur isotope fractionation (S-MIF) is prevalent in sedimentary rocks older than 2.4 Ga but absent in rocks from subsequent periods. The disappearance of S-MIF at about 2.4 Ga (16, 17) signifies a fundamental change in the earth’s surface sulfur cycles, and generally is linked to the suppression of both SO\(_2\) photolysis and the formation of elemental sulfur aerosols by the rise of atmospheric oxygen levels (15, 18, 19). The Archean S-MIF is considered the most compelling evidence for an anoxic early atmosphere and constrains Archean oxygen levels to be less than 10\(^{-5}\) of present levels (19). This model of oxygen evolution, however, depends critically on the assumption that UV photolysis of SO\(_2\) by ~200 nm radiation is the ultimate source of the anomalous sulfur isotope signature (18). Constraining the source of the S-MIF requires a thorough understanding of the physiochemical origins of S-MIF during the photochemistry of SO\(_2\).

SO\(_2\) exhibits two strong absorption band systems in the UV region: one between 185 nm and 235 nm (\(C17\)\(_2\)\(\rightarrow\)\(X1\)\(_2\)) and the other from 240 to 350 nm (\(A1\)\(_2\), \(B1\)\(_2\)\(\rightarrow\)\(X1\)\(_2\)) (ref. 20 and references therein); we will refer to them as the photolysis and photoexcitation bands, respectively. Excitation into the photolysis band leads to the predissociation of SO\(_2\) into SO and O below 220 nm. Laboratory experiments by Farquhar et al. (18) showed production of large (\(\Delta^{33}S\) up to 70‰) S-MIF by SO\(_2\) photolysis using an ArF (193-nm) excimer laser source. This was used to link the high-energy photolysis band system to Archean S-MIF, and fueled subsequent detailed investigations (e.g., refs. 21–26) into the S-MIF production from photochemistry in this region. However, recent experiments (24–26) using broadband (as opposed to laser) light sources show S-MIF patterns different from the 193-nm experiments by Farquhar et al. (18). Large-magnitude (\(\Delta^{33}S > 2.5\%\)) MIF is produced only by experiments with high SO\(_2\) column densities, suggesting a strong contribution from

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence may be addressed. E-mail: anrwhite@mit.edu or dxi@nju.edu.cn.

2This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1306979110/-/DCSupplemental.

3Isotope ratios are reported in \(\delta\) value defined as

\[\delta = \frac{R_{\text{sample}}}{R_{\text{std}}} - 1, \]

where \(R\) is the ratio \(^{15}O/^{16}O = 33, 34, 36\) of sample (\(R_{\text{sample}}\)) and initial SO\(_{2}\) (\(R_{\text{std}}\), respective). For discussions of geological samples, \(R\) is the \(^{34}S/^{32}S\)-ratio of the international sulfur isotope standard Vienna Canyon Diablo Trough (V-CDT). These \(\delta\) values are reported in parts per million (ppm) as convention. The capital delta notation are calculated according to

\[\Delta^{33}S = \left(\frac{R_{33}}{R_{32}} \right)^{1/3} - 1, \]

and

\[\Delta^{33}S = \left(\frac{R_{36}}{R_{34}} \right)^{1/3} - 1. \]
spectroscopic self- and mutual-shielding, although additional mechanisms also may play a role (26). The elemental sulfur products produced by these experiments are characterized by large $\delta^{34}S$ and $\Delta^{34}S/\Delta^{33}S$ ratios that differ from those observed in the Archean rock record (24–26). Discrepancies between experimental results and the geological record require a reanalysis of the origin of Archean S-MIF signatures.

SO$_2$ photochemistry in the photoexcitation (240–350-nm) band also has been shown to produce S-MIF (18, 25, 27, 28) and has been implicated as the source of S-MIF in stratospheric sulfate aerosols trapped in polar ice (28–31). It also has been suggested that SO$_2$ photochemistry in the photoexcitation band might have made secondary contributions to the S-MIF signatures during some periods of the Archean (25, 32). This band system is associated with the excitation of SO$_2$ into a mixed $\tilde{A}^1A_2/\tilde{B}^3B_1$ state, which also interacts with lower-lying triplet states (\tilde{a}^3B_1, possibly also \tilde{b}^3A_2) (Fig. 1) (20). Recently published absorption cross-sections of isotopically enriched SO$_2$ (27) in this region allow the accurate prediction of the MIF produced during the initial excitation step (28). In this study, we focus on the production of S-MIF by SO$_2$ excited into the photoexcitation band, and compare the results with the measured isotopologue specific cross-sections, to test the importance of chemistry after photoexcitation. Our results show a strong dependence of the S-MIF on the SO$_2$ and bath gas pressures but not on the detailed spectrum regions of excitation, suggesting that isotopologue selective vibronic coupling produces significant S-MIF independent of absorption cross-section differences. A theoretical model also is presented to test this hypothesis.

Methods

A series of SO$_2$ photochemical experiments were carried out using a flow-through photochemical system to investigate S-MIF signatures as a function of SO$_2$ [0.1–10 millibars (mbar)] and nitrogen bath gas (260–1,010 mbar) pressures (SI Text, Table S1). A broadband radiation source (150-W Xe arc lamp) was used to excite SO$_2$ in the presence of triplet-state SO$_2$ (33) and mixed $\tilde{A}^1A_2/\tilde{B}^3B_1$ manifold. A 250-nm longpass filter was used to avoid photochemistry from the higher-energy photolysis bond (C(=O)$_2$ to X^1A_1) of SO$_2$. Photochemistry of SO$_2$ in the photoexcitation band was studied previously and showed rapid quenching of singlet SO$_2$ by bath gas (e.g., N$_2$, CO$_2$) and reaction of the resulting triplet SO$_2$ with CO$_2$, SO$_2$, and organic molecules (see ref. 20) (Fig. 1). Experiments were carried out in the presence of acetylene (10 mbar), which efficiently transferred triplet-state SO$_2$ (33) and produces organosulfur aerosols, previously characterized as (C$_2$H$_5$)$_2$S$_2$O$_2$ (36). These were captured and analyzed for quadruple sulfur isotope ratios using techniques described in Oduro et al. (37) and Ono et al. (26).

Results of Photochemical Experiments

All experiments produced organosulfur compounds that had minor fractionations in $\delta^{33}S$ ($-7.0^{10}\‰ < \delta^{33}S < 20.8^{10}\‰$), but were highly enriched in both $\delta^{34}S$ and $\Delta^{34}S/\Delta^{33}S$ (9.1$^{10}\‰ < \delta^{34}S < 87.3^{10}\‰$ and 13.8$^{10}\‰ < \Delta^{34}S/\Delta^{33}S < 15.7^{10}\‰$) (Table S1 and Fig. 2). This resulted in positive $\Delta^{33}S$ (11.9–77.8$^{10}\‰$) and $\Delta^{34}S$ (24.3–109.8$^{10}\‰$) values, and positive $\Delta^{34}S/\Delta^{33}S$ ratios of 1.12–2.25. With the exception of our lowest psO$_2$ experiment (0.1 mbar), experiments at lower SO$_2$ pressures produced higher $\Delta^{34}S$ and $\Delta^{34}S$ values than experiments at higher SO$_2$ pressures under the range of conditions studied, suggesting isotopologue self-shielding is not the dominant source of observed S-MIF anomaly. The sensitivity to psO$_2$ might reflect energy transfer between mass-independently fractionated singlet or triplet-state SO$_2$ and mass-dependently fractionated ground-state SO$_2$. Such energy transfer might dilute the MIF signal by exciting non-MIF SO$_2$ into the reactive triplet state. In addition to psO$_2$ dependence, $\Delta^{35}S$ values increased as total pressure decreased for experiments run at the same SO$_2$ pressure. $\Delta^{34}S/\Delta^{33}S$ ratios were sensitive to the total pressure of the system, with higher values (1.98–2.25) at the highest pressure tested (1.013 mbar) and lower values (1.12–1.27) at the lowest pressure (253 mbar) (Fig. 2A). These results, particularly the positive $\Delta^{35}S$ and $\Delta^{34}S$ values and small $\delta^{34}S$ values, are consistent with the previous experiments (25) performed with pure SO$_2$, which used N$_2$ or C$_2$H$_2$ as a bath gas, suggesting that the observed isotopologue signature is characteristic of this absorption band system and not a result of the N$_2$ or C$_2$H$_2$ used in the experiment.

To test the sensitivity of the isotopologue effects to the detailed spectral regions of the excitation, experiments were performed with a series of longpass (250-, 295-, and 305-nm) and shortpass (300- and 350-nm) filters (Fig. S1). The use of optical filters allows testing for S-MIF signals from the high- or low-energy side of the band system (Fig. 1). Experiments performed at the same SO$_2$ pressure (10 mbar) and total pressure (507 mbar) conditions but with different filters indicated the 250–300-nm, >295-nm, or >305-nm regions produced remarkably similar isotopic results, with $\Delta^{34}S$ between 30$^{10}\‰$ and 36$^{10}\‰$ and $\Delta^{34}S$ between 49$^{10}\‰$ and 66$^{10}\‰$ (Fig. 2F). This result suggests that the anomalous enrichment in $\Delta^{33}S$ and $\Delta^{34}S$ is not a strong function of excitation wavelength within this absorption band, at least within a broadband regime. Several experiments were performed with 320-nm longpass and 350-nm shortpass filters. This wavelength region corresponds to excitation into the \tilde{A}^1A_2 state only; it is below the origin of the \tilde{B}^3B_1 state (38) and above the spin-forbidden $\tilde{A}^1A_2 \leftrightarrow X^1A_1$ transition of SO$_2$, which lies between 350 and 390 nm (see references in ref. 20). The experiments were carried out at higher SO$_2$ (50.7 mbar) and acetylene (101 mbar) pressures, but the same total pressure (507 mbar). These produced lower $\Delta^{33}S$ (11.9–13.5$^{10}\‰$) and $\Delta^{34}S$ (24.3–28.0$^{10}\‰$) values, consistent with the higher SO$_2$ pressure, but with $\Delta^{34}S/\Delta^{33}S$ values (2.05–2.08) similar to the rest of the filter experiments (1.61–1.95) (Fig. 2). The presence of S-MIF signatures from excitation exclusively
into the 1A_2 state suggests that vibronic interactions between the
two singlet states (B^2B_1 and A^1A_2) make a negligible contribution
to the observed S-MIF signatures.

Source of MIF Signatures

Danielache et al. (27) reported UV cross-sections for isotopically
enriched SO$_2$ (i.e., 32SO$_2$, 34SO$_2$, 33SO$_2$, and 35SO$_2$) in the 250–
320-nm region. These cross-sections are measured at 8-cm$^{-1}$
resolution, at room temperature, and ~1–7 mbar SO$_2$, and
characterize the magnitude of the isotopic shifts in bands
positions and intensities. The measured cross-sections (27) were used
to predict S-MIF signatures under the experimental conditions
(spectral irradiance and SO$_2$ column densities) tested here and
are compared with experimental results in Fig. 2B. The results
show that differences in the absorption cross-sections can account
for a small fraction (<25%) of the large (up to 78%) Δ^{35}S
values observed in the 250-nm longpass experiments and cannot
account for the large positive Δ^{36}S values (up to 110%) observed.
In particular, the cross-sections predict large negative Δ^{36}S values
for a variety of broadband light sources (Fig. 2B and figure 7 in
ref. 27), in contrast to the large positive values observed. Even
accounting for the systematic errors (2.5%) and SEM (5–10%)
for the measured cross-sections (see results and discussion in
ref. 27), the cross-sections still cannot explain the Δ^{36}S values
observed (Fig. 2B).

The above cross-section model also includes the effect of self-
and mutual-shielding of absorption lines under experimental
conditions. Self-shielding occurs when the major isotopologue
line (i.e., 32SO$_2$) saturates under optically thick conditions. In
this study, large S-MIF signatures are observed even under opti-
tically thin conditions. The experiments with the lowest pSO$_2$
(column density of 4×10^{16} molecules per cm$^{-2}$) had over 95%
optical transmission, where self-shielding is not expected to play
a major role. The magnitude of S-MIF increases with decreasing
SO$_2$ pressure, which is opposite from what is expected from self-
shielding. We therefore exclude absorption-based effects, such as
self-shielding or absorption cross-section differences as the main
source of the observed S-MIF signatures.

Other proposed mechanisms of MIF production include nu-
clear field shift isotope effects, magnetic isotope effects, and
symmetry-based isotope effects. The magnitude of nuclear field
shift isotope effects has been estimated to be insignificant for the
sulfur isotope system because of the small nuclear size difference
between isotopologues (39). Magnetic isotope effects would pro-
duce anomalies only in 35S and cannot explain the large Δ^{36}S
values observed in the experiments. A symmetry-based isotope
effect also is unlikely because of the lack of any intermediates
or transition states with symmetrically equivalent sulfur atoms.
In addition, a symmetry-based isotope effect would predict positive
Δ^{35}S values and negative Δ^{36}S values (40), whereas positive Δ^{35}S
and positive Δ^{36}S values are observed in the present experiments.

Intersystem Crossing as a Potential Origin of S-MIF

Although isotope substitution shifts the vibrational and rotational
energy level spacing in a mass-dependent manner, the magnitudes
of the shifts will be different for different excited electronic states.
In systems in which the vibration–rotation levels of multiple low-
lying electronic states overlap, the interactions between states may
exhibit strong and level-specific isotope selectivity. In particular,
pairs of levels capable of interacting with each other and that
are near-degenerate for one isotopologue may be nondegenerate
for other isotopologues. These effects were cited previously as a
source of S-MIF during the photopolymerization of CS$_2$ (41, 42)
and oxygen MIF during the photodissociation of CO$_2$ (43) and CO
(44). In these three cases, the anomalous isotope effects have been
attributed to differences in intersystem crossing (ISC) rates from
an initially excited singlet state to a reactive (or dissociative) triplet
state. Similar spin–orbit effects have been shown to cause anom-
alous LIF intensities in 37ClO$_2$ vs. 35ClO$_2$ for particular vibrational
bands (45). A recent study by Muskatel et al. (46) demonstrates a
theoretical basis for similar isotope effects during the pho-
tolysis of N$_2$. In particular, they note that the accidental overlap
between different electronic states of N$_2$ may cause large isotope
effects in certain regions of the spectrum. The importance of
accidental degeneracies between interacting states in producing
environmentally relevant MIF signatures remains controversial,
as it has been suggested that self-shielding might have contributed to the isotope signatures observed during the CS$_2$ (47) and CO (48–50) experiments (see also ref. 51). In addition, isotope effects from local interactions are likely to be isolated to narrow spectral regions where the interactions occur.

Several previous spectroscopic studies of SO$_2$ showed isotope-specific perturbations in the 250–350-nm absorption region. Analysis of several absorption bands of S33O$_2$ corresponding to the Clements “B” and “E” bands (310.9 and 304.4 nm, respectively) revealed that these bands of S33O$_2$ were significantly less perturbed than the corresponding bands of S34O$_2$ (52), suggesting different coupling strengths for the different isotopologues. Baskin et al. (53) reported a strong 32SO$_2$ vibrational peak at 30,995 cm$^{-1}$ (322.6 nm) that had no corresponding 34SO$_2$ peak at the expected location. This was attributed to perturbations caused by accidentally near-degenerate vibronic interactions in one isotopic species but not the other.

If the anomalous isotope effects were purely the result of isolated interactions at particular vibrational levels, a strong wavelength selectivity to the anomalous isotope effects would be expected, with certain regions (i.e., around the localized near-degeneracies) producing considerably larger MIF than other regions. One of the features of the present experiments is that the MIF signature shows remarkable similarity in both the higher (250–300 nm) and lower (295–350 and 305–350 nm) energy regions of the absorption band (Figs. 1 and 2B). Experiments isolating only the 320–350-nm absorption region, which lies below the origin of the B exciton and corresponds to excitation into only the A_1 state, also produce S-MIF consistent with the other experiments, although with a smaller magnitude, because of the different experimental conditions (i.e., higher SO$_2$ pressure).

All our experiments were performed at relatively high total pressures (253–1,013 mbar) in the presence of a bath gas (N$_2$). Under these conditions, the collision lifetime (on the order of nanoseconds) is considerably shorter than the fluorescence lifetime (on the order of microseconds), allowing rapid collision-induced rotational and vibrational relaxation of the excited state (20, 54). Time-resolved fluorescence experiments performed at 1.33 mbar pure SO$_2$ showed strong resonance fluorescence from the excited level accompanied by significant fluorescence from vibrationally relaxed molecules (55). At higher SO$_2$ pressures of 26.6 mbar, a decay rate of 1,010 s$^{-1}$ was observed. This decay rate is from high vibrational state (266 nm) containing no resonance fluorescence, with the dominant fluorescence occurring around 325.5 nm and 370 nm, near the origin of the B_1 and A_2 states, respectively, suggesting rapid and nearly complete collisional vibrational thermalization (56). Although the collision-induced ISC might occur from any state, the rate of collision-induced vibrational relaxation is faster than the rate of collision-induced ISC (55), at least for some states. Thus, at high bath gas pressures, the ISC reaction more likely will occur from lower vibrational levels of the singlet state. This also increases the likelihood of vibrational relaxation of the B_1 state below the origin of the A_2 state, preventing crossing back to the singlet manifold. As a result, localized near-degenerate interactions at low vibrational levels of the singlet state will be selectively expressed regardless of the state and vibrational levels initially excited into this. This allows a mechanism for the expression of S-MIF from localized near-degenerate spin-orbit interactions, and also may explain the pressure dependence on the relationship between Δ^{34}S and Δ^{33}S values.

Theoretical Basis for Proposed Mechanism

To better understand the isotope effects during the ISC reaction of SO$_2$, high-level ab initio calculations of the global potential energy surfaces (PESs) for the low-lying singlet and triplet states of SO$_2$ were carried out (SI Text). In the Clements bands (57), about 3.5 eV above the ground electronic (X1A$_1$) state, there are two nonadiabatically coupled singlet (A^1A$_2$ and B^1B$_1$) and three triplet (a^3B$_1$, b^3A$_2$, and c^3B$_2$) electronic states (58–60) (Fig. 2D). The c^3B$_2$ state was not included in the present analysis, as it has no interaction with other states because of its symmetry. For each of the remaining states, ~19,000 symmetric unique points were determined at the internally contracted multireference configuration interaction (MRCI) level (61) with the augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis set (62) for both the sulfur and oxygen atoms. The Davidson correction (Q) (63) was applied to account for the effect of higher excitations and to reduce size-consistency errors. Nonadiabatic couplings between the two singlet states have been determined in a quasi-diabatic representation (64). In addition, the spin–orbit (SO) interactions between the singlet and triplet states has been computed using the unperturbed MRCI wave functions and Breit–Pauli Hamiltonian. As shown in SI Text (Fig. S2), the calculated absorption cross-section for the Clements bands is in good agreement with experiment. Importantly, the potential energy minimum of the a^3B$_1$ state is about 0.2 eV lower than that of the lowest singlet state, facilitating ISC.

Franck–Condon transitions with a 250–350-nm photon bring SO$_2$ from the ground X1A$_1$ state to the excited A^1A$_2$/B1B$_1$ manifold. As discussed above, we assume that the excited SO$_2$ is relaxed quickly to low vibrational states (Table S2) of the lowest singlet A^1A$_2$ state because of efficient nonadiabatic mixing between the two singlet states and efficient collisions with the bath gas. The ISC to the lowest triplet a^3B$_1$ state follows (Table S2), which was modeled using a wave packet method. In particular, the time-dependent Schrödinger equation was solved numerically (65) with the nonadiabatically coupled full-dimensional Hamiltonian for the B_1/A_1/a^3B$_1$ manifold ($J = 0$), as described in SI Text. Four (000, 100, 010, and 001) vibrational eigenfunctions on the A^1A$_2$ state were used as the initial wave packet, and the a^3B$_1$ triplet-state population is artificially absorbed to account for the irreversibility of the ISC as a result of collisional relaxation. The parameters used in our calculations are listed in Table S3.

The lifetime of the A^1A$_2$ state is extracted from the population decay curve (Table S4) and used to estimate the isotope effects for ISC from each vibrational level. As shown in Fig. 3 and Fig. S3, the results clearly show the decay rates are different among the sulfur isotopologues and are not mass dependent. In particular, the (000), (100), and (001) vibrational levels show large anomalies in the decay rate of the sulfur atom corresponding to an isotope-dependent effect in 34S. Similarly, decay from the (010) level shows large MIF in 33S. Therefore, combined contributions from MIF at the (100) and (010) levels would explain the experimental results of positive Δ^{35}S and Δ^{34}S values. It is clear that this simple model cannot fully account for the experimental results; a significant number of approximations were involved. For example, the relative energies of various electronic states might not be determined accurately by the ab initio method. In addition, it is likely that the singlet excited-state SO$_2$ decays from a range of vibrational and rotational levels. Nevertheless, these results clearly demonstrate that there is a very strong, isotope-specific dependence on the excited-state lifetimes from individual vibrational levels.

Implications to S-MIF Signatures Observed in Nature

The photolysis of SO$_2$ in the 185–220 nm absorption region currently is considered the most likely source reaction for Archean S-MIF (18, 19, 22–24). However, there are several issues with SO$_2$ photolysis as a source of the Archean S-MIF signatures. Broadband photolysis of SO$_2$ under a range of experimental conditions (e.g., SO$_2$ pressures, bath gas pressures, light sources) produces large δ^{34}S values (up to 212‰) associated with relatively small Δ^{33}S enrichments (maximum 25‰), resulting in low Δ^{34}S/δ^{34}S ratios of 0.55–0.66 (24–26). In contrast, the Archean record contains large Δ^{35}S values (from –4 to +12‰) associated with high δ^{34}S/δ^{33}S ratios of up to 1.4 (e.g., refs. 66 and 67). In addition, S-MIF signatures produced during SO$_2$ photolysis become
very small (Δ^{33}S < 2.5‰) at low SO\(_2\) column densities (26), indicating that the production of large (Δ^{33}S > 2.5‰) S-MIF anomalies would require the maintenance of high SO\(_2\) column densities in the atmosphere. Sediment digestion and biological processes in the oceans likely mix sulfides with different Δ^{33}S values and dilute the S-MIF signal (68) such that the source reaction likely would have produced Δ^{33}S values much larger than 12‰. Significant questions remain as to whether 185–220-nm photolysis of SO\(_2\) was the source of Archean S-MIF.

The S-MIF signatures produced in this study contain large (Δ^{33}S up to 78‰) MIF associated with small (<25‰) δ^{34}S values. In contrast to the photolysis band, the S-MIF signatures from the excitation band do not require a high SO\(_2\) column density to produce large S-MIF. The major issues with the excitation band as a source of the Archean S-MIF signature are the difficulty in preserving the isotope signatures from excited-state SO\(_2\) (relative to SO produced from SO\(_2\) photolysis) and the positive Δ^{34}S/Δ^{33}S ratios (Archean rocks have Δ^{34}S/Δ^{33}S ~ 1.5 to ~0.9; see refs. 15, 32, and 67). Several authors (25, 32) have suggested that SO\(_2\) photochemistry from the photoexcitation region might have contributed to the Archean S-MIF signatures, and studies have shown that the UV irradiation of SO\(_2\) in the presence of methane produces organosulfur aerosols (presumably derived from SO\(_2\)) that might have contributed to preservation of the Archean S-MIF signature (69). The discrepancy in Δ^{36}S/Δ^{33}S values requires additional study, but our calculations suggest that MIFs in Δ^{33}S and Δ^{34}S are produced from ISC at different vibrational levels, and our experiments demonstrated that the Δ^{36}S/Δ^{33}S ratio is a function of P\(_2\) and could potentially produce the Archean ratio under certain conditions. It should be noted that the Δ^{36}S/Δ^{33}S values produced from experimental photolysis of SO\(_2\) using broadband radiation sources is too low (~1.6 under pure SO\(_2\) but as low as ~6.0 with N\(_2\)) to explain the Δ^{36}S/Δ^{33}S ratios observed for the Archean record. As suggested in Whitehill and Ono (25), contributions from both absorption regions might explain the Archean S-MIF signal.

Conclusions
We report the production of very large S-MIF signatures, with Δ^{33}S up to 78‰ and Δ^{34}S up to 110‰, from SO\(_2\) photochemistry in the 250–350-nm region. The origin of the S-MIF is attributed to ISC at excitation wavelengths below 320 nm. Isotope effects due primarily to absorption, as predicted by isotopologue-specific cross-sections, do not contribute significantly to the large S-MIF observed, particularly in Δ^{34}S. Rapid vibrational relaxation allows expression of S-MIF signatures from localized accidental degeneracies regardless of the initially excited vibrational level. The same mechanism, however, may not be applicable to the 180- and 220-nm band systems of SO\(_2\) because the quantum efficiency of photolysis is near unity below 205 nm (59), and the lifetime is sufficiently short that little vibrational relaxation occurs. Although the S-MIF signatures observed in this study, particularly the Δ^{34}S/Δ^{33}S ratios, do not match those from the Archean, the photochemistry in the photoexcitation band can produce large mass-independent signatures (i.e., Δ^{33}S values) with relatively small mass-dependent fractionations (i.e., δ^{34}S values), which is necessary to explain the preservation of large Archean S-MIF signatures. Photochemistry from the 250–350-nm absorption region should be explored further as a possible source for the geological S-MIF signatures.

Acknowledgments
The authors thank William J. Olszewski for assistance in sulfur isotope analysis, and Harry Oduro and Eliza Harris for discussion. The authors also thank Robert Field for his input and suggestions. This work was supported by the National Aeronautics and Space Administration Exobiology Program, Grant NNX10AR85G (to S.O.); the National Natural Science Foundation of China (21133006, 91221301, and 91021010); the Ministry of Science and Technology (2013CB834601 to D.X.); and the Department of Energy, Grant DE-FG02-05ER15694 (to H.G.).

